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Vortex rings in fluids
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Darboux transforms of polygons

A polygon η1, . . . , ηn in R3 is called a Darboux transform of a polygon
γ1, . . . , γn if

. corresponding edges of γ and η
have the same length.

. the distance d between
corresponding points of γ and η
is constant.

. the twist angle α of the
quadrilaterals γj , γj+1, ηj+1, ηj is
constant.
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Evolution of closed polygons

. For generic distance d and twist angle α every closed polygon has
exactly two closed Darboux transforms

. Iterate Darboux transforms to obtain a (discrete time) flow on
polygons  integrable system.

. For α = π this flow is a discrete version of the mKdV-flow for
smooth curves:

γ̇ = γ′′′ − |γ′′|2

2
γ′

. A suitable combination of two Darboux transforms (same d ,
opposite twist) gives a discrete version of the smoke ring flow:

γ̇ = γ′ × γ′′
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Incompressible ideal fluids

Let M be a compact Riemannian 3-manifold with boundary.

. SDiff (M) =
{volume-preserving diffeomorphisms g : M → M}

. sDiff (M) =
{divergence-free vector fields on M tangent to M}

. L2-norm of vector fields defines a right invariant Riemannian metric
on SDiff (M).

. geodesic on SDiff (M) ↔
motion of ideal incompressible fluid in M

Similar statements if M = R3 for fluids at rest near infinity.
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Fluid motion: velocity in terms of vorticity

. for every vector field ω on R3 with compact support and

div ω = 0

there is a unique L2-vector field v on R3 with

div v = 0

curl v = ω

. v is given by the Biot-Savart formula:

v(x) =

∫
R3

ω(y)× (x − y)

|x − y |3
dy

Integrable systems for fluid flow 6 / 16



Euler equations for ideal fluids

. a single equations governs the evolution of ω:

ω̇ = [ω, v ]

. vorticity “flows with the fluid”

. topology of supp ω is invariant
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Vortex filaments

Suppose ω is supported in a
tubular neighborhood of an
oriented link γ1, . . . , γn.

 total vorticities K1, . . . , Kn

Kj =

∫
η

v

η a small loop around γj

Kj is the flux of ω through the
tube around γj
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Limit of thin tubes

Look at a single vortex tube. Suppose within the tube ω looks like

ω(s, r , φ) = K/R2 f (r/R) γ′(s)

. f = a fixed function (“vorticity profile”)

. s = arclength along γ

. r = distance to γ

. R = tube radius

Then in the limit R → 0 the velocity field v generated by γ becomes

v(x) =
K
4π

∮
γ′ × (x − γ)

|x − γ|3
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Smoke ring flow

. Evolution of γ: Evaluate velocity v on γ  

γ̇ ≈ Cf K log(R) γ′ × γ′′

. Scale down K as R → 0 smoke ring flow

γ̇ = γ′ × γ′′

(da Rios and Levi-Civita 1906)

. Integrable system equivalent to the non-linear Schroedinger
equation (Hashimoto 1972)
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Hamiltonian formulation

. Symplectic form on the space of (weighted) links:

σ(γ̇,
◦
γ) =

∑
j

Kj

∮
γj

det(γ′, γ̇,
◦
γ)

. Hamiltonian:
H =

∑
j

Kj Length(γj)

. Renormalized version of

H =
∑
i ,j

KiKj

8π

∫∫ 〈γ′
i (s), γ

′
j(t)〉

|γi(s)− γj(t)|
ds dt

Integrable systems for fluid flow 11 / 16



Turning on interactions between filaments

Problem: In the smoke ring limit

. Fluid is at rest, vortex filaments just cut through

. No interaction between different components of a link

Solution:

. Keep symplectic form

. Replace Hamiltonian by a smoothed version

H =
∑
i ,j

KiKj

8π

∫∫ 〈γ′
i (s), γ

′
j(t)〉√

R2 + |γi(s)− γj(t)|2
ds dt
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Resulting evolution equation

γ̇k(s) =
∑

j

Kj

4π

∫
γ′

j(t)× (γk(s)− γj(t))√
R2 + |γk(s)− γj(t)|2

3 dt

. Still Hamiltonian but not anymore integrable

. Conserved quantitity: Sum of (weighted) areas of orthogonal
projection to planes, encoded by the area vector

A =
∑

j

Kj

∮
γj × γ′

j
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Flow generated by γ1, . . . , γn on R3

. γ1, . . . , γn flow according to some divergence-free vector field v on
R3:

v(x) =
∑

j

Kj

4π

∫
γ′

j × (x − γj)√
R2 + |x − γj |2

3

. Vorticity ω = curl v concentrated within distance R of γ1, . . . , γn

. δ-function like vorticity ω0 smoothed by a convolution kernel:

ω(x) =
1
4π

∫
R3

3R2√
R2 + |x − y |25 ω0(y)dy
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Perturbed integrable system

. Approximation to the Euler equations that ignores distortions of
the cross section of the vortex tubes.

. View above evolution of γ1, . . . , γn as a perturbation of the smoke
ring flow  KAM picture.
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Polygonal vortex filaments

. Perturb the discrete smoke ring dynamics of a polygon by the long
range interactions via Biot-Savart.

. Biot-Savart alone would ignore the influence of the adjacent edges
on the motion of a vertex.

. Biot-Savart alone would always model vortex filaments of thickness
≈ edgelengths  too thick, too slow.

. Discrete smoke ring dynamics is therefore needed.
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