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Closed curves in S3
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Curves in a conformal 3-manifold

M a 3-manifold with conformal structure
(equivalence class of Riemannian metrics)

Main example: M = S3

M = {immersions γ : S1 → M}/Diff0(S
1)

(space of unparametrized oriented closed curves)

More generally: Space of compact submanifolds of
codimension k in a conformal n-manifold
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Infinite dimensional manifolds

M is an infinite dimensional Frechet manifold (C∞-topology on
closed curves in M).

What works as usual on Frechet manifolds?

Defining tensors (like Riemannian metrics)

Everything that involves only differentiation (like computing
the Levi-Civita connection of a Riemannian metric)
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Infinite dimensional manifolds

Where one has to be careful:

No existence and uniqueness theorem for ODE’s on
infinite-dimensional manifolds  

Vector fields might not have integral curves

No geodesics with prescribed initial velocity

Integration over M not easy  better not talk about volume
of subsets of M

Ulrich Pinkall The space of curves in a conformal 3-manifold



Tangent bundle of M

TγM = {normal vector fields Y along γ}

A compatible Riemannian metric 〈, 〉 on M defines a
Riemannian metric on M:

〈Y ,Z 〉L2 =

∫
〈Y (s),Z (s)〉ds

For a 1-parameter family t 7→ γt , t ∈ [0, 1] use Levi-Civita
parallel translation along the orthogonal trajectories to
transport normal vectors of γ0 to normal vectors of γ1  
affine Connection ∇̂ on M
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Levi-Civita connection of 〈Y , Z 〉L2

Vector field H on M:

Hγ = Mean curvature vector field along γ

Tensor field C on M:

C : TγM× TγM→ TγM

CXY = 〈X ,H〉Y + 〈Y ,H〉X − 〈X ,Y 〉H

∇̂+ 1
2C is the Levi-Civita connection of 〈Y ,Z 〉L2
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Canonical affine connection on M

∇ := ∇̂+ C is a conf. invariant affine connection on M

∇ admits no parallel Riemannian metric, but the conformally
invariant function

L : TM→ R+

1/L(Y ) =

∫
1/|Y (s)|ds

is invariant under parallel translation:

∇L = 0

L is called the harmonic mean Lagrangian
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Harmonic mean Lagrangian

L vanishes on normal vector fields Y ∈ TγM that have zeroes

L is homogeneous of degree one, hence for curves

t 7→ γt ∈M, t ∈ [a, b]

the functional

L =

∫ b

a
L(γ̇) ∈ R+

is parametrization-independent

L measures in a conformally invariant way the “length” of a
curve in M
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Geodesics in M

Let f : S1 × [a, b] → M be an immersed cylinder, viewed as a
curve t 7→ γt in M. Then the following are equivalent:

γ is a geodesic of ∇

γ is a critical point of L

f is isothermic and the curves γt make an angle of 45◦ with
the curvature lines of f

 variational characterization of isothermic surfaces
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Circles in S3

The space of circles in S3 is
a 6-dimensional totally
geodesic submanifold
Circ(S3) of M

Geodesics in Circ(S3) are
special minimal surfaces
(helicoids) with respect to
some constant curvature
metric on a subset of S3
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Complex structure of M

Rotation of normal vector fields Y by 90◦, Y 7→ J(Y ) defines
an almost complex structure on M:

J : TγM→ TγM

The Nijenhuis-Tensor of J vanishes

For any compatible metric 〈, 〉 on M the Levi-Civita connection
of the L2-metric 〈, 〉L2 induced on M leaves J parallel

Hence 〈, 〉L2 is a Kähler metric on M

∇J = 0 for the canonical connection
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Holomorphic curves in M

Locally a holomorphic curve

f : U →M, U ⊂ C

defines a fibration
φ : f −1(U) → U

φ is a conformal submersion

Classical topic in case M = S3 and f (z) is a round circle for
all z ∈ U (“isotropic circle congruences”)
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Hopf fibration

The space of round circles in
S3 is a totally geodesic
complex submanifold of M

So is the space of straight
lines in a non-euclidean
geometry embedded in S3

The Hopf fibration is a
holomorphic 2-sphere in M
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Total torsion

The total torsion modulo 2π of any unit normal vector field N
along γ is conformally invariant and independent of N:

T (γ) ∈ S1 = R/2π

T is the monodromy in the normal bundle of γ.

In case M is simply connected:

M is connected.

T can be defined modulo 4π (use only normal vector fields
with even linking number)  T /2 ∈ S1 is well-defined.

An isomorphism of fundamental groups is induced by

T /2 : M→ S1
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Critical points of the total torsion

γ is a critical point of T ⇔

R(N, JN)γ′ +H′ = 0

where N is any unit normal vector field along γ.

In standard S3: ⇔ γ is a round circle.

Define in general γ to be a round circle in M if it is a critical
point of T .

Question: Do there always exist closed round circles? How
many?
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