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Abstract. In the planning process of railway companies, we propose
to integrate important decisions of network planning, line planning, and
vehicle scheduling into the task of periodic timetabling. From such an
integration, we expect to achieve an additional potential for optimization.

Models for periodic timetabling are commonly based on the Periodic
Event Scheduling Problem (PESP). We show that, for our purpose of this
integration, the PESP has to be extended by only two features, namely a
linear objective function and a symmetry requirement. These extensions
of the PESP do not really impose new types of constraints. Indeed, prac-
titioners have already required them even when only planning timetables
autonomously without interaction with other planning steps. Even more
important, we only suggest extensions that can be formulated by mixed
integer linear programs.

Moreover, in a selfcontained presentation we summarize the tradi-
tional PESP modeling capabilities for railway timetabling. For the first
time, also special practical requirements are considered that we proove
not being expressible in terms of the PESP.

1 Introduction

Traditionally, the planning process of railway companies is subdivided into sev-
eral tasks. From the strategic level down to the operational level, the most promi-
nent subtasks are network planning, line planning, timetable generation, vehicle
scheduling, crew scheduling, and crew rostering, see Figure 1.

For a detailed description of these planning steps, as well as for an overview of
solution approaches, we refer to Bussieck, Winter, and Zimmermann [4]. Notice
that network planning and line planning are of course part of the strategic plan-
ning process of public transportation companies. In contrast, vehicle scheduling
and crew scheduling are of operational nature. In between, timetabling forms
the linkage between service and operation. An important reason for the divi-
sion into at least five subtasks is the high complexity of the overall planning
process ([4], [7]).

� Supported by the DFG Research Center “Mathematics for key technologies”
in Berlin.

F. Geraets et al. (Eds.): Railway Optimization 2004, LNCS 4359, pp. 3–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 C. Liebchen and R.H. Möhring

Network Planning
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PESP model

Fig. 1. Planning phases covered by the PESP beforehand

During the last years, a trend towards the integration of several planning
steps has emerged. For example, vehicle and crew scheduling were successfully
combined by Borndörfer, Löbel, and Weider [3] and by Haase, Desaulniers, and
Desrosiers [8]. Similarly, a combination of line planning and network planning
is the objective of Borndörfer, Grötschel, and Pfetsch [2]. Periodic timetabling
has also served as a starting point for such attempts. Kolonko and Engelhardt-
Funke [6] consider investments into infrastructure by using multi-criteria opti-
mization. Nachtigall [20] computes timetables that require only few rolling stock
for a specific vehicle schedule. Lindner [16] integrates the choice of rolling stock
types in a non-linear model. Liebchen and Peeters [14] provide a linear model
that serves as a good approximation for minimizing rolling stock while optimiz-
ing periodic timetables.

In this paper, we demonstrate how periodic timetable construction can be
combined with other planning steps. Further, we incorporate other practical
conditions on timetables such as timetable symmetry, line planning, and even
infrastructure decisions. We show that this can in fact be achieved with only
slight variations of the commonly used model for periodic timetable construction,
the PESP model introduced by Serafini and Ukovich [30] in 1989. The variations
keep much of the properties of the PESP model and are again mixed integer
programs over a feasibility domain with essentially the same structure as the
original PESP. In particular, all of the valid inequalities for the PESP stay valid,
and some of the new formulations even speed up the solution time with standard
MIP solvers. But there have also been proposed other solution techniques for
PESP instances: constraint programming ([29]) and genetic algorithms ([21]).
Hence, in this paper we will restrain ourselves to the pure modeling capabilities of
the general PESP model—with only two small exceptions. But these exceptions
have already been asked explicitly by practitioners for their own sake.

In the discussion of these modeling features, we will also lay out large parts of
the map of the borderline between what still fits into the traditional PESP model,
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and what requires new features, and at which cost. To this end, we also review the
traditional PESP modeling issues, thus altogether providing a selfcontained pre-
sentation of the PESP modeling capabilities and its extensions to symmetry, line
planning, and network planning. Any of our suggestions for integrating these fea-
tures can be formulated as a MIP, in particular not involving any quadratic terms.

The paper is organized as follows. Section 2 introduces the PESP. It presents
its main formulations as a graph theoretic potential problem and as a mixed
integer program, and reports on its complexity and a useful characterization of
periodic timetables.

Section 3 discusses requirements for cyclic timetables that can be met by the
PESP. These include simple requirements such as collision-free traffic on single
tracks and headway between successive trains, but also more sophisticated ones
such as bundling of lines, train coupling and sharing, fixed events in connection
with hierarchical planning, and also disjunctive constraints and soft constraints.

Section 4 is devoted to timetable requirements that are beyond the scope of
the traditional PESP, such as balanced reduction of service and symmetry of
timetables. We show that the PESP or its MIP model only needs to be extended
slightly in order to accommodate symmetry requirements.

Finally, in Section 5, we consider the integration of aspects of other planning
steps into periodic timetable construction, in particular vehicle scheduling (min-
imization of rolling stock), line planning (simultaneous construction of line plan
and timetable), and network planning (making infrastructure decisions). This
integration makes essential use of the flexibility of the PESP, in particular dis-
junctive constraints, uses symmetry and, as a new technique, integrates aspects
of graph techniques into the PESP in order to handle line planning.

All model features are illustrated by examples from our practical experience
with timetable construction at Deutsche Bahn AG, S-Bahn Berlin GmbH, and
BVG (Berlin Underground).

2 The Periodic Event Scheduling Problem (PESP)

In 1989, Serafini and Ukovich [30] introduced the Periodic Event Scheduling
Problem (PESP), by which periodic timetabling instances may be formulated in
a very compactway. Since then, this model has been widely used ([29,18,24,16,26]).
In the Periodic Event Scheduling Problem (PESP), we are given a period time T
and a set V of events, where an event models either the arrival or the departure
of a directed traffic line at a certain station. Furthermore, we are given a set of
constraints A. Every constraint a = (i, j) relates a pair of events i, j by a lower
bound �a and an upper bound ua.

A solution of a PESP instance is a node assignment π : V �→ [0, T ) that
satisfies

(πj − πi − �a) mod T ≤ ua − �a, ∀ a = (i, j) ∈ A, (1)

or πj − πi ∈ [�a, ua]T for short. We call a feasible node potential π a feasible
timetable. Notice that we can scale an instance such that 0 ≤ �a < T , and for the
span da := ua − �a of a feasible interval [�a, ua]T we may assume w.l.o.g. da < T .
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Furthermore, for every fixed event i0, every fixed point of time t0 ∈ [0, T ), and
every feasible timetable π there exists an equivalent timetable π′ with π′

i0
= t0.

This is achieved by performing the simple shift π′
i := (πi −(πi0 − t0)) mod T . Let

us denote by D = (V, A, �, u) the constraint graph modeling a PESP instance.
There are several practical aspects of periodic timetabling which profit from

the presence of a linear objective function of the form
∑

a=(i,j)∈A

wa · (πj − πi − �a) mod T,

with weights wa. In our opinion, the most striking one is the integration of central
aspects of vehicle scheduling, cf. section 5.1.

Another perspective on periodic scheduling can be obtained by considering
tensions instead of potentials. In a straightforward way, define for a given node
potential π its tension

x̂a := πj − πi, ∀a = (i, j) ∈ A.

We call a set of edges C ⊆ A an oriented cycle if re-orienting a subset of its
edges yields a directed circuit. The incidence vector γC of an oriented cycle C
is a vector in {−1, 0, 1}A, where the entry minus one indicates a backward arc
of the oriented cycle. The cycle space C of a directed graph D is defined as

C := span{γC | C oriented cycle in D}.

Recall that a vector x̂ is a tension (or potential difference), if and only if
for some cycle basis B of C, and each of its oriented cycles C ∈ B with inci-
dence vectors γC it holds that γC x̂ = 0 (e.g. [1]). This yields the following MIP
formulation

min ct(x̂ + pT )
s.t. Γ x̂ = 0

� ≤ x̂ + pT ≤ u
p ∈ Z

A,

or

min ctx
s.t. Γ (x − pT ) = 0

� ≤ x ≤ u
p ∈ Z

A,

⎤

⎥⎥⎦ (2)

where Γ ∈ {−1, 0, 1}(|A|−|V |+1)×|A| denotes the cycle-arc incidence matrix (cycle
matrix ) of some cycle basis of the directed graph D. The x variables are in fact
a periodic tension, which we formally define for a given node potential π to be

xij := (πj − πi − �ij) mod T + �ij .

Sometimes, it is useful to define slack variables x̃a := xa − �a.
Recall that cycle matrices are totally unimodular ([28]). This is the main

observation to prove the following lemma.

Lemma 1 ([23]). Let I denote an instance of PESP with integral vectors � and
u and an integer period time T . If I admits some feasible timetable π ∈ [0, T )V ,
then it also admits an integral feasible timetable π′ ∈ {0, . . . , T − 1}V .

Already Serafini and Ukovich made the following simple but useful observation.
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Lemma 2 (Serafini and Ukovich [30]). If we relax the requirement π ∈
[0, T )V to π ∈ Q

V , then for every spanning tree H and every feasible timetable π
there exists an equivalent feasible timetable π′ which induces pa = 0 for a ∈ H.

Notice that we may interpret the remaining non-zero integer variables as the
representants of the elements of a (strictly) fundamental cycle basis. A gener-
alization to integral cycle bases yields many variants of problem formulation 2,
some of which are easier to solve for MIP solvers ([12]).

Periodic tensions can be characterized similarly to classic aperiodic tensions.

Lemma 3 (Cycle Periodicity Property). A vector x ∈ Q
A is a periodic

tension, if and only if for every cycle C with incidence vector γC ∈ {−1, 0, 1}A,
there exists some zC ∈ Z, such that

γCx = zCT. (3)

The PESP is NP-complete, since it generalizes Vertex Coloring ([23]). To see
this, orient the edges of a Coloring instance arbitrarily and assign feasible peri-
odic intervals [1, T −1]T to each of them. Solution methods for the PESP include
Constraint Programming ([29]), Genetic Algorithms ([21]), and of course integer
programming techniques. For a computational study in that these substantially
different approaches are compared to each other, we refer to [15]. For the MIP
approach, a very important ingredient is

Theorem 1 (Odijk [24]). An integer vector p allows a feasible solution for the
MIP (2), if and only if for every oriented cycle C of the constraint graph, the
following cycle inequalities hold

p
C

:=

⎡

⎢⎢⎢
1
T

(
∑

a∈C+

�a −
∑

a∈C−
ua)

⎤

⎥⎥⎥
≤

∑

a∈C+

pa −
∑

a∈C−
pa ≤

⎢⎢⎢⎣ 1
T

(
∑

a∈C+

ua −
∑

a∈C−
�a)

⎥⎥⎥⎦ =: pC , (4)

where C+ and C− denote the forward and the backward arcs of the cycle C.

We close this section by listing other totally different practical applications which
can be modeled via the PESP ([30]). The most prominent ones are the scheduling
of systems of traffic lights, and periodic job shop scheduling.

3 Timetabling Requirements Covered by the PESP

This section gives a broad overview of the timetable modeling capabilities of the
PESP. Contrary to the following sections, practical requirements to be modeled
are limited to those arising in periodic timetabling. Nevertheless, there are many
facts we have to discuss in order to give a self-contained overview.

However, let us start by naming two facts which are definitely beyond the
scope of the PESP: routing of trains through stations or even alternative tracks,
and routing of the passenger flow. Hence, throughout this paper we assume fixed
routes for both trains and passengers. A short motivation for these assumptions
will be given at the beginning of Section 4.
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Köln
Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Fig. 2. Track map of Köln-Deutz (Cologne) — based on [11]

For the vast majority of practical requirements to be modeled, we provide
examples which are close to practice. However, in particular time and track
information might not always reflect practice exactly. Depending on the fact to
be modeled, we provide a track map, a line plan, a visualization1 of the timetable
of a given track by means of a time-space diagram, and last but not least the
resulting PESP subgraph. For readers not familiar with the first three types of
charts, we refer to any textbook on railway engineering.

Most of our real-world examples are taken from the surroundings of the station
Köln-Deutz (Cologne), which is part of the German ICE/IC-network. Figure 2
displays the general track map of Köln-Deutz. Unless stated otherwise, we as-
sume a period time of T = 60 minutes.

3.1 Elementary Requirements

Both, for sake of completeness and in order to introduce the notation used in
the following figures, we start by modeling the three most elementary actions
within public transportation networks: trips, stops, and changeovers.
1 In German: “Bildfahrplan.”
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Köln
Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Köln−Deutz

Frankfurt

Paris

Amsterdam

Dortmund

[�a, ua], wa

[6, 65], 119

[4, 4], 0
[3, 8], 266

stop arc

trip arc

changeover

Köln-Deutz

Fig. 3. Modeling elementary requirements: (a) two disjoint routes of lines serv-
ing Köln-Deutz; (b) the corresponding line plan; (c) PESP constraints modeling run-
ning activities, stopping activities, and changeover activities

In Figure 3 (a), we highlight the tracks used by two lines which cross at
Köln-Deutz. The lines themselves are given in Figure 3 (b). Finally, we provide
the constraint graph which models running, stopping, and changeover activities
of these lines at Köln-Deutz in Figure 3 (c) as PESP constraints. For instance, the
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trip arc with the constraint [4, 4]60 ensures a trip time of precisely four minutes
from Köln-Deutz to Köln Hbf. Within Köln Hbf, the minimum stopping time is
set to three minutes such that passengers can board and alight the train. Finally,
the increase of travel time for passengers that stay within the train is bounded
by additional five minutes, providing an upper bound of 3 + 5 = 8.

Notice that we ensure changeover quality by linearly penalizing changeover
times which exceed a certain minimal changeover time required for changing
platforms. In our example, a minimal changeover time of six minutes is assumed
when connecting from Dortmund to Frankfurt. Using this approach, changeover
arcs typically have a wide span.

An alternative way of modeling changeovers is to require some important ones
not to exceed a maximal amount of effective waiting time. Then, we end up with
rather small spans for changeover arcs. Schrijver and Steenbeek [29] follow this
approach, which seems to be very suitable for constraint programming solvers.

Stopping arcs typically have very small span. In rather unimportant stations,
in general it is a good choice to fix the span to zero, in particular if there is
neither a junction of tracks, nor a single track, nor any changeovers.

Just as trip arcs, stopping arcs with span zero constitute redundancies which
can be eliminated very efficiently in a preprocessing step. For example, one can
contract any fixed arc, i.e. having zero span, together with its target node. Doing
so, the arcs which were incident with the contracted target node only have to
be redirected to the source node of the contracted arc, after having shifted their
feasible intervals appropriately. Moreover, an arc being (anti-) parallel to another
one can eliminated, if its feasible interval is a superset of the other arc. In addition
to nodes with degree at most two, Lindner [16] gives further situations in which
the graph can be simplified.

If there are several lines using the same track into the same direction, some-
times a balanced service might be required. For n lines, this can easily be achieved
by introducing arcs with feasible interval [T

n , T − T
n ]T between any unordered

pair of events that represent the departure at the first station of the common
track. Certainly, strict balancedness may be relaxed by increasing the feasible
interval.

Safety Requirements. If, in contrast to the previous discussion, there is no
need for a balanced service, then at least a minimal headway h between any two
of them has to be ensured. In the easiest case, the lines are operated with the
same type of trains, and their running time is fixed. Then, we can sufficiently
separate any two lines by introducing constraints similar to the above ones,
having feasible interval [h, T −h]T . These can be inserted either at the beginning
or at the end of their common track. The more sophisticated constellation of
trains involving different speeds will be discussed in Section 3.2.

But two trains may also use the same track in opposite directions. This is
mainly the case for single tracks, see Figure 4 (a). Obviously, a train may not
enter the single track until the train of the opposite direction has left it. In Fi-
gure 4 (b), we give a timetable visualization that is extremely useful in particular
for single tracks. We assume a fixed local signaling, and the grey boxes visualize
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Köln−Deutz

Abzw. Gummersbacher Str.

High−speed−track (Frankfurt)

KKDZ

Abz
w. G

.

0

T
}

t1

}
t1

}
t2

[�a, ua]

[t1, t1]

[t2, t2]

[0, T − (t1 + t2)]

Köln-Deutz (KKDZ)

Fig. 4. Modeling single tracks: (a) a single track south of Köln-Deutz; (b) visualiza-
tion of a feasible timetable for that single track; (c) PESP constraints ensuring safety
distance for single track

the time a train blocks a certain part of the track. Surprisingly, there is only
one single constraint needed to prevent two trains of opposite directions from
colliding within the single track, as can be seen in Figure 4 (c). To that end,
consider the western entry point to the single track. A train may only enter the
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single track after a train of the opposite direction has left (�a = 0). But it also
must have left the single track before the next train of the opposite direction
may enter the single track (ua = T − (t1 + t2)).

Note that so far we did not care about any buffer times and blocking times
when setting the feasible interval to [0, T − (t1 + t2)]T . Assuming a minimal
crossing time b at both endpoints of the single track, i.e. the time that has to
pass from a train leaving the single track until a train in opposite direction may
enter, we obtain the following feasible interval

[b, T − (t1 + t2 + b)]T .

Again, if there are several lines that have to be scheduled on a single track, one
constraint for every unordered pair of opposite directions is needed.

Some authors ([9]) consider situations at crossings, where trains are shortly
using the track of the opposite direction (cf. Figure 5), as another modeling
feature. But this is just a special case of single tracks, if the network is modeled
at an appropriate granularity. Abzw. Gummersbacher Straße has to be split into
a northern station and a southern station which are linked by an eastern and a
western track, where the western track can be traversed in both directions.

Köln−Deutz

Abzw. Gummersbacher Str.

Fig. 5. Crossing of track of the opposite direction south of Köln-Deutz

3.2 More Sophisticated Requirements

Whereas the practical requirements discussed in the previous section might arise
in almost every railway network, the following aspects are of a more specialized
nature.

Fixed Events. When planning a timetable hierarchically, e.g. from international
trains down to local trains, one has to consider the fixed settings of previous
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hierarchies without replanning their times. Hence, the capability to fix an event
to a certain point of time is another important modeling feature.

Fortunately, due to the periodic nature of the PESP, we may shift every
feasible timetable such that a fixed event i0 is fixed to a desired point in time t0 ∈
[0, T ), i.e. πi0 = t0, and the objective value remains unchanged. By defining one
of the events to be fixed as a kind of “anchor” event, we can easily relate the other
events ij to be fixed to certain points of time tj by introducing arcs aj = (i0, ij)
with �aj = uaj = tj − t0.

Bundling of Lines. Hierarchical planning gives rise to a further challenging
aspect of timetabling. Notice that if a track is used by trains of different speeds,
the capacity of that track significantly depends on the ordering of the trains.
The first two parts of Figure 6 visualize this effect. In the first scenario, slow
and fast trains alternate, which implies that only two hourly lines of each of the
two train types can be scheduled. However, if lines are bundled with respect to
their speeds, three lines of the same two types of trains can be scheduled without
having to invest into infrastructure, cf. Figure 6 (b).

On the one hand, when only planning the high-speed lines in the first step of
a hierarchical approach, it may happen that decisions on a higher level result
in infeasibility on a lower level. On the other hand, hierarchical decomposition
might have been chosen because an overall planning was considered to be too
complex.

In order to keep the advantage of decomposition but limit the risk of infea-
sibility on lower levels, we propose to only bundle the lines of the current level
of hierarchy. Figure 6 (c) gives the complete set of lines which should be oper-
ated on the track in question. In Figure 6 (d), we provide the PESP graph for
the ICE/IC network. To bundle the three active lines, we introduce an artificial
event and require each of the departure events to be sufficiently close to that
artificial event. Hereby, the departure events will be close to each other as well.

In particular, we must not choose one of the existing events as “anchor”, be-
cause this would predict the corresponding line to be the head of the sequence
of bundled lines. This must definitively be avoided, because — contrary to as-
sumptions made by Krista [9] — the ordering of lines is indeed a major result
of timetabling. Finally, based on profound estimates on passengers’ behaviour
the management has to decide whether it is more important to operate as many
trains as possible—and hereby bundle the trains of the same type—or whether
a balanced service within the different types of trains should be preferred.

Train Coupling/Train Sharing. During the last decade, in railway passenger
traffic a trend emerged towards train units which can easily be coupled and
shared. Doing so, more direct connections can be offered without increasing the
capacity of some bottleneck tracks.

In Figure 7 (a), we display a line which is operated by two coupled train
units between Berlin and Hamm. They split in Hamm to serve the two major
routes of the Ruhr area, hereby offering direct connections from Berlin to the
most important cities of that region. Still, this line occupies for example the
high-speed track between Berlin and Hannover only once per hour.
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Düsseldorf
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[0, 24]
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Fig. 6. Bundling of lines: (a) poor capacity if slow and fast trains are alternating; (b)
capacity increase by bundling trains of the same type; (c) complete line plan for all the
types of lines; (d) PESP constraints ensuring enough capacity for RE/RB lines already
when planning only ICE/IC lines within the first step of a hierarchical planning

In Figure 7 (b), we provide PESP constraints which ensure the time for split-
ting the two train units in Hamm to be at least five minutes. Furthermore,
for the two departing trains, a safety distance of four minutes is guaranteed.
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Berlin
Hamm

Köln−Deutz

Köln/Bonn−Airport
Bonn Hbf

[5, 12]

[5, 12][4, 56]

[�a, ua]

Hamm

Fig. 7. Modeling train sharing: (a) line plan for the line Berlin-Hamm-
{Bonn Hbf | Köln/Bonn-Airport}; (b) PESP constraints ensuring safety distance and
time to split train units, but not specifying the ordering of departures

Notice that we do not need to specify which train should leave Hamm first.
This decision will be made implicitly, and in an optimized way, by the PESP
solver.

Variable Trip Times. As long as trip times are fixed, a usual safety constraint
prevents two identical trains from overtaking each other. With h being the min-
imal headway for the track, we put an arc with feasible interval [h, T − h]T
between the two events of entering the common track. If the line at the tail of
the constraints is by f time units faster than the line at the tail of the constraints,
overtaking can be prevented by modifying the constraint to [h+ f, T −h]T . This
can be understood easily by having again a look at the corresponding situation
in Figure 6 (a).

But this is no longer guaranteed if the model includes variable trip times. Even
ensuring the minimal headway at the end of the track, too, does no longer prevent
overtaking (even of trains of the same type) if the span in the trip times is at
least twice the safety distance h, i.e. ua − �a ≥ 2h. Schrijver and Steenbeek [29],
Lindner [16], and Kroon and Peeters [10] tackle this phenomenon by adding extra
constraints on the integer variables of the MIP formulations. Hereby, they leave
the PESP model. In addition, Kroon and Peeters [10] provide some sufficient
conditions on trip times, safety distance, and on the degree of flexibility of the
trip times that prevent trains from overtaking.
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[r, r + h][r, r + h][r, r + h]

[r, r + h][r, r + h][r, r + h][3r, 3r + 3h]

[3r, 3r + 3h]

[h, T − h]

Fig. 8. Overtaking and variable trip times: (a) standard granularity does not prevent
overtaking; (b) finer granularity prevents overtaking

In order to stay within the PESP model, we propose to subdivide2 an initial
trip arc into new smaller ones such that ua − �a < 2h for every new trip arc. For
an example, we refer to Figure 8, where bold arcs represent arcs of the spanning
tree for which we set pa = 0, cf. Lemma 2, and 3r is the minimum running time
for the track.

Although this might seem to expand the model, the approach behaves rather
well. More precisely, in every feasible timetable, the integer variables which we
have to introduce for our additional arcs are in fact fixed to zero. This can
simply be seen by applying the cycle inequalities (4) to any of the three squares
in Figure 8 (b),

p =
⌈

1
T

(r + h − (T − h) − (r + h))
⌉

=
⌈

h − T

T

⌉
= 0,

p =
⌊

1
T

((r + h) + (T − h) − h − r)
⌋

=
⌊

T − h

T

⌋
= 0.

Notice that the corresponding bounds for the initial formulation are only -1
and 1. But this is very natural, because there are three different types of timeta-
bles possible, of which we have to cut off two. The value one, for instance, models
the fact that the second (lower) train is overtaking the first (upper) train.

Although we showed that the inconveniences caused by flexible running times
can be overcome, we will assume fixed running times throughout the remainder
of this paper.

3.3 General Modeling Capabilities

There are also important non-timetabling features which can be modeled by the
PESP in a very elegant way. The types of such constraints are disjunctive con-
straints and soft constraints. Although they were originally introduced for their
own sake, they turn out to be very useful for even more specialized requirements,
which practitioners required to be modeled.

2 This approach has also been discussed with Peeters [25,26] several years ago.
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[�1, u1]T

[�2, u2]T

T/0

�1

u2�2

u1

Fig. 9. Disjunctive constraints

Disjunctive Constraints. The feasible region of MIPs are commonly given as
the intersection of finitely many half-spaces, plus some integrality conditions.
If disjunctive constraints have to be modeled, usually artificial integer variables
are introduced. However, the PESP offers a much more elegant way.

When introducing the PESP, Serafini and Ukovich [30] already made the im-
portant observation that the intersection of two PESP constraints is not always
again a single PESP constraint. Rather, the feasible interval for a tension variable
can become the union of two PESP constraints, e.g.

πj − πi ∈ [�1, u1]T ∩ [�2, u2]T ⇔ πj − πi ∈ [�1, u2]T ∪ [�2, u1]T .

We illustrate their observation in Figure 9. Nachtigall [20] observed that any
union of k PESP constraints can be formulated as the intersection of at most
k PESP constraints.

As an immediate practical application of disjunctive constraints, we con-
sider optional operational stops. Long single tracks with no stop may cause
the timetable of a line to be fixed within only small tolerances. In such a sit-
uation, Deutsche Bahn AG considers the option of letting the ICE/IC trains
of one direction stop somewhere, although there is no ICE/IC station. In the
current timetable, this takes places on the line between Stuttgart and Zurich, at
Epfendorf.

If we want periodic timetable optimization to be competitive, we should enable
the PESP to introduce an additional stop as well. We do so by introducing a
pair of disjunctive constraints. The first constraint is a usual stop arc a1. We
set the lower bound �a1 to zero, which models the option of not introducing an
additional stop. The upper bound ua1 is set to the sum of the minimal increase b
of travel time occurring from braking and accelerating, plus the maximal amount
of stopping time s at the station. For the effected increase x̃a of travel time, this
translates to

x̃a ∈ {0}T ∪ [b, b + s]T ,

which is a disjunctive constraint. Notice that additional waiting time should be
penalized in this situation similarly to an extension of a regular service stop.
Moreover, if there are other lines operating on the same track, we have to take
precautions that were discussed in the paragraph on variable trip times. However,
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optional operational stops make most sense within long single tracks. But there,
in many cases there are not several lines using that large bottleneck.

Obviously, the introduction of an additional stop can also be due to the con-
struction of a new station. Since such decisions are a part of network planning,
we postpone this discussion until Section 5.3.

Soft Constraints. Nachtigall [19] investigated the combination of two antipar-
allel arcs a1 = (i, j) and a2 = (j, i). If they have an identical coefficient in the
objective function and if neither of them can become infeasible for any vector π,
or x resp., then they model a soft constraint.

Classically, if a certain tension value xa does not satisfy a given PESP con-
straint [�a, ua]T , one would declare the complete timetable as infeasible. But
sometimes, it can be an alternative only to produce a significant penalty in the
objective function, if a constraint is not satisfied.

To that end, we relax the upper bound of the original constraint to �+T −1—
we may assume the instance being scaled such that the precondition of Lemma 1
is satisfied. Further, we introduce a new antiparallel arc with feasible interval
according to Figure 10. Then, these two constraints yield a piecewise constant

[�, � + T )T

[−u, T − u)T

T� u x

∑
objective

M · (u − �)

M · (u − � + T )

Fig. 10. Soft constraints

behavior of the objective function, which serves as an indicator for the violation
of the original constraint, but without guaranteeing feasibility. For an initial
constraint xa ∈ [�a, ua] consider the corresponding pair of artificial constraints a1
and a2—each of these having having cost coefficient M . They contribute to the
objective function

M · (xa1 + xx2) =
{

M · (u − �) if xa1 ∈ [�a, ua]T , and
M · (u − � + T ) otherwise,

hereby indicating whether the original constraint a is satisfied for the tension
vector x.

In our cooperation with Berlin Underground, we were asked to construct a
timetable that, among the top 50 most important connections, maximizes the
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number of connections having a waiting time of at most five minutes. In fact,
soft constraints are well-suited for letting MIP solvers produce a timetable being
optimal subject to this kind of objective function.

4 Timetabling Requirements Not Covered by the PESP

Although the most important practical requirements for a periodic timetable
can be modeled within the PESP, we are still aware of some special features
for which the PESP fails. To the best of our knowledge this is the first time
that practical requirements of timetabling are proven to be beyond the scope of
the PESP.

First, one may think of situations in which it is not fixed which trains are
operated on which track, for example within stations. Consider a station having
two tracks in the same direction and three lines serving that direction. Then,
we cannot decide a priori which pair of lines shall be within the station at the
same time, hence omitting the sequencing constraint between these two lines.
This observation is the motivation for the DONS system to be subdivided into
CADANS, covering the timetabling step, and STATIONS, covering the routing
aspect ([31]).

Notice that this requirement even affects the strategies for parking trains at
terminus stations. Consider the following example, which has been inspired by
the situation at Warschauer Straße of the Berlin fast train network, although
there are further alternatives within that station. Within 20 minutes, two lines
end at that station, both sharing the same track for arrival and departure,
cf. Figure 11. For instance, arcs a1 and a2 measure the time that the two trains
stay within this terminus station. We assume a turnover to take at least four

Warschauer Str.

Warschauer Str.

Line 1

Line 2

arrivals departures

a1

a2

a3

a4

a5

a6

Fig. 11. Routing within terminus stations

minutes at the platform, or at least eight minutes when visiting the parking
facility. Further, any arriving and departing trains block the platform for 59 sec-
onds before and after their arrival and departure, respectively. To ensure that all
passengers alighted before driving to the parking facility, the platform position
is blocked for one more minute.
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Proposition 1. For every set of PESP constraints either timetables which are
operable are classified as infeasible, or timetables which are not operable are
classified as feasible.

Proof. We start by analyzing the two major strategies individually: both lines
turn at the platform, or line 2 turns in the parking facility, w.l.o.g. Table 1
provides tight lower and upper bounds for the six arcs in Figure 11 (c) with
respect to these two scenarios. More precisely, with a strategy specified, we have
that for every arc a = (i, j) and every value ta ∈ [ua, �a] there exists an operable

Table 1. Tight interval bounds for different turning strategies at Warschauer Straße

Arc Both at platform Line 2 to parking not specified
�a ua �a ua �a ua

a1 4 12 4 13 4 13
a2 4 12 8 18 4 18
a3 6 14 6 17 6 17
a4 6 14 2 14 2 14
a5 10 18 7 18 7 18
a6 10 18 6 18 6 18

timetable π such that

(πj − πi − �a) mod T = ta − �a.

Further, by simple case inspection one can verify that every operable timetable
which implements that specific strategy respects each of the given bounds. Hence,
in order to provide general PESP constraints which characterize the operable
timetables without having specified any parking strategy a priori, the feasible
intervals must include the feasible intervals of both scenarios.

However, there exists a vector π which respects the six PESP constraints
thus obtained (see the last two columns of Table 1), but which does not encode
an operable timetable, because the two trains would be at the platform at the
same time: line 1 arrives at minute 00 and departs only at minute 13, although
line 2 already arrives at minute 06 and departs at minute 16. But for each of
the

(4
2

)
potential differences between these four events there also exist operable

timetables that attain the very same tension value. �
Hence we cannot establish a set of PESP constraints that precisely identifies
practically operable timetables as feasible solutions.

Apart from the rather important routing requirement, which unfortunately
is simply out of scope for the PESP, we will analyze a very special situation in
more detail, namely the balanced reduction of service. Finally, we will introduce
the important notion of symmetry. On the one hand, symmetry slightly exceeds
the original PESP, but on the other hand, when added explicitly, gives rise to
a mechanism to include important aspects of line planning into the very same
planning step as periodic timetabling and vehicle scheduling.
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4.1 Balanced Reduction of Service

The Berlin fast train company (S-Bahn Berlin GmbH) aims at operating only
one timetable for one whole day. The late evening service differs from the rush
hour only in that some trains are omitted. Hence, the timetable must respect the
available capacity during the rush hour, and it has to offer a balanced service in
the late evening as well.

From a pure operations point of view, it could seem strange to sidestep an
intraday change of the timetable structure. It is for sure that the information
technology available in the 21st century could cope with this. But it is still the
policy of the company. It is given as a motivation that customers really expect
to have only one single timetable to be kept in mind for their station.

Consider the approximately 10 km long track from Zoo station to Berlin East
station. On it, a minimal headway of 2.5 minutes has to be respected. The period
time is 20 minutes and eight3 lines (having identical train types) per period and
direction have to be scheduled. In the late evening service, there are four trains
every 20 minutes, two of them being fixed to a 10 minutes time lag. We call
these two lines core-lines.

Of course it would be ideal to have a five minutes time lag between two
consecutive trains in the evening. But this is impossible because one of the
evening trains is required to serve Potsdam every 10 minutes together with a
rush hour train. Hence, one should ensure that the maximal time lag between
two consecutive trains does not exceed 7.5 minutes.

But this simple requirement cannot be covered by the PESP. Consider the two
types of timetables given in Table 2. Timetables of type 1 satisfy our requirement

Table 2. Possible timetables for the late evening service from Zoo station to Berlin
East station. This table only shows the core-lines that are actually running in the
evenings. Each of the – entries is a joker for a rush-hour train.

Timetable Departure times (T = 20 minutes)
Type 1 0.0 – – 7.5 10.0 12.5 – – (20.0)
Type 2 0.0 2.5 – 7.5 10.0 – – – (20.0)

by bounding the maximum distance between two consecutive trains to 7.5 min-
utes, but type 2 does not because there we have a gap of 10 minutes.

Proposition 2. For every set of PESP constraints either timetables of both
types are feasible, or timetables of both types are infeasible.

Proof. There are two types of constraints to be analyzed:

i. one constraint between the two non-core lines,
ii. four constraints between one of the two core lines and one of the two non-core

lines.
3 One of them only serves as a free slot for occasional non-passenger trips.
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Since we must not specify the sequence of the lines in advance, only symmetric
constraints [�, T − �]T make sense. Moreover, all constraints of type (ii) have to
be identical for the same reason.

To guarantee feasibility of type 1 timetables, we deduce � ≤ 5 for the con-
straint of type (i) and � ≤ 2.5 for the constraints of type (ii). But then, timetables
of type 2 stay feasible as well. Hence, in order to cut off timetables of type 2, we
have to increment one of the given bounds. But since they are tight, this would
immediately cut off timetables of type 1 as well. �

Notice, however, that other railway companies implement other strategies to
attain a balanced reduction of service. We will present an approach which turns
out to be easier for timetabling, but slightly more complex for operation and
customers.

Consider the track Niederhöchststadt-Langen (Hessen) via Frankfurt Hbf of
S-Bahn Frankfurt. Compare the regular service hourly pattern to the weak-traffic
service hourly pattern, which are given in Table 3. For the weak-traffic service,

Table 3. Timetables for regular service and weak-traffic service between Niederhöchst-
stadt and Langen (Hessen)[17]

regular service weak traffic
Line S4 S3 S4 S3 S4 S3
Bad Soden – 20 – 50 – 50
Kronberg 09 – 39 – 24 –
Niederhöchststadt 14 29 44 59 29 59
Langen (Hessen) 56 11 26 41 11 41
Darmstadt Hbf – 25 – 55 – 55

every second train is omitted. To prevent a 45 minutes gap every hour, one of
the two lines is shifted by 15 minutes and uses the slot of the train of the other
line, which has just been skipped.

If we assume none of the lines to share a track with other lines outside their
common part, then we can easily deduce a feasible timetable for the weak-traffic
service from a periodic timetable, which is feasible for the regular service. In case
of single tracks along the peripherical segments, the only thing to be ensured
is that the shift of 15 minutes appears simultaneously for the two directions.
Hereby, every meeting point for the weak-traffic service is already a meeting
point for the regular service — hence, single tracks stay respected. Trivially,
along the common track no conflicts will appear either.

4.2 Symmetry of a Periodic Timetable

Throughout our discussion of symmetry, we assume that for every directed line
there exists another directed line serving the same stations just in opposite order.
Moreover, the concept of symmetry makes only sense, if for every traffic line,
the running and stopping times of its two opposite directions are the same. Also
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for the minimum headways and other operational constraints we require them
to be identical in both directions. Furthermore, the passenger flow is assumed
to be symmetric.

First, observe that in every periodic timetable with period time T , every train
meets some train of the opposite direction of its line twice within the period time.
In general, every line can have different times for these meetings.

A periodic railway timetable is called symmetric with (global) axis s, if at
time s every train in the network meets a train of the opposite direction of its line.
From the above considerations we deduce that we may assume w.l.o.g s ∈ [0, T

2 ).
For the arrival or departure event of a directed line at a certain station,

we denote by its complementary event the departure or arrival, resp., of the
opposite line at the same station. In the sequel, we provide two characterizations
of symmetric timetables.

Lemma 4. A timetable is symmetric with axis s, if and only if for every pair i
and i of complementary events there holds

(πi + πi) mod T

2
= s. (5)

Proof. Let i and i be any two complementary events. By definition, they are
part of the two opposite directions of the same line. Moreover, they are located
in the same station S.

In a symmetric timetable, the trains of the two opposite directions meet at
times s and s + T

2 . Consider two virtual events j and j of passing the meeting
point M . As the trains meet there, we have πj = πj ∈ {s, s + T

2 }.
We assumed the travel times of two opposite trains to be identical and denote

the travel time between S and M by t. Hence, w.l.o.g.

(πi + πi) mod T = ((πj + t) + (πj − t)) mod T = (2 · πj) mod T. �

To define a counterpart of condition (5) for the tension formulations (2), we
define two arcs a = (i, j) and a = (j, i) to be complementary, if {i, i} and {j, j}
are complementary, and we have �a = �a and ua = ua. With these definitions at
hand, we are able to define a symmetric instance of PESP: A constraint graph
is called symmetric, if every arc connects either two complementary events, or if
for every arc a ∈ A there exists some complementary arc a ∈ A \ {a}.

Lemma 5. Consider an instance of PESP that is modeled by a connected sym-
metric constraint graph. Let π be a feasible timetable with corresponding periodic
tension x. There exists some s ∈ [0, T

2 ) such that Condition (5) holds for every
pair of symmetric events, if and only if every pair of complementary arcs a and a
fulfills

x̃a = x̃a. (6)
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Proof. “⇒”: Let a = (i, j) and a = (j, i) denote two complementary arcs of the
constraint graph. Then, we have

x̃a = xa − �a
(2)
= (πj − πi − �a) mod T

(5)
= (2s − πj − (2s − πi) − �a) mod T

= (πi − πj − �a) mod T = xa − �a = x̃a.

“⇐”: Let x be the periodic tension of some feasible timetable π. We show
that there exists one global symmetry axis s such that Condition (5) is satisfied
for π.

We compute s from an arbitrary fixed event, say i,

s :=
(πi + πi) mod T

2
.

Now, we consider an arbitrary pair of complementary events j and j. Since D
is connected and symmetric, there exists a path P from i to j or j that only
contains arcs a such that a ∈ A \ {a}. We assume w.l.o.g. that P starts at i and
ends at j. By setting

xP :=
∑

a∈P+

xa −
∑

a∈P −

xa,

we obtain πj = (πi +xP ) mod T . As for every a ∈ P there exists its complemen-
tary arc a ∈ A \ {a}, the complementary path P of P from j to i is well-defined.
Equation (6) ensures xP = xP .

In total, we obtain

(πj + πj) mod T

2
=

(πi + xP + πi − xP ) mod T

2
=

(πi + πi) mod T

2
= s. �

Remark 1. If the line plan of a traffic network is connected and the constraint
graph is symmetric, we are able to give an even more compact characterization
of symmetry. Then, a feasible tension encodes a symmetric timetable, if and only
if Condition (6) is satisfied for changeover arcs and stopping arcs. In fact, in the
proof of Lemma 5 we can then find a path that only uses such arcs, plus trip
arcs, which we assume to have zero span.

Surely, one can introduce a certain tolerance Δ on the symmetry requirement.
But notice that in this case, condition (6) has to be blown up by a new integer
variable.

Example 1 (Deutsche Bahn AG). Figure 12 shows two real-world timetable que-
ries for opposite directions. These are representative for large parts of central
European countries, such as Germany and Switzerland, which are operated with
symmetry axis zero within only minor tolerances. Hence, if not stated otherwise
we assume s = 0 throughout this paper for ease of notation.

We check the three characterizations of symmetry. Most striking, the change-
over waiting time is almost the same in both directions, cf. Remark 1 and
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 Station/Stop  Date  Time  Platform  Products  Comments 

Berlin Zoologischer Garten 05.06.03   dep  09:54 4 ICE 952 InterCityExpress 
BordRestaurantWolfsburg   dep  10:54

Hannover Hbf   dep  11:31
Bielefeld Hbf   dep  12:24
Hamm(Westf)   dep  12:54
Hagen Hbf   dep  13:25
Wuppertal Hbf   dep  13:42
Köln-Deutz   dep  14:11
Köln Hbf 05.06.03   arr  14:14 6

Köln Hbf 05.06.03   dep  15:13 8 ICE 14 InterCityExpress 
Onboard meeting placeAachen Hbf   dep  15:52

Aachen Süd(Gr)
Liege-Guillemins
Bruxelles-Midi 05.06.03   arr  17:46

Duration: 7:52; runs daily

 All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03  [5.00.DB.4.5/v4.05.p0.13_data:59e79704]   

 Station/Stop  Date  Time  Platform  Products  Comments 

Bruxelles-Midi 05.06.03   dep  12:16 ICE 15 InterCityExpress 
Onboard meeting placeLiege-Guillemins   dep  13:28

Aachen Süd(Gr)
Aachen Hbf   dep  14:10
Köln Hbf 05.06.03   arr  14:46 3

Köln Hbf 05.06.03   dep  15:47 2 ICE 953 InterCityExpress 
BordRestaurantKöln-Deutz   dep  15:51

Wuppertal Hbf   dep  16:17
Hagen Hbf   dep  16:35
Hamm(Westf)   dep  17:10
Bielefeld Hbf   dep  17:37
Hannover Hbf   dep  18:31
Wolfsburg   dep  19:05
Berlin Zoologischer Garten 05.06.03   arr  20:02 1

Duration: 7:46; runs Mo - Fr, not 29. May, 9. Jun, 21. Jul, 15. Aug, 11. Nov 
Hint: Prolonged stop 

 All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03  [5.00.DB.4.5/v4.05.p0.13_data:59e79704]  

Fig. 12. Symmetric timetables in practice

Equation (6). To check Condition (5), we consider the arrival of ICE 952 in
Köln Hbf and the complementary departure of ICE 953. The two events sum
up to (14 + 47) mod 60 ≈ 0, and the same can be observed for the Brussels
trains. Finally, notice that the Berlin line has one of its meeting points between
Köln-Deutz and Wuppertal Hbf, at minute zero, of course. To that end, we have
to know that the trains from Berlin arrive at Köln-Deutz at minute 09, which is
two minutes before its departure at minute 11.

Some practitioners consider the changeover condition in Remark 1 to be an
important advantage of symmetric timetables. Even though this might depend on
personal preferences, we do not consider this really to be a striking argument for
symmetry. Actually, there are examples which prove that symmetric timetables
are only suboptimal, even if the input data is symmetric ([13]).

Apparently there are not yet many discussions of symmetric timetables avail-
able. But among further motivations for symmetry, as they can be found in [13],
the most convincing one seems to be that symmetry halves the complexity of
an instance. This can in particular be useful if there are complex interfaces to
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international trains or to regional traffic, and when planning is performed man-
ually. However, this argument should become less important in the future, as we
think that PESP solvers achieve some more progress in performance, and hence
find their way into practice.

With the following theorem, we are able to prove a conjecture that has been
stated in [13].

Theorem 2. Symmetry of periodic timetables cannot be guaranteed by only us-
ing PESP constraints (1).

Proof. Consider the PESP instance in Figure 13 (b). The PESP constraints
that relate the two opposite directions of the line to be considered model the
two single tracks of the track map that is shown in Figure 13 (a). The minimum

[8, 8]20[8, 8]20

[8, 8]20[8, 8]20

[9, 9]20

[9, 9]20

[1, 3]20[1, 3]20

[1, 3]20[1, 3]20

[1, 1]20 [2, 2]20

. . .

. . .

. . .

. . .

Fig. 13. A track map (a) on which an instance of PESP (b) does not admit any integral
symmetric solution

crossing times (cf. Section 3.1) that apply to a certain single track depend on the
infrastructure and the signaling system. For the western single track, we assume
minimum crossing times of one time unit at both of its endpoints, for the eastern
single track we assume two time units at both of its endpoints. Hence, given a
period time of T = 20 time units and the indicated one-way running times of
eight and nine time units, the single track constraints become tight.

Summing up the lower bounds of the constraints of the directed cycle yields 57,
summing up the upper bounds provides 63. Hence, there exist feasible timetables.
Moreover, due to the cycle periodicity property (Lemma 3), we know that in each
of the feasible solutions the tension values sum up to 60. Hence, a slack of three
time units has to be distributed on the four arcs with positive span.

In every symmetric feasible timetable, both of the directions obtain 1.5 time
units of slack, hereby implying non-integral tension values. In contrast, by Lem-
ma 1 every feasible system of PESP constraints (1) admits a feasible integral
timetable. �
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Hence, we will have to add non-PESP constraints to the MIP formulations of a
PESP instance in order to ensure symmetry. This is really required in practice,
because in particular with national railway companies, we gained the experience
that the symmetry requirement is really a knockout criterion.

To summarize, besides a linear objective function, symmetry is the second
important requirement arising in the practice of periodic railway timetabling,
by which the initial PESP model should be extended. Fortunately, in com-
putations on real-world data sets it has been observed that MIP solvers may
profit from the addition of symmetry constraints, in particular in formulation
(6) ([13]). Such a generalized MIP model even inherits large parts of the struc-
ture of a pure PESP model. Most important, the cycle inequalities (4) remain
valid.

5 Further Planning Steps Covered by the PESP

In the following, we will demonstrate that the modeling capabilities of the
PESP are not limited only to periodic timetabling. Rather, central aspects of
both preceeding and succeeding planning steps in the sense of Figure 1 can be
integrated.

We start this discussion with the well-established technique of minimizing
the number of vehicles required to operate a periodic timetable by penalizing
waiting times of vehicles. Hereafter, we provide first ideas for the integration of
important decisions of line planning. We close this section by proposing a way
to model some specialized decisions arising in network planning.

5.1 Aspects of Vehicle Scheduling

Almost all companies in public transportation have in common that they want
to minimize the amount of rolling stock required to serve their networks. Notice
that the quality of the vehicle schedule for a fully periodic timetable, i.e. with
no peak trips included, is largely determined by the timetable.

Consider for example the hourly line displayed in Figure 14 (a). Assume the
minimal travel times between the two endpoints to be 235 minutes for each
direction. Given strict minimal turnover times of 45 and 60 minutes, respectively,
the minimal number of vehicles required to operate this line is precisely

N :=
⌈

1
60

(235 + 235 + 45 + 60)
⌉

= 10.

A timetable which lets the trains leave at the full hour from Frankfurt and
Amsterdam can indeed be operated with only 10 trains, at least if the stopping
times are extended only moderately. On the contrary, a timetable in which only
the trains starting at Frankfurt depart at minute 00, but the trains from Am-
sterdam leave at minute 30 requires at least 11 vehicles. Hence, the amount of
vehicles depends on the timetable.
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We will analyze in which special cases pure PESP constraints are able to
control the number of trains required. After that, we show that a linear objective
function covers many more of the practical cases.

Proposition 3 (Nachtigall [20]). Consider a fixed traffic line with period
time T . If we assume trains always to serve only this line, and if we do not
allow to insert additional stopping time, then there exist upper bounds u for the
turnover activities, such that the only feasible timetables are those which can be
operated with the minimal amount of trains.

Proof. We present a proof of this simple fact, both in order to provide the nota-
tion used in the following paragraphs, and because it avoids modulo-notation.

Denote the endpoints of the line by A and B. Let �AB denote the minimal
travel time from A to B, i.e. the sum of the minimal stopping and running times
of the activities of this directed traffic line. Moreover, denote by �B the minimal
amount of time a train has to stay in endpoint B between two consecutive trips.

The minimal number N of trains required to operate this line is precisely

N =
⌈

�AB + �B + �BA + �A

T

⌉
.

From the cycle periodicity property (3) we know that every feasible timetable x
fulfills

xAB + xB + xBA + xA = zT, (7)

for some z ∈ Z. Hence, we must ensure z = N . To that end, consider the slack

σ := NT − (�AB + �B + �BA + �A) (8)

of this traffic line, implying (xA − �A) + (xB − �B) = σ. But since σ < T , by
setting

uA := �A + σ (9)

we even ensure xAB + xB + xBA + xA < (N + 1)T . �

Let us now analyze the case in which additional stopping times may be inserted,
i.e. uAB > �AB. We will show that together with the constraints (9), some
timetables which require an additional train may become feasible.

On the one hand, consider a timetable for which we have x ≡ � for all activities,
except for the turnover time in one endpoint. This timetable can still be operated
with the minimal number of trains, showing that decreasing the value (9) for uA

would cut off timetables we seek for.
On the other hand, assume xAB = uAB and xBA = uBA. If

(uAB − �AB) + (uBA − �BA) + σ ≥ T, (10)
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Amsterdam

Frankfurt

Utrecht

Duisburg

Köln−Deutz

Köln-Deutz

Duisburg

Utrecht

[�a, ua], wa

[3, 8], M

[2, 5], M
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[45, 164], M

[2, 5], M

[2, 5], M

[3, 8], M

[60, 179], M

Fig. 14. Modeling aspects of vehicle scheduling: (a) line plan; (b) PESP constraints
measuring the number of trains required to operate the line

then we can extend x to a timetable that still respects (9), but which requires at
least one additional train. For instance, if inequality (10) is tight, then for x ≡ u
we have

xAB + xB + xBA + xA = uAB + uB + uBA + uA

(9)
= (uAB − �AB) + (�B + σ) + (uBA − �BA) +

+(�A + σ) + �AB + �BA

(10)
= T + σ + �AB + �B + �BA + �A

(8)
= (N + 1)T.

The above dilemma is our main motivation for the need of a linear objective func-
tion. Such a function takes advantage of equation (7): By assigning a value M to
the arcs modeling a traffic line, every additional train pays M · T to the objec-
tive function value. Of course, if suffices to consider arcs with positive span, cf.
Figure 14 (b). If the value for M is chosen relatively large compared to the
passenger weights, the objective function essentially models the piecewise con-
stant behavior of the cost of the rolling stock for operating the railway network.

From a more local perspective, we just penalize idle time of trains. But this
can even be done without knowing a priori the circulation plan of the trains.
Although a straight-forward exact model involves a quadratic objective function,
Liebchen and Peeters [14] report that a simple linear relaxation in terms of the
PESP yields results of high quality.
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Very recently, Nyhave, Hove, and Clausen [22] proposed an integer linear
model to precisely count the number of trains required to operate a timetable,
even if trains are allowed to switch lines in their endpoints. This approach does
not depend on additional assumptions as synchronization constraints or pre-
defined time-windows for turnaround times, as they were used by Peeters [26]. In
the sequel, we translate their ideas into the PESP plus some additional variables
and constraints.

Consider a station S that is a terminus for the two lines 1 and 2. Denote by
ai and di the arrival and departure events in station S of line i. We introduce
the following arcs

a11 = (a1, d1) and a22 = (a2, d2),
a12 = (a1, d2) and a21 = (a2, d1).

The effective waiting times for the trains in S are x̃11 + x̃22 if trains stay on
their lines, or x̃12 + x̃12 if trains switch lines. Notice that (a11, a21, a22, a12) is an
oriented cycle. In particular, there exists some z ∈ Z such that

x11 + x22 = x12 + x21 + zT.

In most cases, we have �a11 = �a12 and �a21 = �a22 . Then, we even know that
there exists some r ∈ [0, T ) and b1, b2 ∈ {0, 1} such that

r = x̃11 + x̃22 − b1 · T = x̃12 + x̃21 − b2 · T.

Hence, in an optimal vehicle schedule the total effective waiting time in station S
amounts to r+min{b1, b2}·T . To obtain a MIP-formulation, we introduce a new
(rational) variable w and require

w ≥ b1 + b2 − 1 and w ≥ 0.

Finally, station S contributes

M · (r + w · T )

to the objective function, where M again denotes the cost factor for vehicle
waiting time.

5.2 Aspects of Line Planning

Our main idea for letting PESP solvers even take decisions of line planning is
to combine — or match — pre-defined line-segments. To that end, we will make
intensive use of disjunctive constraints. Unfortunately, we will only be able to
ensure symmetric line plans if we require symmetry also within the stations
where lines are matched.

We are aware of only one other approach for integrating the planning phases of
line planning, timetabling and vehicle scheduling ([32]). Whereas that approach
is based on the assumption that the line plan contains no cycles, our ideas do not
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require any restrictive assumptions on the topology of the network. Rather, we
are able to keep even very important technical restrictions such as single tracks.

Notice that bad decisions at the level of line planning may cause very bad
results also for vehicle scheduling. Consider the four line segments displayed in
Figure 15. We assume a period time of T = 60 minutes and a minimal turnover
time of 30 minutes at each of the four terminus stations. The time for a one-
way trip from the matching station to one of the endpoints is indicated at the
corresponding edge.

95
matching

station

85
60

80

?

Fig. 15. Line segments where only one matching provides good vehicle schedules

In fact, the vehicle schedule is fixed due to the distinct endpoints. Combining
the south-west segment with the north-east segment causes this line to require
at least

⌈
1
60

(60 + 95 + 30 + 95 + 60 + 30)
⌉

=
⌈

370
60

⌉
= 7 trains.

The other line of the same matching requires seven trains, too.
In contrast, the other matching implies seven trains only for the northern line

consisting of the two top line segments. But the other line can be operated with
only six trains. Hence, already the line plan has a major impact on the cost of
operation. Claessens et al. [5] consider this phenomenon in their approach for
constructing cost-optimal line plans.

However, they omit the important intermediate linking step of computing a
timetable. Therefore, their approach must also consider possible constellations
in which there is no feasible timetable using only six trains for the southern line.
This would be the case, if there was a single track with travel time 25 minutes
for every direction just at the end of the south-east segment. The same holds if
it is required that the two lines together form an exact half-hourly service along
the backbone of the network.

We consider a track that has to be served in the same direction by n directed
lines which are operated by trains of identical type. We denote the matching
station by S which resides between the two endpoints of the common track.
We consider n line segments La

1, . . . , L
a
n which have station S as their common

endpoint, and n line segments Ld
1, . . . , L

d
n having station S as their common

starting point. Any (bipartite) perfect matching between the arriving and the
departing line segments induces a line plan.
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But from the perspective of timetabling, there are only n arrival events
a1, . . . , an as well as n departure events d1, . . . , dn visible. Hence, we must deduce
only from their arrival times πai and their departure times πdj which arriving
line segment La

i should be matched with which departing line segment Ld
j .

This can be done in a canonical way, if we choose the matching station S such
that it has only one track in the direction of the line segments we consider. If
necessary, we add an artificial station in the middle of some track. Then, at most
one train can be in S at the same time. Timetables respecting this constraint
can be characterized very easily as follows.

Definition 1 (Alternating timetable). For a fixed station S and a fixed di-
rection, a periodic timetable π with n pairwisely different arrival times 0 ≤ πa1 <
· · · < πan < T and n pairwisely different departure times 0 ≤ πd1 < · · · < πdn <
T is called alternating at S, if either πai ≤ πdi < πai+1 for every i = 1, . . . , n,
or πdi < πai ≤ πdi+1 for every i = 1, . . . , n, where we define π·n+1 := π·1 + T .

Lemma 6. A timetable π ensures that there is always at most one train at
station S if and only if it is alternating at S.

Hence, for an alternating periodic timetable, we combine the arriving line seg-
ment La

i with the departing line segment Ld
j , if and only if the latter marks

the unique first possible departure. In the sequel, we will give PESP constraints
ensuring every feasible timetable to be alternating at S. Thus, every feasible
timetable will encode some unique matching and the associated line plan.

The first two sets of constraints ensure the minimal headway d in front of and
behind the matching station S:

∀ i, j ∈ {1, . . . , n} : πaj − πai ∈ [d, T − d]T , (11)
∀ i, j ∈ {1, . . . , n} : πdj − πdi ∈ [d, T − d]T . (12)

Notice that (11) and (12) can only be fulfilled if 0 ≤ d ≤ T
n . Moreover, we relate

arrival events to departure events by the following disjunctive constraints

∀ i, j ∈ {1, . . . , n} : πdj − πai ∈ [0, T − d + h]T , (13)
∀ i, j ∈ {1, . . . , n} : πdj − πai ∈ [d, T + h]T , (14)

where we denote by h the maximal stopping time for a train at station S. To-
gether, these constraints (13) and (14) yield

(πdj − πai) mod T ∈ [0, h] ∪̇ [d, T − d + h]. (15)

Trivially, 0 ≤ h < d is necessary for every feasible timetable π to be alternating
at S.

Theorem 3. Let π be a timetable respecting constraints (11) to (14). Then for
every departure event dj, there exists a unique arrival event ai satisfying

πdj − πai ∈ [0, h]T , (16)

if and only if h < (n + 1)d − T .
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Since 0 ≤ h, from h < (n + 1)d − T we conclude T
n+1 < d.

Proof. “⇒”: We assume h ≥ (n + 1)d − T . Since d = T
n would imply h ≥ d, we

must only investigate the case that d < T
n . We will construct a timetable which

respects the constraints (11) to (14), but which contradicts (16).
Define πai := (i−1)d, for all i = 1, . . . , n, and πdj := j ·d, for all j = 1, . . . , n.

By construction, all the constraints are satisfied. However, since πan +h < n ·d =
πdn , for departure πdn none of the arrival events fulfills (16), q.e.d.

“⇐”: We assume there exists a timetable π having one departure event d0
such that

∀ i = 1, . . . , n : (πd0 − πai) mod T > h,

but which respects the constraints (11) to (14). We may assume w.l.o.g. that
for the cyclic predecessor arrival a1 of d0 we have πa1 = 0. As π is feasible, it
satisfies (15). From our assumption, we conclude d ≤ πd0 and πd0 +(d−h) ≤ πa2 ,
and hence πa2 −πa1 ≥ 2d−h. Event a1 also takes place at time T . For notational
convenience, we define πan+1 := T . With this notation, we have πai+1 − πai ≥ d,
for all i = 2, . . . , n. By the definition of πan+1 , we know that

n∑

i=1

(πai+1 − πai) = πan+1 − πa1 = T.

Summing up the lower bounds yields T ≥ (n + 1)d − h, which contradicts the
hypothesis of Theorem 3. �

Corollary 1. If h < (n+1)d−T , then every timetable which respects constraints
(11) to (14) is an alternating timetable.

In Figure 16, we provide an example for the easiest case, namely matching two
lines. As usual, we assume the period time to be 60 minutes.

Remark 2. There are of course alternating periodic timetables in the case d ≤
T

n+1 . PESP solvers are able to detect even those, if we were able to pre-define
sufficiently many empty slots. By an “empty slot” we understand an artificial
line which we have to schedule in the same way as the original lines, hereby
separating the lines before and after the empty slot.

In more detail, let us assume that T
n∗+1 < d ≤ T

n∗ for some n∗ > n, and
that h satisfies the assumptions of Theorem 3 for n∗. We then introduce n∗ − n
artificial dummy arrival and departure events ai and di, i = n + 1, . . . , n∗. To
prevent the original line segments from being matched with an artificial event,
we require πdi − πai ∈ [0, h] for all i = n + 1, . . . , n∗.

By construction, the only feasible timetables let the original arrivals and de-
partures alternate. However, perfectly balanced timetables, i.e. πai := (i − 1)T

n ,
are infeasible under these settings if n∗ < 2n, since they do not provide n∗ − n
empty slots.

Recall that so far we have considered only one direction. Hence, there is no
mechanism yet to bind the matching of one direction to that of the opposite
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Dortmund

Basel

Stuttgart

Duisburg

Mannheim

Köln−Deutz?

Köln-Deutz
[22, 38]

[3, 5]

[0, 43]

[22, 65]

[�a, ua]

Fig. 16. Modeling aspects of line planning: (a) line segments; (b) PESP constraints
ensuring the segments to be matched

direction. But the matchings of opposite directions must fulfill the symmetry
assumption that we gave at the beginning of Section 4.2. Otherwise, the trains
from direction A could pass the matching station S in order to continue to-
wards B, but the trains from B pass S before continuing in direction C. Thus,
it would not be possible to communicate the line plan in the way customers are
used to, because it may no more be visualized by an undirected graph. However,
limited asymmetries in operation are accepted in practice.

Example 2 (S-Bahn Berlin GmbH). We consider the line S2 serving the route
Blankenfelde-Lichtenrade-Buch-Bernau. Between Lichtenrade and Buch, a ten
minutes frequency must be offered, for the remaining parts 20 minutes suffice.

In the current timetable ([27]), this line is served in an asymmetric way. In
order to cope with the single tracks (which are present at both endpoints) to
limit the total amount of stopping time, and to ensure an efficient employment
of the rolling stock, an asymmetric service is offered, and we present it in table 4.

In order to ensure symmetric line plans, we have to guarantee the following
condition. If we combine the arrival event ai with the departure event dj in
one direction, then in the opposite direction the complementary arrival event a′

j

must be combined with the departure event d′i. More precisely, when considering
the corresponding tension variables xaidj and xa′

jd′
i
, they must fulfill

xaidj ∈ [0, h] ⇔ xa′
jd′

i
∈ [0, h]. (17)

In fact, this condition is quite similar to the symmetry constraints (6). What
makes things more complicated is the fact that we must not predict in advance
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Table 4. Asymmetric service of line S2 (Berlin)

Blankenfelde dep | 10:09 | arr o 11:14 |
Lichtenrade dep ↓ 10:15 10:25 arr o 11:05 11:15
Buch arr o 11:06 11:16 dep ↑ 10:14 10:24
Bernau arr o 11:21 | dep | | 10:10

for which pairs (i, j) requirement (17) has to hold, and for which pairs it may be
violated. Hence, we propose to guarantee property (17) for the matched pairs by
imposing symmetry requirements on every pair of complementary junctions. But
it is clear that this approach cuts off feasible timetables for symmetric line plans
just because such timetables need not to be symmetric, see e.g. example 3.

Example 3 (S-Bahn Berlin GmbH). Consider the current timetable ([27]) of the
ring subnetwork of S-Bahn Berlin GmbH, of which we provide an excerpt in ta-
ble 5. Obviously, the line plan is symmetric. But the timetable is not symmetric.

Table 5. Symmetric line plan but asymmetric timetable

Direction A
Line S45 S46 S8 S9 S47 S8
Origin BFHS BKW BGA BFHS BSPF BZN
Schöneweide dep ↓ xx:01 xx:06 xx:10 xx:13 xx:15 xx:18
Baumschulenweg arr o xx:03 xx:09 xx:13 xx:16 xx:17 xx:21
Destination BHMS BGS BPKR BZOO BWES BPKR

Direction B
Line S8 S46 S9 S47 S8 S45
Origin BPKR BGS BZOO BWES BPKR BHMS
Baumschulenweg dep ↓ xx:02 xx:06 xx:08 xx:13 xx:14 xx:19
Schöneweide arr o xx:05 xx:08 xx:10 xx:15 xx:17 xx:21
Destination BGA BKW BFHS BSPF BZN BFHS

This can be seen by calculating the symmetry axes of lines S47 and S9 at station
Schöneweide. Departure and arrival of line S47 sum up to 30, hence the trains
of this line meet at times 5 and 15. For line S9 the sum yields 23, providing a
symmetry axis of 1.5. An easier argument for asymmetry is that the sequence of
the trains in direction B is not the inverse of the one in direction A.

There are two main objectives for the matching approach. First, we want to offer
direct trips for as many passengers as possible. Second, the timetable should
require only few trains for operation.

For the second criterion, in the case h = 0, no additional weight on arcs
within the matching node is required in order to minimize the amount of rolling
stock required to operate the timetable. In the case h > 0, one could put the
vehicle weight on the arcs with feasible interval [0, T − d + h]. But this would
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no longer yield the desired exact piecewise-constant behavior of the objective,
because some double counting can appear.

For maximizing the number of direct travelers, we consider the number of
passengers wij starting their trip before the common track on a train covering
line segment La

i , and finishing their trip after the common endpoint on a train
covering line segment Ld

j . The value wij is added to the weight of the arc a =
(ai, dj) with �a = 0 and ua = [0, T − d + h]. The resulting cost coefficients in
the objective function make even sense for pairs of line segments which are not
matched, because long changeover times of many passengers are penalized.

Notice that the values wij are only well-defined if the two line segments do
not serve a second matching station. This shows that the decisions to be taken
within a matching station are of a rather local nature.

Summarizing, there are important scenarios in which the PESP can integrate
relevant aspects of line planning into a model suited for timetabling and key
issues of vehicle scheduling. This is in particular the case if symmetric timetables
and balanced sequences along the common tracks, i.e. d > T

n+1 , are requested
for their own sake. Moreover, we observed that the larger the distance between
two matching stations, the more reliable the passenger weight that we propose.

We think that fast train networks of European agglomerations, such as Frank-
furt, Munich, or Paris (RER), are well-suited candidates for this approach.
There, many passengers might have their origin or destination somewhere on
the backbone route, and balanced sequences must be ensured due to the large
number of lines per period.

5.3 Aspects of Network Planning

We propose to also model two questions which arise in network planning within
the PESP: the extension of existing tracks, and thus lines, beyond their current
endpoints, and the construction of faster tracks as substitution for existing ones.
Taking into account that, in these questions, we have to select one option out of
a small number of disjoint options, it is evident that we will make intensive use of
disjunctive constraints, cf. Section 3.3. Recall that there, we already discussed the
introduction of optinal additional stops. With appropriate weights that reflect
amortisation—see below—these may also cover the construction of new stations
along an existing track.

We only discuss the construction of faster tracks in detail. But the reader
will have no difficulty to adapt our suggestions to the very similar task of the
extension of tracks.

In Figure 17, we provide a constraint graph which offers the option of a new
track between Aachen and Köln, being then part of the European high-speed line
PBK (Paris-Brussels-Köln). We provide the status quo, with one intermediate
stop, only for illustration purposes. In the future, we have the option to either
use the current tracks, thus keeping a trip time of 38 minutes, or to establish
the new high-speed track, hereby reducing the trip time down to 26 minutes.

To define appropriate weights for the arcs, we have to take into account three
different types of objectives: The number of customers c who profit from a new
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[38, 86], 0
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Fig. 17. Modeling aspects of network planning: (a) infrastructure including optional
high-speed track; (b) PESP constraints taking into account the two infrastructural
alternatives

track by shorter travel times, the trip times of the trains trains which may allow
to reduce the number of trains requires (M , c.f. Section 5.1), and the cost M ′ of
the investment. One can imagine that it is an absolutely non-trivial management
decision to derive an hourly weight M ′ from the total cost of the investment.

Similarly to line planning, investments into infrastructure will only make sense
if they are effected for both directions at the same time. Again, we ensure sym-
metric investments by requiring the timetable to be symmetric.

Let us now analyze the situation in which several lines have the option of using
the same new, faster track. Of course, we want to ensure that infrastructure is
only paid once in terms of the objective function. Hence, we have to partition
the total cost onto all of the concerned lines. But what if in a solution of a PESP
instance only one line is routed over the new track?

But a reasonable allocation of the total costs is only possible, if we know in
advance how many lines will have to use the new track. Unfortunately, we are
only able to ensure this with constraints of the types already introduced, if all
the lines must use the same track. This would, e.g., be the case when analyzing
two mutually exclusive variants of constructing a new track.

We can guarantee that all the lines use the same track simply by enforcing
the same running time for each line. This is achieved by introducing constraints
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of type (6). But notice that in this case we cheat a bit, because those constraints
no longer relate only pairs of complementary arcs to each other. . . Anyway, the
MIP formulation of this even slightly more extended model incorporates many
of the computational aspects of the pure PESP model.

6 Conclusion

Our discussion of the PESP model shows that it has a great modeling power and
extendability. We have demonstrated that many non-standard requirements for
periodic timetables and also important aspects of other – traditionally separate –
planning phases can be integrated into the PESP. Figure 18 displays the gain by
this modeling power over the traditional use of the PESP displayed in Figure 1.

Network Planning

Line Planning

Timetabling

Vehicle Scheduling

Crew Scheduling

PESP model

Fig. 18. Planning phases covered by the PESP with our contribution

Interestingly, this integration into the PESP has been possible without seem-
ingly complicating it too much. In all cases, we obtained mixed integer programs
that still have the characteristics of a PESP. Hence we believe that these ex-
tended models stay computationally tractable also for networks of relevant sizes.
So far, our belief is confirmed by a confidential study for S-Bahn Berlin GmbH
for two of its three major subnetworks.

We therefore hope that these models, through their integrative approach to
vehicle scheduling, timetabling, line planning, and infrastructure planning, will
eventually lead to better decision making in practice.
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20. Nachtigall, K.: Periodic Network Optimization and Fixed Interval Timetables. Ha-
bilitation thesis, Universität Hildesheim (1998)

21. Nachtigall, K., Voget, S.: A genetic algorithm approach to periodic railway syn-
chronization. Computers and Operations Research 23(5), 453–463 (1996)

22. Nielsen, M.N., Hove, B., Clausen, J.: Constructing periodic timetables using MIP—
a case study from DSB S-train. International Journal of Operations Research, 1
(2005)

23. Odijk, M.A.: Construction of periodic timetables, Part 1: A cutting plane algo-
rithm. Technical Report 94-61, TU Delft (1994)

24. Odijk, M.A.: A constraint generation algorithm for the construction of periodic
railway timetables. Transportation Research B 30(6), 455–464 (1996)

25. Peeters, L.W.P.: Personal Communication (2000)
26. Peeters, L.W.P.: Cyclic Railway Timetable Optimization. Ph.D. thesis, Erasmus

Universiteit Rotterdam (2003)
27. S-Bahn Berlin GmbH: S-Bahn-Fahrplan (gültig ab 16. Juni 2003) (2003)
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