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icelandVolcano.mov
Media File (video/quicktime)


Ky Smoke rings
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etna.mov
Media File (video/quicktime)


Ky Smoke from smoke rings

> Claim: The whole smoke can be modelled as a
collection of entangled smoke rings.
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Ky Smoke from smoke rings

> Claim: The whole smoke can be modelled as a
collection of entangled smoke rings.

> Smoke rings move on their own, but they also
interact.

> Interaction can even imply a topology change
(reconnection)
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Ky Vortex filaments
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dolphin.mov
Media File (video/quicktime)


5y Colliding vortex rings
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collision.mov
Media File (video/quicktime)
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collisionSimulation.mov
Media File (video/quicktime)


> A velocity vector field v is uniquely determined by its vorticity

w = curlv
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> A velocity vector field v is uniquely determined by its vorticity

w = curlv

> v is given by the Biot-Savart formula:

1 X—y
) =3 [ e x Z=Ls

> In an ideal fluid w flows with the velocity v it generates:

w = curl (v X w) = [w, v]
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55 Origin of vorticity

> Away from obstacles vorticity is
neither created nor destroyed
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I Origin of vorticity

> Away from obstacles vorticity is
neither created nor destroyed

> Just swept along with the flow

> All vorticity originates at the
boundaries of obstacles

> Kaffeeloffelexperiment
by Felix Klein
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Ky Vortex sheet roll up

= LA

> Vorticity originates as
2-dimensional vortex sheets
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Ky Vortex sheet roll up

> Vorticity originates as
2-dimensional vortex sheets

> Vortex sheets roll up into
1-dimensional structures
(“smoke rings")
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Ky Vortex sheet roll up

> Airplane
rides on a
giant
vortex ring
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Ky Vortex sheet roll up

> Airplane
rides on a
giant
vortex ring

Extends
back to
where it
took off

Vorticity
concen-
trated on a
filament
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Ky Vortex filaments

> Suppose all vorticity is
concentrated in a small tube of
radius R around a space curve y

(like water flowing through the
tube).
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Ky Vortex filaments

> Suppose all vorticity is
concentrated in a small tube of
radius R around a space curve y

(like water flowing through the
tube).

> Then away from 7 the velocity field
is given by

W@:waxw—w

x —~[?
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Ly Smoke ring flow

> Evolution of +: Evaluate velocity v on v ~~

Y= Cr K log(R) 7' x "
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Ly Smoke ring flow

> Evolution of +: Evaluate velocity v on v ~~

Y~ Cr K log(R) 7' x "

> Scale down K as R — 0 ~» smoke ring flow

> da Rios and Levi-Civita 1906

T=9xy

> Integrable system equivalent to the non-linear
Schroedinger equation (Hashimoto 1972)
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L Smoke ring flow

> =9 %9

> Curve moves orthogonal to its
osculating plane.
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Ay Area vector of a polygon

> For a space curve:

1
A= — !
2%7X7
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Ky Skew parallelograms

> A quadrilateral ~g, 71, Y2, 73 in R3 is
called a skew parallelogram of twist 7
if the difference vector

v BTN 72+
2 2

between the centers of its diagonals is
a multiple of its area vector:

V=1A
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Ky Darboux transforms

> A polygon 7 is called a Darboux transform
with rod-length p and twist 7 if all
quadrilaterals

N Nit1
Vi Vi+1

are skew parallelograms with
|ni — il = p and twist 7.
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Ky Darboux transforms

> A polygon 7 is called a Darboux transform
with rod-length p and twist 7 if all
quadrilaterals

N Nit1
Vi Vi+1

are skew parallelograms with

|ni — il = p and twist 7.

> For generic p, T every closed polygon has
exactly two closed Darboux transforms.

> Hoffmann 2000
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Ky lter

> Closed Darboux transforms of a
closed polygon have the same:

Polygonal smoke 18 / 21



Ky lter

> Closed Darboux transforms of a
closed polygon have the same:

length

Polygonal smoke 18 / 21



Ky lter

> Closed Darboux transforms of a
closed polygon have the same:

length
Area vector

Polygonal smoke 18 / 21



Ky lter

> Closed Darboux transforms of a
closed polygon have the same:

length
Area vector

Polygonal smoke 18 / 21



Ly

> Closed Darboux transforms of a
closed polygon have the same:

length
Area vector

> lterating Darboux transforms with
the same p and 7 gives
“discrete Lund-Regge surfaces”
(Schief 2007)
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Ky Discrete smoke ring flow

> Using twists 7 and —7 in an
alternating fashion preserves
reflectional symmetries.
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Ly ' smoke ring flow

> Using twists 7 and —7 in an
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reflectional symmetries.
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Ky What is missing?

To make this practical, several features have to be
included:
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Ky What is missing?

To make this practical, several features have to be
included:

> Interaction between thick vortex rings
> Obstacles

> Vorticity generation at obstacle boundaries
(“vortex shedding”)

> Topology changes ( “vortex reconnection”)
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See Steffen's talk on Thursday!
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ellipse-wake.mov
Media File (video/quicktime)
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