

Elastic strips

Ulrich Pinkall David Chubelaschwili

DFG Research Center MATHEON Mathematics for key technologies

May 1, 2010

▲□▶ ▲□▶ ▲ => ▲ => ● <</p>

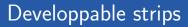
Elastic Moebius strips

Let γ : [0, L] → ℝ³ be an arclength parametrized curve with Frenet frame T, N, B. Assume that there is a smooth function
λ : [0, L] → ℝ such that the curvature and torsion of γ satisfy

$$\tau = \lambda \kappa$$
.

▷ Then
$$f : [0, L] \times [-\epsilon, \epsilon] \rightarrow \mathbb{R}^3$$
 defined by
 $f(s, t) = \gamma(s) + t(B(s) + \lambda T(s))$

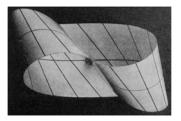
parametrizes a developpable strip of width 2ϵ .



 $\triangleright \ \alpha$ the angle between the curve and the normal to the rulings \leadsto

 $\lambda = \tan \alpha$

Photographs 1961 by
W. Wunderlich



▷ The bending energy

$$E = \int H^2 dA$$

can be expressed as

$$E = \int_0^L \kappa^2 (1+\lambda^2)^2 \, rac{\log(1+\epsilon\lambda') - \log(1-\epsilon\lambda')}{\lambda'} ds.$$

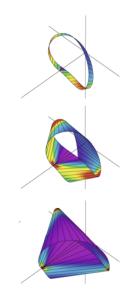
▷ Wunderlich 1961

5 / 26

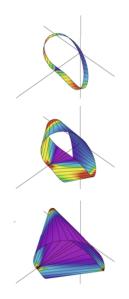
 Starostin and van der Heijden computed in 2007 the Euler-Lagrange equations

▷ Variational complex → Computer algebra

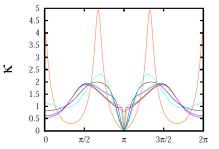
 Numerical study of energy-minimizing Moebius bands

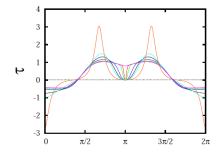


- ▷ In the limit $\epsilon \rightarrow 0$ the curvature κ jumps from +1 to -1 at the inflection point.
- \triangleright Torsion au is continuous with value 1.
- $\triangleright\,$ Angle between curve and rulings jumps from 45° to $-45^\circ.$
- Energy minimizing Moebius bands are only C¹.

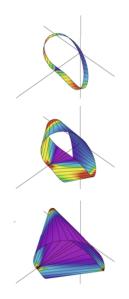


Infinitesimally thin bands





- ▷ In the limit $\epsilon \rightarrow 0$ the curvature κ jumps from +1 to -1 at the inflection point.
- \triangleright Torsion au is continuous with value 1.
- $\triangleright\,$ Angle between curve and rulings jumps from 45° to $-45^\circ.$
- Energy minimizing Moebius bands are only C¹.



\triangleright In the limit $\epsilon \rightarrow 0$ the energy becomes

$$E=\int_0^L\kappa^2(1+\lambda^2)^2ds.$$

Introduced by Sadowski in 1930 as

$$E=\int_0^L \frac{(\kappa^2+\tau^2)^2}{\kappa^2} ds.$$

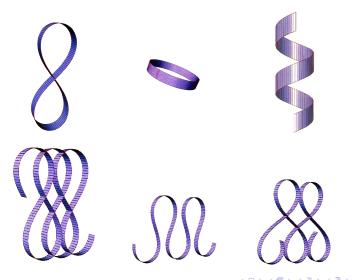
 \triangleright E has to be minimized among strips with fixed length \rightsquigarrow Langrange multiplier μ in Euler-Lagrange equations.

Computed in 2005 by Hagan, subsequently corrected by Rominger and Chubelaschwili

$$0 = (\kappa'(1+\lambda^2)^2 + 2\kappa(1+\lambda^2)\lambda\lambda')' + \frac{\kappa}{2}(\kappa^2(1+\lambda^2)^2 - \mu) + \lambda\kappa(\kappa^2(1+\lambda^2)^2\lambda + (\frac{\kappa'}{\kappa}(1+\lambda^2)2\lambda))' + (1+\lambda^2)2\lambda)'') 0 = (\kappa^2(1+\lambda^2)^2\lambda + (\frac{\kappa'}{\kappa}(1+\lambda^2)2\lambda)' + ((1+\lambda^2)2\lambda)'')' + \kappa\lambda(\kappa'(1+\lambda^2)^2 + 2\kappa(1+\lambda^2)\lambda\lambda')$$

Simple examples

Planar elastic curves and helices yield elastic strips with $\lambda = const$.



General examples

Other periodic examples can be found by numerical search (Rominger 2007).

Theorem (Chubelaschwili 2009): A strip is elastic ⇔

the force vector

$$b = \frac{1}{2} (\kappa^2 (1 + \lambda^2)^2 + \mu) \mathbf{T}$$

+ $(\kappa' (1 + \lambda^2)^2 + 2\kappa (1 + \lambda^2) \lambda \lambda') \mathbf{N}$
- $(\kappa^2 (1 + \lambda^2)^2 \lambda + (\frac{\kappa'}{\kappa} (1 + \lambda^2) 2\lambda)' + ((1 + \lambda^2) 2\lambda)'') \mathbf{B}$

is constant.

• • = • • = •

Theorem (Chubelaschwili 2009): For an elastic strip

the torque vector

$$\mathbf{a} = 2 \kappa \lambda (1 + \lambda^2) \mathbf{T} \\ + \frac{1}{\kappa} (2 \kappa \lambda (1 + \lambda^2))' \mathbf{N} \\ + \kappa (1 + \lambda^2) (1 - \lambda^2) \mathbf{B} \\ - \mathbf{b} \times \gamma$$

is constant.

- ▷ The force **b** and the torque **a** have to be applied to the end point of the strip to keep it in equilibrium.
- They come from the boundary terms of the first variation formula used to derive the Euler-Lagrange equations.

Definition: An elastic strip is called *force-free* if the force vector **b** vanishes.

 \triangleright For force-free elastic strips the bending energy is critical even if the end point of γ is allowed to move, only the frame at the end point is held fixed.

 $\triangleright~$ No condition on end point of γ $\rightsquigarrow~$ variational problem for the tangent image ${\bf T}$

 $\triangleright\,$ For a force-free elastic strip the Lagrange multiplier μ is positive $\rightsquigarrow\,$ normalize to 1 by scaling.

 $\,\triangleright\, \rightsquigarrow$ We are looking for critical points of

$${ ilde E} = 1/2 \, \int_0^L (\kappa^2 (1+\lambda^2)^2 + 1) ds.$$

▷ For a force-free elastic strip κ does not vanish \rightsquigarrow tangent image **T** is a regular curve in S^2 of curvature λ :

$$\begin{split} \mathbf{T}' &= & +\kappa \, \mathbf{N} \\ \mathbf{N}' &= -\kappa \mathbf{T} & +\kappa \, \lambda \, \mathbf{B} \\ \mathbf{T}' &= & -\kappa \, \lambda \, \mathbf{N} \end{split}$$

 $\triangleright \ d\tilde{s} = \kappa \, ds \rightsquigarrow \gamma \text{ can be reconstructed from an arclength}$ parametrization of **T** as

$$\gamma(\tilde{s}) = \int_0^{\tilde{s}} \frac{1}{\kappa} \, \mathbf{T} \, d\tilde{s}.$$

Theorem: Let $\mathbf{T}: [0, \tilde{\mathcal{L}}] \to S^2$ be an arclength parametrized curve with curvature λ . Then among all strips $\gamma : [0, \tilde{\mathcal{L}}] \to \mathbb{R}^3$ with tangent image \mathbf{T} the one given by

$$\gamma(ilde{s}) = \int_0^{ ilde{s}} (1+\lambda^2) \, {f T} \, d ilde{s}$$

has minimal Sadowski functional \tilde{E} and

$$ilde{E} = \int_0^{ ilde{L}} (1+\lambda^2) \, d ilde{s}.$$

 γ has curvature

$$\kappa = 1/(1+\lambda)^2.$$

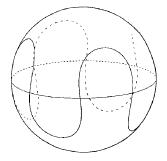
Corollary: The tangent images of force-free elastic strips are elastic curves in S^2 , in fact critical points of

$$\int_0^{\tilde{L}} (1+\lambda^2) \, d\tilde{s}.$$

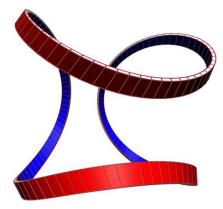
Conversely, for any such spherical curve $\ensuremath{\textbf{T}}$ the space curve

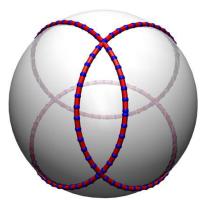
$$\gamma = \int (1+\lambda^2) \, {f T} \, d ilde s$$

defines a force-free elastic strip.



Closed force-free strips





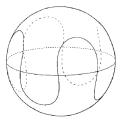
▷ All possible adapted frames (lifted to S^3) define the *frame cylinder*

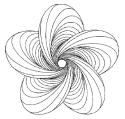
 $F: [0, L] \times S^1 \rightarrow S^3$

of a space curve γ .

 \triangleright F is the preimage of the tangent image **T** under the Hopf map $S^3 \rightarrow S^2$.

Corollary: The frame cylinder of a force-free elastic strip is Willmore in S^3 .





Given

- $\triangleright\,$ any arclength-parametrized spherical elastic curve $B:[0,L]\to S^2$ without inflection points
- \triangleright its unit normal $T = B \times B'$
- \triangleright its curvature λ .

Then

$$\gamma: [\mathbf{0}, L] \to \mathbb{R}^3$$

$$\gamma = \int (1 + \frac{1}{\lambda^2}) T$$

defines an elastic strip.

Momentum strips are never closed.

At any point $\gamma(s)$ of a force-free elastic strip the following are equivalent:

- \triangleright The rulings make an angle of 45° with γ .
- ▷ The curvature of the tangent image satisfies $\lambda(s) = 1$.
- A glueing construction is possible where the curvature κ is discontinuous but nevertheless we still have an elastic strip in the sense of balanced force b and torque a.

- Closed solutions by cut and paste?
- Stable ones?
- Moebius band?
- Other integrable classes of elastic strips?
- ▷ Maybe all elastic strips come from an integrable system?