

Integrable systems for real time simulation of fluid flow

Ulrich Pinkall TU Berlin

Joint work with Steffen Weissmann and Boris Springborn

DFG Research Center MATHEON Mathematics for key technologies

4/22/2008

- A polygon η_1, \ldots, η_n in \mathbb{R}^3 is called a *Darboux transform* of a polygon $\gamma_1, \ldots, \gamma_n$ if
- $\triangleright\,$ corresponding edges of γ and η have the same length.
- the distance d between corresponding points of γ and η is constant.
- ▷ the twist angle α of the quadrilaterals $\gamma_j, \gamma_{j+1}, \eta_{j+1}, \eta_j$ is constant.

- $\triangleright\,$ For generic distance d and twist angle α every closed polygon has exactly two closed Darboux transforms
- ▷ Iterate Darboux transforms to obtain a (discrete time) flow on polygons ~→ integrable system.
- $\triangleright~$ For $\alpha=\pi$ this flow is a discrete version of the mKdV-flow for smooth curves:

$$\dot{\gamma} = \gamma''' - \frac{|\gamma''|^2}{2}\gamma'$$

A suitable combination of two Darboux transforms (same d, opposite twist) gives a discrete version of the smoke ring flow:

$$\dot{\gamma} = \gamma' \times \gamma''$$

Let M be a compact Riemannian 3-manifold with boundary.

- > SDiff(M) ={volume-preserving diffeomorphisms $g : M \to M$ }
- > sDiff(M) =
 {divergence-free vector fields on M tangent to M}
- \triangleright L²-norm of vector fields defines a right invariant Riemannian metric on *SDiff*(*M*).
- ▷ geodesic on $SDiff(M) \leftrightarrow$ motion of ideal incompressible fluid in M

Similar statements if $M = \mathbb{R}^3$ for fluids at rest near infinity.

 $\,\triangleright\,$ for every vector field ω on \mathbb{R}^3 with compact support and

 $\operatorname{div}\omega=\mathbf{0}$

there is a unique L^2 -vector field v on \mathbb{R}^3 with

div v = 0

 $\operatorname{curl} \mathbf{v} = \omega$

 \triangleright v is given by the Biot-Savart formula:

$$w(x) = \int_{\mathbb{R}^3} \frac{\omega(y) \times (x-y)}{|x-y|^3} dy$$

 $\triangleright\,$ a single equations governs the evolution of $\omega :$

 $\dot{\omega} = [\omega, \mathbf{v}]$

- ▷ vorticity "flows with the fluid"
- \triangleright topology of supp ω is invariant

Suppose ω is supported in a tubular neighborhood of an oriented link $\gamma_1, \ldots, \gamma_n$.

 \rightsquigarrow total vorticities K_1, \ldots, K_n

$$K_j = \int_{\eta} v$$

 η a small loop around γ_j

 K_j is the flux of ω through the tube around γ_j

Look at a single vortex tube. Suppose within the tube ω looks like

$$\omega(\boldsymbol{s},\boldsymbol{r},\phi) = \boldsymbol{K}/\boldsymbol{R}^2 \ \boldsymbol{f}(\boldsymbol{r}/\boldsymbol{R}) \ \gamma'(\boldsymbol{s})$$

- \triangleright f = a fixed function ("vorticity profile")
- $\triangleright \ \mathbf{s} = \text{arclength along } \gamma$
- $\triangleright \ \mathbf{r} = \mathsf{distance} \ \mathsf{to} \ \gamma$
- \triangleright R =tube radius

Then in the limit $R \rightarrow 0$ the velocity field v generated by γ becomes

$$v(x) = rac{K}{4\pi} \oint rac{\gamma' imes (x-\gamma)}{|x-\gamma|^3}$$

Smoke ring flow

 \triangleright Evolution of γ : Evaluate velocity v on $\gamma \rightsquigarrow$

$$\dot{\gamma} \approx C_f \ K \ \log(R) \ \gamma' \times \gamma''$$

 $\triangleright \text{ Scale down } K \text{ as } R \rightarrow 0 \rightsquigarrow \text{ smoke ring flow}$

$$\dot{\gamma} = \gamma' \times \gamma''$$

(da Rios and Levi-Civita 1906)

 Integrable system equivalent to the non-linear Schroedinger equation (Hashimoto 1972)

▷ Symplectic form on the space of (weighted) links:

$$\sigma(\dot{\gamma}, \overset{\circ}{\gamma}) = \sum_{j} \mathsf{K}_{j} \oint_{\gamma_{j}} \mathsf{det}(\gamma', \dot{\gamma}, \overset{\circ}{\gamma})$$

▷ Hamiltonian:

$$H = \sum_j K_j \operatorname{Length}(\gamma_j)$$

Renormalized version of

$$H = \sum_{i,j} \frac{K_i K_j}{8\pi} \iint \frac{\langle \gamma'_i(s), \gamma'_j(t) \rangle}{|\gamma_i(s) - \gamma_j(t)|} ds dt$$

Problem: In the smoke ring limit

- ▷ Fluid is at rest, vortex filaments just cut through
- ▷ No interaction between different components of a link

Solution:

- ▷ Keep symplectic form
- ▷ Replace Hamiltonian by a smoothed version

$$H = \sum_{i,j} \frac{K_i K_j}{8\pi} \iint \frac{\langle \gamma'_i(s), \gamma'_j(t) \rangle}{\sqrt{R^2 + |\gamma_i(s) - \gamma_j(t)|^2}} ds dt$$

$$\dot{\gamma_k}(s) = \sum_j rac{\mathcal{K}_j}{4\pi} \int rac{\gamma_j'(t) imes (\gamma_k(s) - \gamma_j(t))}{\sqrt{R^2 + |\gamma_k(s) - \gamma_j(t)|^2}} dt$$

- ▷ Still Hamiltonian but not anymore integrable
- Conserved quantitity: Sum of (weighted) areas of orthogonal projection to planes, encoded by the area vector

$$A = \sum_{j} K_{j} \oint \gamma_{j} \times \gamma_{j}'$$

 $\triangleright \gamma_1, \ldots, \gamma_n$ flow according to some divergence-free vector field v on \mathbb{R}^3 :

$$\mathbf{v}(\mathbf{x}) = \sum_{j} rac{\mathcal{K}_{j}}{4\pi} \int rac{\gamma_{j}' imes (\mathbf{x} - \gamma_{j})}{\sqrt{\mathcal{R}^{2} + |\mathbf{x} - \gamma_{j}|^{2}}}$$

- \triangleright Vorticity $\omega = \operatorname{curl} v$ concentrated within distance R of $\gamma_1, \ldots, \gamma_n$
- \triangleright δ -function like vorticity ω_0 smoothed by a convolution kernel:

$$\omega(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{3R^2}{\sqrt{R^2 + |x - y|^2}} \, \omega_0(y) dy$$

- Approximation to the Euler equations that ignores distortions of the cross section of the vortex tubes.
- \triangleright View above evolution of $\gamma_1, \ldots, \gamma_n$ as a perturbation of the smoke ring flow \rightsquigarrow KAM picture.

- Perturb the discrete smoke ring dynamics of a polygon by the long range interactions via Biot-Savart.
- Biot-Savart alone would ignore the influence of the adjacent edges on the motion of a vertex.
- $\triangleright \text{ Biot-Savart alone would always model vortex filaments of thickness} \approx edgelengths \rightsquigarrow too thick, too slow.}$
- ▷ Discrete smoke ring dynamics is therefore needed.