Constraint Willmore Surfaces

Ulrich Pinkall
Technische Universität Berlin
Durham, October 2005

Joint work with C. Bohle, P. Peters

Conformal immersions

- Conformal structure on oriented $M^{2} \leftrightarrow$ complex structure $J: T M \rightarrow T M, J^{2}=-I$

- (Garcia, Ruedy 1961/71) Every Riemann surface can be conformally immersed into R^{3}.

Constraint Willmore surfaces

- Compact constraint Willmore surfaces: critical points of Willmore functional for surfaces of a fixed conformal type

- For spheres: Only one conformal type \rightsquigarrow Constraint Willmore \Rightarrow Willmore
- For tori: Willmore conjecture proven for some conformal types (Li \& Yau, Montiel \& Ross)

CMC Surfaces in Spaceforms

(Thomsen, 1923)
Minimal in some spaceform \Longleftrightarrow Willmore + isothermic.

- Clifford torus in S^{3}
- Willmore spheres in R^{3}
- this torus in H^{3} :

(Burstall, Pedit, - 1997)
CMC in some spaceform
\Longrightarrow constrained Willmore + isothermic.
For tori the converse holds as well.

Wente torus in R^{3}

Delaunay torus in S^{3}

A remarkable immersed sphere

- $\mathrm{H}^{2} g$ has constant curvature
- 1-soliton sphere (Taimanov, Peters)
- cmc 1 in H^{3}
- $f: S^{2} \rightarrow \mathbb{R}^{3}$ is C^{∞}
- $\left.f\right|_{S^{2}-\left\{p_{1}, p_{2}\right\}}$ is constraint Willmore

CMC-1 Surfaces of revolution in H^{3}

CMC-1 Surfaces in H^{3} with 3 smooth ends, $W=16 \pi$

CMC-1 Surfaces in H^{3} with 4 smooth ends, $W=16 \pi$

- Define conformal constraint carefully
- Euler Lagrange Equation?
- Non-compact surfaces?
- Other functionals (Area, Volume, ...)?

Conformal Variations

- Conformal variation with compact support of $f: M \rightarrow \mathbb{R}^{3}$:
- $f_{t}(x)=f(x)$ for all $x \in M-K, K \subset M$ some compact set.
- all f_{t} conformal
- Infinitesimal conformal variation of f :
vector field Y with compact support along f such that $\dot{J}=0$ for all infinitesimal variations $\dot{f}=Y$.

Infinitesimal Conformal Variations

- Normal variation $\dot{f}=u N, \quad u \in C_{0}^{\infty}(M) \rightsquigarrow$

$$
\dot{J}=2 u \AA{ }^{\circ} J=: \delta(u) \in \Gamma_{0}\left(E n d_{-}(T M)\right)
$$

- Tangential variation $\dot{f}=d f(X), \quad X \in \Gamma_{0}(T M)$

$$
\dot{J}=\mathcal{L}_{X} J(\text { Lie derivative })
$$

- $u \in C_{0}^{\infty}(M)$ decribes the normal part $u N$ of a conformal variation \Leftrightarrow there exists $X \in \Gamma_{0}(T M)$ such that

$$
\delta(u)=\mathcal{L}_{X} J
$$

The adjoint δ^{*} of δ

The adjoint of

$$
\delta: C_{0}^{\infty}(M) \rightarrow \Gamma_{0}\left(E n d_{-}(T M)\right)
$$

is given by

$$
\begin{aligned}
& \delta^{*}: \Gamma\left(K^{2}\right) \rightarrow \Omega^{2}(M) \\
& \left.\delta^{*}(q)(X, Y)=4 \operatorname{Re}(q(\AA\lrcorner J X, Y)-q(\AA J X, Y)\right)
\end{aligned}
$$

Constrained \mathcal{F}-Critical Immersions

- Let $f \mapsto \mathcal{F}(f)$ be a reparametrization-invariant functional for immersions $f: M \rightarrow \mathbb{R}^{3}$. f is called constrained \mathcal{F}-critical if

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{F}\left(f_{t}\right)=0
$$

for all compactly supported infinitesimal conformal deformations $\dot{f}=Y$.
\rightsquigarrow constrained Willmore, constrained minimal, volume critical ...

Gradients of Functionals \mathcal{F}

- There is a 2-form grad \mathcal{F} on M such that for every compactly supported variation f_{t} of f with

$$
\dot{f}=u N+d f(X)
$$

one has

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{F}\left(f_{t}\right)=\int_{M} u \operatorname{grad} \mathcal{F}
$$

- $\mathcal{F}=$ surface area $\quad \rightsquigarrow \operatorname{grad} \mathcal{F}=-2 H d A$
- $\mathcal{F}=$ enclosed volume $\rightsquigarrow \operatorname{grad} \mathcal{F}=d A$
- $\mathcal{F}=$ Willmore $\quad \rightsquigarrow \operatorname{grad} \mathcal{F}=d * d H-2 H\left(H^{2}-K\right) d A$

Euler-Lagrange Equation

Theorem 1 : Let $f: M \rightarrow \mathbb{R}^{3}$ be a conformal immersion of a Riemann surface M. If there is a holomorphic quadratic differential $q \in H^{0}\left(K^{2}\right)$ such that

$$
\operatorname{grad}(\mathcal{F})=\delta^{*}(q)
$$

then f is \mathcal{F}-critical.

Theorem 2: If M is compact, then also the converse is true: For every \mathcal{F}-critical conformal immersion $f: M \rightarrow \mathbb{R}^{3}$ there is a holomorphic quadratic differential $q \in H^{0}\left(K^{2}\right)$ such that

$$
\operatorname{grad}(\mathcal{F})=\delta^{*}(q)
$$

Proof

$$
\begin{aligned}
& u \quad X
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{grad} \mathcal{F} \\
& q \\
& 0
\end{aligned}
$$

Burstall Cylinder

There is a 1-parameter family of plane curves γ such that the cylinder over γ is constraint Willmore.

Constrained Minimal Surfaces in \mathbb{R}^{3}

Diplom thesis F. Sziegoleit 2004

- Cylinders over arbitrary plane curves are constraint minimal
- Only round cylinders are in addition constraint volume critical
- There is a one-parameter family of embedded smooth spheres of revolution that are constraint minimal when two points are deleted

Constrained Minimal Spheres with Smooth Ends

Constrained Minimal Spheres with Non-Smooth Ends

Ulrich Pinkall

Counterexample in non-compact case

A constraint minimal surface in \mathbb{R}^{3} with no holomorphic quadratic differential q satisfying

$$
\operatorname{grad}(\mathcal{F})=\delta^{*}(q)
$$

Ulrich Pinkall

Hopf Tori in S^{3}

- $h: S^{3} \rightarrow S^{2} \quad$ Hopf fibration
- $T^{2}=h^{-1}(\gamma), \quad \gamma$ a closed curve in S^{2}
$\rightsquigarrow T^{2}$ isometric to $\mathbb{R}^{2} / \Gamma, \quad \Gamma$ generated by

$$
\begin{gathered}
(0,1), \quad(A / 2, L / 2) \\
L=\text { length of } \gamma, \quad A=\text { area enclosed by } \gamma
\end{gathered}
$$

- All Hopf tori are constraint minimal as well as volume critical in S^{3}

