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icelandVolcano.mov
Media File (video/quicktime)



Smoke rings
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Smoke from smoke rings

. Claim: The whole smoke can be modelled as a
collection of entangled smoke rings.

. Smoke rings move on their own, but they also
interact.

. Interaction can even imply a topology change
(reconnection)
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Vortex filaments
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dolphin.mov
Media File (video/quicktime)



Colliding vortex rings
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collision.mov
Media File (video/quicktime)



Polygonal Smoke
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collisionSimulation.mov
Media File (video/quicktime)



Vorticity

. A velocity vector field v is uniquely determined by its vorticity

ω = curl v

. v is given by the Biot-Savart formula:

v(x) =
1

4π

∫
R3

ω(y)× x − y

|x − y |3
dy

. In an ideal fluid ω flows with the velocity v it generates:

ω̇ = curl (v × ω) = [ω, v ]
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Origin of vorticity

. Away from obstacles vorticity is
neither created nor destroyed

. Just swept along with the flow

. All vorticity originates at the
boundaries of obstacles

. Kaffeelöffelexperiment
by Felix Klein
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Vortex sheet roll up

. Vorticity originates as
2-dimensional vortex sheets

. Vortex sheets roll up into
1-dimensional structures
(“smoke rings”)
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Vortex sheet roll up

. Airplane
rides on a
giant
vortex ring

. Extends
back to
where it
took off

. Vorticity
concen-
trated on a
filament
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Vortex filaments

. Suppose all vorticity is
concentrated in a small tube of
radius R around a space curve γ

(like water flowing through the
tube).

. Then away from γ the velocity field
is given by

v(x) = K

∮
γ′ × (x − γ)

|x − γ|3
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Smoke ring flow

. Evolution of γ: Evaluate velocity v on γ  

γ̇ ≈ Cf K log(R) γ′ × γ′′

. Scale down K as R → 0 smoke ring flow

. da Rios and Levi-Civita 1906

. Integrable system equivalent to the non-linear
Schroedinger equation (Hashimoto 1972)

γ̇ = γ′ × γ′′
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Smoke ring flow

. γ̇ = γ′ × γ′′

. Curve moves orthogonal to its
osculating plane.

. Speed is proportional to the
curvature.

. Length is constant.

Area vector is constant.

. . .
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Area vector of a polygon

. For a space curve:

A =
1

2

∮
γ × γ′

. For a closed polygon:

A =
1

2

n∑
i=1

γi × γi+1

. b a unit vector  〈A, b〉 is the
algebraic area of the orthogonal
projection of γ onto a plane
with normal vector b
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Skew parallelograms

. A quadrilateral γ0, γ1, γ2, γ3 in R3 is
called a skew parallelogram of twist τ
if the difference vector

V =
γ3 + γ1

2
− γ2 + γ0

2

between the centers of its diagonals is
a multiple of its area vector:

V = τ A

. Opposite sides of a skew parallelogram
have the same length.
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Darboux transforms

. A polygon η is called a Darboux transform
with rod-length ρ and twist τ if all
quadrilaterals

ηi ηi+1

γi γi+1

are skew parallelograms with

|ηi − γi | = ρ and twist τ.

. For generic ρ, τ every closed polygon has
exactly two closed Darboux transforms.

. Hoffmann 2000
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Iterated Darboux transforms

. Closed Darboux transforms of a
closed polygon have the same:

length

Area vector

. . .

. Iterating Darboux transforms with
the same ρ and τ gives
“discrete Lund-Regge surfaces”
(Schief 2007)
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Discrete smoke ring flow

. Using twists τ and −τ in an
alternating fashion preserves
reflectional symmetries.

. Forget the odd iterations.

. Excellent discrete version of the
smoke-ring flow.
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What is missing?

To make this practical, several features have to be
included:

. Interaction between thick vortex rings

. Obstacles

. Vorticity generation at obstacle boundaries
(“vortex shedding”)

. Topology changes (“vortex reconnection”)
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See Steffen’s talk on Thursday!
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ellipse-wake.mov
Media File (video/quicktime)
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