Constraint Willmore Surfaces

Ulrich Pinkall

Technische Universität Berlin

Durham, October 2005

Joint work with C. Bohle, P. Peters

Conformal immersions

 Conformal structure on oriented M² ↔ complex structure J : TM → TM, J² = −I

• (Garcia, Ruedy 1961/71) Every Riemann surface can be conformally immersed into R^3 .

• Compact constraint Willmore surfaces: critical points of Willmore functional for surfaces of a fixed conformal type

- For spheres: Only one conformal type → Constraint Willmore ⇒ Willmore
- For tori: Willmore conjecture proven for some conformal types (Li & Yau, Montiel & Ross)

(Thomsen, 1923) Minimal in some spaceform \iff Willmore + isothermic.

- Clifford torus in S^3
- Willmore spheres in R^3
- this torus in H^3 :

(Burstall, Pedit, - 1997) CMC in some spaceform \implies constrained Willmore + isothermic. For tori the converse holds as well.

A remarkable immersed sphere

- H^2g has constant curvature
- 1-soliton sphere (Taimanov, Peters)
- cmc 1 in H^3

- $f:S^2 \to \mathbb{R}^3$ is C^∞
- $f|_{S^2-\{p_1,p_2\}}$ is constraint Willmore

CMC-1 Surfaces of revolution in H^3

CMC-1 Surfaces in H^3 with 3 smooth ends, $W = 16\pi$

CMC-1 Surfaces in H^3 with 4 smooth ends, $W = 16\pi$

- Define conformal constraint carefully
- Euler Lagrange Equation?
- Non-compact surfaces?
- Other functionals (Area, Volume, ...)?

- Conformal variation with compact support of $f: M \to \mathbb{R}^3$:
 - $f_t(x) = f(x)$ for all $x \in M K$, $K \subset M$ some compact set.
 - all f_t conformal
- Infinitesimal conformal variation of f: vector field Y with compact support along f such that $\dot{J} = 0$ for all infinitesimal variations $\dot{f} = Y$.

Infinitesimal Conformal Variations

• Normal variation $\dot{f} = uN$, $u \in C_0^{\infty}(M) \longrightarrow$

$$\dot{J} = 2u\dot{A}J =: \delta(u) \in \Gamma_0(End_-(TM))$$

• Tangential variation $\dot{f} = df(X), X \in \Gamma_0(TM) \longrightarrow$

$$J = \mathcal{L}_X J$$
 (Lie derivative)

u ∈ C₀[∞](M) decribes the normal part uN of a conformal variation ⇔ there exists X ∈ Γ₀(TM) such that

$$\delta(u) = \mathcal{L}_X J$$

The adjoint of

$$\delta: C_0^\infty(M) \to \Gamma_0(End_-(TM))$$

is given by

$$\delta^* : \Gamma(K^2) \to \Omega^2(M)$$

$$\delta^*(q)(X, Y) = 4Re(q(ÅJX, Y) - q(ÅJX, Y))$$

 Let f → F(f) be a reparametrization-invariant functional for immersions f : M → ℝ³. f is called constrained F-critical if

$$\frac{d}{dt}|_{t=0}\mathcal{F}(f_t)=0$$

for all compactly supported infinitesimal conformal deformations $\dot{f} = Y$.

 \rightsquigarrow constrained Willmore, constrained minimal, volume critical ...

Gradients of Functionals $\mathcal F$

• There is a 2-form grad \mathcal{F} on M such that for every compactly supported variation f_t of f with

$$\dot{f} = uN + df(X)$$

one has

$$rac{d}{dt}|_{_{t=0}}\mathcal{F}(f_t)=\int_{\mathcal{M}}u\operatorname{\mathsf{grad}}\mathcal{F}$$

- $\mathcal{F} = \text{surface area} \quad \rightsquigarrow \quad \text{grad} \, \mathcal{F} = -2HdA$ • $\mathcal{F} = \text{enclosed volume} \quad \rightsquigarrow \quad \text{grad} \, \mathcal{F} = dA$
- $\mathcal{F} = \text{Willmore}$ \rightsquigarrow grad $\mathcal{F} = d * dH 2H(H^2 K)dA$

Theorem 1 : Let $f : M \to \mathbb{R}^3$ be a conformal immersion of a Riemann surface M. If there is a holomorphic quadratic differential $q \in H^0(K^2)$ such that

$$\mathsf{grad}(\mathcal{F}) = \delta^*(q)$$

then f is \mathcal{F} -critical.

Theorem 2 : If M is compact, then also the converse is true: For every \mathcal{F} -critical conformal immersion $f : M \to \mathbb{R}^3$ there is a holomorphic quadratic differential $q \in H^0(K^2)$ such that

$$\operatorname{\mathsf{grad}}(\mathcal{F}) = \delta^*(q).$$

Burstall Cylinder

There is a 1-parameter family of plane curves γ such that the cylinder over γ is constraint Willmore.

Diplom thesis F. Sziegoleit 2004

- Cylinders over arbitrary plane curves are constraint minimal
- Only round cylinders are in addition constraint volume critical
- There is a one-parameter family of embedded smooth spheres of revolution that are constraint minimal when two points are deleted

Constrained Minimal Spheres with Smooth Ends

Constrained Minimal Spheres with Non-Smooth Ends

A constraint minimal surface in \mathbb{R}^3 with no holomorphic quadratic differential q satisfying

 $\mathsf{grad}(\mathcal{F}) = \delta^*(q)$

• $h: S^3 \to S^2$ Hopf fibration

• All Hopf tori are constraint minimal as well as volume critical in $S^{\rm 3}$

