

Conformal Equivalence of Triangulated Surfaces

Ulrich Pinkall TU Berlin

Joint work with Peter Schröder and Boris Springborn

DFG Research Center MATHEON Mathematics for key technologies

3/18/2008

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Let M be a combinatorial triangulated surface.

A metric on M assigns to every edge between adjacent vertices i, j a positive number

$$I_{ij}=e^{\lambda_{ij}/2}$$

such that for each triangle i, j, k the triangle inequalities hold:

$$I_{ij} \leq I_{jk} + I_{ki}$$
$$I_{jk} \leq I_{ki} + I_{ij}$$
$$I_{ki} \leq I_{ij} + I_{jk}$$

 Elementary conformal change: multiply the length of all edges adjacent to vertex *i* with the same positive factor e^{u_i/2}

$$\tilde{l}_{ij} = e^{u_i/2} l_{ij}$$

General conformal change:
 For a function *u* on the vertex set define

$$ilde{l}_{ij} = e^{(u_i + u_j)/2} l_{ij}$$
 $ilde{\lambda}_{ii} = \lambda_{ii} + u_i + u_i$

Equivalence Relation

Two metrics on the same combinatorial surface are conformally equivalent

 \updownarrow

For each edge *ij* the cross ratios

$$cr_{ij} = rac{I_{ih}I_{jk}}{I_{ik}I_{jh}}$$

coincide:

$$\tilde{cr}_{ij} = cr_{ij}$$

 Conformal structure on combinatorial surface M (equivalence class of metrics)

 \uparrow

Assignment of $cr_{ij} > 0$ to each edge such that for each vertex i

 $\prod cr_{ij} = 1$

 \triangleright For a compact surface of genus g:

$$dim\{ ext{conformal structures}\} = 2|V| + 6g - 6$$

= $dim(\mathcal{T}_{g,|V|})$

 $\mathcal{T}_{g,|V|} = \text{Teichmüller space of Riemann surfaces of genus } g$ with |V| punctures

Möbius Transformations

 $g:\mathbb{R}^n
ightarrow\mathbb{R}^n$ a Möbius transformation \rightsquigarrow

The metrics on M induced from embeddings

$$f: V \to \mathbb{R}^n$$

and

$$\tilde{f} = g \circ f$$

are conformally equivalent.

This follows from

$$|rac{p}{|p|^2} - rac{q}{|q|^2}| = rac{1}{|p|} \cdot rac{1}{|q|} |p-q|$$

Theorem (Trojanov):

On a compact Riemann surface M with boundary choose

a metric g on ∂M $p_1, \ldots, p_n \in M$ $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$

Then there is a unique flat metric on $M - \{p_1, \ldots, p_n\}$ (compatible with the conformal structure) with cone points of curvature α_j at p_j which induces the metric g on ∂M .

- Needed for computing texture coordinates in Computer Graphics
- Keeping the metric on the boundary yields minimal overall length distortion
- Allowing suitable cone points reduces distortion further

Texture Mapping

Given:

- \triangleright a metric with lengths \tilde{l}_{ij}
- ▷ Prescribed cone angles α_i for each vertex, reasonable in the sense that there exist $0 < \alpha_{jk}^i < \pi$ satisfying $\alpha_{jk}^i + \alpha_{ki}^j + \alpha_{ij}^k = \pi$ with

$$\sum_{j,k} \alpha^i_{jk} = \alpha_i$$

Look for:

▷ Conformal factors u_i such that the new lengths $I_{ij} = e^{(u_i+u_j)/2} \tilde{I}_{ij}$ result in the prescribed cone angles for

$$lpha_{jk}^{i} = 2 an^{-1} \sqrt{rac{(l_{ij}+l_{jk}-l_{ki})(l_{jk}+l_{ki}-l_{ij})}{(l_{ki}+l_{ij}-l_{jk})(l_{jk}+l_{ki}+l_{ij})}}$$

Variational Problem

 $u = (u_1, \ldots, u_n)$ solves these equations \Leftrightarrow u is a critical point of the function

$$E(u) = \sum_{\substack{t_{ijk} \in \mathcal{T} \\ r_{ijk} \in \mathcal{V}}} \alpha_{jk}^{i} \lambda_{jk} + \alpha_{ki}^{j} \lambda_{ki} + \alpha_{ij}^{k} \lambda_{ij} - \pi(u_{i} + u_{j} + u_{k})$$
$$+ 2(\Pi(\alpha_{jk}^{i}) + \Pi(\alpha_{ki}^{j}) + \Pi(\alpha_{ij}^{k}))$$
$$+ \sum_{\nu_{i} \in \mathcal{V}} \alpha_{i} u_{i}$$

Here $\lambda_{ij} = 2 \log \tilde{l}_{ij}$ and

$$\Pi(x) = -\int_0^x \log|2\sin t| dt$$

denotes Milnor's Lobachevsky function.

Normalize
$$u$$
 by $\sum u_i = 0$.

Good news:

E is a strictly convex function of u.

Bad news:

Due to the triangle inequalities the domain of definition of E is not convex.

Good news:

E can be extended to a proper convex function on the whole of \mathbb{R}^n

Corollary:

- \triangleright There exists a solution u
- If the triangle inequalities are satisfied, then u is unique

For practical purposes this is good enough:

- Convex optimization problem ~-> globally convergent Newton method
- Problems with triangle inequalities ~>>

improve the combinatorics of the original triangulation in a few places.

- ▷ Start with a flat metric on a compact 2-manifold with finitely many cone singularities ~→ vertices v₁,..., v_n
- ▷ Choose a Dirichlet triangulation of *M* (interiors of circumcirles contain no other vertices) → lengths *l_{ij}* and cross ratios *cr_{ij}*
- Each triangle inherits from its circumcircle the metric of an ideal hyperbolic triangle (Klein model)

▷ Crossratios allow to glue all these triangles together to obtain a complete hyperbolic metric on $M - \{v_1, ..., v_n\}$ with cusps at v_i

Definition: Two flat metrics with cone points v_1, \ldots, v_n on a compact 2-manifold are *conformally equivalent* if the corresponding complete hyperbolic metrics on $M - \{v_1, \ldots, v_n\}$ with cusps at v_1, \ldots, v_n are isometric.

Theorem (Rivin 1994): Every complete hyperbolic metric with on $S^2 - \{v_1, \ldots, v_n\}$ with cusps at v_1, \ldots, v_n is isometric to the boundary of a unique convex ideal polyhedron in hyperbolic 3-space.

Discrete Uniformization Theorem

Corollary:

Every flat metric on $S^2 - \{v_1, \ldots, v_n\}$ with cone points at v_1, \ldots, v_n is conformally equivalent to the boundary of a convex polyhedron in \mathbb{R}^3 with vertices on S^2 (unique up to Moebius transformations)

- ▷ Powerful (final?) definition of a Discrete Riemann Surface
- ▷ Highly efficient algorithms for Computer Graphics
- \triangleright Hyperbolic geometry explains the appearance of Lobachevski function Π (volume of ideal tetrahedra)

- Extend uniformization results to higher genus and to surfaces with boundary
- Provide constructive proof of Rivin's Theorem