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Metrics on Discrete Surfaces

Let M be a combinatorial triangulated surface.

A metric on M assigns to every
edge between adjacent vertices
i , j a positive number

lij = eλij/2

such that for each triangle i , j , k
the triangle inequalities hold:

lij ≤ ljk + lki

ljk ≤ lki + lij

lki ≤ lij + ljk

Conformal Equivalence of Triangulated Surfaces 2 / 19



Conformally Equivalent Metrics

. Elementary conformal change:
multiply the length of all edges
adjacent to vertex i with the
same positive factor eui/2

l̃ij = eui/2lij

. General conformal change:
For a function u on the vertex
set define

l̃ij = e(ui+uj )/2lij

λ̃ij = λij + ui + uj
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Equivalence Relation

Two metrics on the same
combinatorial surface are
conformally equivalent

m

For each edge ij the cross ratios

crij =
lihljk
lik ljh

coincide:

c̃r ij = crij
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Teichmüller Space

. Conformal structure on combinatorial surface M
(equivalence class of metrics)

l
Assignment of crij > 0 to each edge such that for each vertex i∏

crij = 1

. For a compact surface of genus g :

dim{conformal structures} = 2|V |+ 6g − 6

= dim(Tg ,|V |)

Tg ,|V | = Teichmüller space of Riemann surfaces of genus g with
|V | punctures
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Möbius Transformations

g : Rn → Rn a Möbius transformation  

The metrics on M induced from embeddings

f : V → Rn

and
f̃ = g ◦ f

are conformally equivalent.

This follows from

| p

|p|2
− q

|q|2
| =

1

|p|
· 1

|q|
|p − q|
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Trojanov Theorem, Smooth Case

Theorem (Trojanov):

On a compact Riemann surface M with boundary choose

a metric g on ∂M

p1, . . . , pn ∈ M

α1, . . . , αn ∈ R

Then there is a unique flat metric on M − {p1, . . . , pn} (compatible
with the conformal structure) with cone points of curvature αj at pj

which induces the metric g on ∂M .

Conformal Equivalence of Triangulated Surfaces 7 / 19



Why a discrete version would be useful

. Needed for computing texture
coordinates in Computer
Graphics

. Keeping the metric on the
boundary yields minimal overall
length distortion

. Allowing suitable cone points
reduces distortion further
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Texture Mapping
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Back to Mathematics

Given:

. a metric with lengths l̃ij

. Prescribed cone angles αi for each vertex, reasonable in the sense
that there exist 0 < αi

jk < π satisfying αi
jk + αj

ki + αk
ij = π with∑

j ,k

αi
jk = αi

Look for:

. Conformal factors ui such that the new lengths lij = e(ui+uj )/2 l̃ij
result in the prescribed cone angles for

αi
jk = 2 tan−1

√
(lij+ljk−lki )(ljk+lki−lij )

(lki+lij−ljk )(ljk+lki+lij )
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Variational Problem

u = (u1, . . . , un) solves these equations ⇔
u is a critical point of the function

E (u) =
∑
tijk∈T

αi
jkλjk + αj

kiλki + αk
ijλij − π(ui +uj +uk)

+ 2
(
L(αi

jk) + L(αj
ki) + L(αk

ij)
)

+
∑
vi∈V

αiui

Here λij = 2 log l̃ij and

L(x) = −
∫ x

0

log |2 sin t| dt

denotes Milnor’s Lobachevsky function.
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Convexity

Normalize u by
∑

ui = 0.

Good news:

E is a strictly convex function of
u.

Bad news:

Due to the triangle inequalities
the domain of definition of E is
not convex.
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Extended Domain

Good news:

E can be extended
to a proper convex function
on the whole of Rn

Corollary:

. There exists a solution u

. If the triangle inequalities are
satisfied, then u is unique
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Applications

For practical purposes this is good enough:

. Convex optimization problem  

globally convergent Newton
method

. Problems with triangle
inequalities  

improve the combinatorics of
the original triangulation in a
few places.
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Reformulation without Combinatorics

. Start with a flat metric on a
compact 2-manifold with
finitely many cone
singularities  
vertices v1, . . . , vn

. Choose a Dirichlet
triangulation of M (interiors
of circumcirles contain no
other vertices)  lengths lij
and cross ratios crij

. Each triangle inherits from its
circumcircle the metric of an
ideal hyperbolic triangle
(Klein model)

. Crossratios allow to glue all these
triangles together to obtain a
complete hyperbolic metric on
M − {v1, . . . , vn} with cusps at vi
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Theorem of Rivin

Definition: Two flat metrics with cone points v1, . . . , vn on a
compact 2-manifold are conformally equivalent if the corresponding
complete hyperbolic metrics on M − {v1, . . . , vn} with cusps at
v1, . . . , vn are isometric.

Theorem (Rivin 1994): Every
complete hyperbolic metric with on
S2 − {v1, . . . , vn} with cusps at
v1, . . . , vn is isometric to the boundary
of a unique convex ideal polyhedron in
hyperbolic 3-space.
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Discrete Uniformization Theorem
Corollary:

Every flat metric on S2 − {v1, . . . , vn}
with cone points at v1, . . . , vn is
conformally equivalent to the boundary
of a convex polyhedron in R3 with
vertices on S2 (unique up to Moebius
transformations)
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Conclusion

. Powerful (final?) definition of a Discrete Riemann Surface

. Highly efficient algorithms for Computer Graphics

. Hyperbolic geometry explains the appearance of Lobachevski
function L (volume of ideal tetrahedra)
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Outlook

. Extend uniformization results to higher genus and to surfaces with
boundary

. Provide constructive proof of Rivin’s Theorem
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