

# Conformal Equivalence of Triangulated Surfaces 

Ulrich Pinkall

TU Berlin

## Joint work with Peter Schröder and Boris Springborn

## Metrics on Discrete Surfaces

Let $M$ be a combinatorial triangulated surface.
A metric on $M$ assigns to every edge between adjacent vertices $i, j$ a positive number

$$
I_{i j}=e^{\lambda_{i j} / 2}
$$

such that for each triangle $i, j, k$ the triangle inequalities hold:

$$
\begin{aligned}
& I_{i j} \leq I_{j k}+I_{k i} \\
& I_{j k} \leq I_{k i}+I_{i j} \\
& I_{k i} \leq I_{i j}+I_{j k}
\end{aligned}
$$



## Conformally Equivalent Metrics

$\triangleright$ Elementary conformal change: multiply the length of all edges adjacent to vertex $i$ with the same positive factor $e^{u_{i} / 2}$

$$
\tilde{i}_{i j}=e^{u_{i} / 2} l_{i j}
$$

$\triangleright$ General conformal change: For a function $u$ on the vertex set define

$$
\begin{gathered}
\tilde{\Lambda}_{i j}=e^{\left(u_{i}+u_{j}\right) / 2} l_{i j} \\
\tilde{\lambda}_{i j}=\lambda_{i j}+u_{i}+u_{j}
\end{gathered}
$$



## Equivalence Relation

Two metrics on the same combinatorial surface are conformally equivalent

$$
\mathbb{\imath}
$$

For each edge ij the cross ratios

$$
c r_{i j}=\frac{l_{i h} l_{j k}}{l_{i k} l_{j h}}
$$

coincide:

$$
\tilde{c} r_{i j}=c r_{i j}
$$



## Teichmüller Space

$\triangleright$ Conformal structure on combinatorial surface $M$ (equivalence class of metrics)


Assignment of $c r_{i j}>0$ to each edge such that for each vertex $i$

$$
\prod c r_{i j}=1
$$

$\triangleright$ For a compact surface of genus $g$ :

$$
\begin{aligned}
\operatorname{dim}\{\text { conformal structures }\} & =2|V|+6 g-6 \\
& =\operatorname{dim}\left(\mathcal{T}_{g},|V|\right)
\end{aligned}
$$

$\mathcal{T}_{g,|V|}=$ Teichmüller space of Riemann surfaces of genus $g$ with $|V|$ punctures

## Möbius Transformations

$g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a Möbius transformation $\rightsquigarrow$
The metrics on $M$ induced from embeddings

$$
f: V \rightarrow \mathbb{R}^{n}
$$

and


$$
\tilde{f}=g \circ f
$$

are conformally equivalent.
This follows from

$$
\left|\frac{p}{|p|^{2}}-\frac{q}{|q|^{2}}\right|=\frac{1}{|p|} \cdot \frac{1}{|q|}|p-q|
$$



## Trojanov Theorem, Smooth Case

## Theorem (Trojanov):

On a compact Riemann surface $M$ with boundary choose
a metric $g$ on $\partial M$

$$
\begin{aligned}
& p_{1}, \ldots, p_{n} \in M \\
& \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}
\end{aligned}
$$

Then there is a unique flat metric on $M-\left\{p_{1}, \ldots, p_{n}\right\}$ (compatible with the conformal structure) with cone points of curvature $\alpha_{j}$ at $p_{j}$ which induces the metric $g$ on $\partial M$.

## Why a discrete version would be useful

$\triangleright$ Needed for computing texture coordinates in Computer Graphics
$\triangleright$ Keeping the metric on the boundary yields minimal overall length distortion
$\triangleright$ Allowing suitable cone points reduces distortion further


## Texture Mapping



## Back to Mathematics

## Given:

$\triangleright$ a metric with lengths $\tilde{I}_{i j}$
$\triangleright$ Prescribed cone angles $\alpha_{i}$ for each vertex, reasonable in the sense that there exist $0<\alpha_{j k}^{i}<\pi$ satisfying $\alpha_{j k}^{i}+\alpha_{k i}^{j}+\alpha_{i j}^{k}=\pi$ with

$$
\sum_{j, k} \alpha_{j k}^{i}=\alpha_{i}
$$

## Look for:

$\triangleright$ Conformal factors $u_{i}$ such that the new lengths $I_{i j}=e^{\left(u_{i}+u_{j}\right) / 2} \tilde{l}_{i j}$ result in the prescribed cone angles for

$$
\alpha_{j k}^{i}=2 \tan ^{-1} \sqrt{\frac{\left(I_{i j}+I_{j k}-I_{k i}\right)\left(I_{j k}+I_{k i}-l_{i j}\right)}{\left(I_{k i}+l_{i j}-l_{j k}\right)\left(l_{j k}+I_{k i}+l_{i j}\right)}}
$$

## Variational Problem

$u=\left(u_{1}, \ldots, u_{n}\right)$ solves these equations $\Leftrightarrow$
$u$ is a critical point of the function

$$
\begin{aligned}
E(u)= & \sum_{t_{i j k} \in T} \alpha_{j k}^{i} \lambda_{j k}+\alpha_{k i}^{j} \lambda_{k i}+\alpha_{i j}^{k} \lambda_{i j}-\pi\left(u_{i}+u_{j}+u_{k}\right) \\
& +2\left(J\left(\alpha_{j k}^{i}\right)+\pi\left(\alpha_{k i}^{j}\right)+J\left(\alpha_{i j}^{k}\right)\right) \\
& +\sum_{v_{i} \in V} \alpha_{i} u_{i}
\end{aligned}
$$

Here $\lambda_{i j}=2 \log \tilde{I}_{i j}$ and

$$
J(x)=-\int_{0}^{x} \log |2 \sin t| d t
$$

denotes Milnor's Lobachevsky function.


## Convexity

Normalize $u$ by $\sum u_{i}=0$.

## Good news:

$E$ is a strictly convex function of $u$.

## Bad news:

Due to the triangle inequalities the domain of definition of $E$ is not convex.


## Extended Domain

## Good news:

$E$ can be extended
to a proper convex function on the whole of $\mathbb{R}^{n}$

## Corollary:

$\triangleright$ There exists a solution $u$
$\triangleright$ If the triangle inequalities are satisfied, then $u$ is unique


## Applications

For practical purposes this is good enough:
$\triangleright$ Convex optimization problem $\rightsquigarrow$ globally convergent Newton method
$\triangleright$ Problems with triangle inequalities $\rightsquigarrow$
improve the combinatorics of the original triangulation in a few places.


## Reformulation without Combinatorics

$\triangleright$ Start with a flat metric on a compact 2-manifold with finitely many cone singularities $\rightsquigarrow$ vertices $v_{1}, \ldots, v_{n}$
$\triangleright$ Choose a Dirichlet triangulation of $M$ (interiors of circumcirles contain no other vertices) $\rightsquigarrow$ lengths $l_{i j}$ and cross ratios $c_{i j}$
$\triangleright$ Each triangle inherits from its circumcircle the metric of an ideal hyperbolic triangle (Klein model)
$\triangleright$ Crossratios allow to glue all these triangles together to obtain a complete hyperbolic metric on $M-\left\{v_{1}, \ldots, v_{n}\right\}$ with cusps at $v_{i}$


## Theorem of Rivin

Definition: Two flat metrics with cone points $v_{1}, \ldots, v_{n}$ on a compact 2-manifold are conformally equivalent if the corresponding complete hyperbolic metrics on $M-\left\{v_{1}, \ldots, v_{n}\right\}$ with cusps at $v_{1}, \ldots, v_{n}$ are isometric.

Theorem (Rivin 1994): Every complete hyperbolic metric with on $S^{2}-\left\{v_{1}, \ldots, v_{n}\right\}$ with cusps at $v_{1}, \ldots, v_{n}$ is isometric to the boundary of a unique convex ideal polyhedron in hyperbolic 3-space.


## Discrete Uniformization Theorem

## Corollary:

Every flat metric on $S^{2}-\left\{v_{1}, \ldots, v_{n}\right\}$ with cone points at $v_{1}, \ldots, v_{n}$ is conformally equivalent to the boundary of a convex polyhedron in $\mathbb{R}^{3}$ with vertices on $S^{2}$ (unique up to Moebius transformations)

$\triangleright$ Powerful (final?) definition of a Discrete Riemann Surface
$\triangleright$ Highly efficient algorithms for Computer Graphics
$\triangleright$ Hyperbolic geometry explains the appearance of Lobachevski function $Л$ (volume of ideal tetrahedra)
$\triangleright$ Extend uniformization results to higher genus and to surfaces with boundary
$\triangleright$ Provide constructive proof of Rivin's Theorem

