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Conformal immersions

Conformal structure on oriented M2 ↔
complex structure J : TM → TM, J2 = −I

M
f

R3

(Garcia, Ruedy 1961/71) Every Riemann surface can be
conformally immersed into R3.
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Constraint Willmore surfaces

Compact constraint Willmore surfaces:
critical points of Willmore functional for surfaces of a fixed
conformal type

M
f

R3

For spheres: Only one conformal type  
Constraint Willmore ⇒ Willmore

For tori: Willmore conjecture proven for some conformal types
(Li & Yau, Montiel & Ross)
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CMC Surfaces in Spaceforms

(Thomsen, 1923)
Minimal in some spaceform
⇐⇒ Willmore + isothermic.

Clifford torus in S3

Willmore spheres in R3

this torus in H3:

(Burstall, Pedit, - 1997)
CMC in some spaceform
=⇒ constrained Willmore + isothermic.
For tori the converse holds as well.

Wente torus in R3

Delaunay torus in S3
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A remarkable immersed sphere

H2g has constant curvature

1-soliton sphere (Taimanov, Peters)

cmc 1 in H3

f : S2 → R3 is C∞

f |S2−{p1,p2} is constraint Willmore
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CMC-1 Surfaces of revolution in H3
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CMC-1 Surfaces in H3 with 3 smooth ends, W = 16π
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CMC-1 Surfaces in H3 with 4 smooth ends, W = 16π
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To Do

Define conformal constraint carefully

Euler Lagrange Equation?

Non-compact surfaces?

Other functionals (Area, Volume, . . . )?
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Conformal Variations

Conformal variation with compact support of f : M → R3 :

ft(x) = f (x) for all x ∈ M − K , K ⊂ M some compact set.

all ft conformal

Infinitesimal conformal variation of f :
vector field Y with compact support along f such that J̇ = 0
for all infinitesimal variations ḟ = Y .
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Infinitesimal Conformal Variations

Normal variation ḟ = uN, u ∈ C∞
0 (M)  

J̇ = 2uÅJ =: δ(u) ∈ Γ0(End−(TM))

Tangential variation ḟ = df (X ), X ∈ Γ0(TM)  

J̇ = LX J (Lie derivative)

u ∈ C∞
0 (M) decribes the normal part uN of a conformal

variation ⇔ there exists X ∈ Γ0(TM) such that

δ(u) = LX J
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The adjoint δ∗ of δ

The adjoint of

δ : C∞
0 (M)→ Γ0(End−(TM))

is given by

δ∗ : Γ(K 2)→ Ω2(M)

δ∗(q)(X ,Y ) = 4Re(q(ÅJX ,Y )− q(ÅJX ,Y ))
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Constrained F -Critical Immersions

Let f 7→ F(f ) be a reparametrization-invariant functional for
immersions f : M → R3. f is called constrained F-critical if

d
dt |t=0F(ft) = 0

for all compactly supported infinitesimal conformal
deformations ḟ = Y .

 constrained Willmore, constrained minimal, volume critical . . .
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Gradients of Functionals F

There is a 2-form gradF on M such that for every compactly
supported variation ft of f with

ḟ = uN + df (X )

one has

d
dt |t=0F(ft) =

∫
M u gradF

F = surface area  gradF = −2HdA

F = enclosed volume  gradF = dA

F = Willmore  gradF = d ∗ dH − 2H(H2−K )dA
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Euler-Lagrange Equation

Theorem 1 : Let f : M → R3 be a conformal immersion of a
Riemann surface M. If there is a holomorphic quadratic differential
q ∈ H0(K 2) such that

grad(F) = δ∗(q)

then f is F-critical.

Theorem 2 : If M is compact, then also the converse is true:
For every F-critical conformal immersion f : M → R3 there is a
holomorphic quadratic differential q ∈ H0(K 2) such that

grad(F) = δ∗(q).
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Proof

u X

C∞
0 (M)

δ //
OO

��

Γ0(End−(TM))
OO

��

Γ0(TM)
LJoo

OO

��
Ω2(M) Γ(K 2)

δ∗
oo

∂̄
// Ω2(T ∗M)

gradF q 0
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Burstall Cylinder

There is a 1-parameter family of plane curves γ such that the
cylinder over γ is constraint Willmore.
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Constrained Minimal Surfaces in R3

Diplom thesis F. Sziegoleit 2004

Cylinders over arbitrary plane curves are constraint minimal

Only round cylinders are in addition constraint volume critical

There is a one-parameter family of embedded smooth spheres
of revolution that are constraint minimal when two points are
deleted

Ulrich Pinkall Constraint Willmore Surfaces



Constrained Minimal Spheres with Smooth Ends
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Constrained Minimal Spheres with Non-Smooth Ends
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Counterexample in non-compact case

A constraint minimal surface in R3 with no holomorphic quadratic
differential q satisfying

grad(F) = δ∗(q)
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Hopf Tori in S3

h : S3 → S2 Hopf fibration

T 2 = h−1(γ), γ a closed curve in S2

 T 2 isometric to R2/Γ, Γ generated by

(0, 1), (A/2, L/2)

L = length of γ, A = area enclosed by γ

All Hopf tori are constraint minimal as well as volume critical
in S3
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