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Abstract

Hermitian pencils, i.e., pairs of Hermitian matrices, arise in many applications,
such as linear quadratic optimal control or quadratic eigenvalue problems. We de-
rive conditions from which anti-triangular and anti-m-Hessenberg forms for general
(including singular) Hermitian pencils can be obtained under unitary equivalence
transformations.

1 Introduction

In this paper, we discuss necessary and sufficient conditions for the existence of particular
condensed forms for Hermitian matrices and pencils from which eigenvalues and nested sets
of invariant subspaces can be obtained. It is the main purpose to include the discussion of
singular pencils.

Canonical forms for Hermitian pencils or for related pairs of quadratic or Hermitian
forms are well-known and have been widely discussed in literature, starting with the results
of Weierstraß for the regular case (see [24]) and the results of Kronecker for the singular
case (see [10]). For a complete discussion of canonical forms for Hermitian pencils, see [22],
and for a large list of references, see [23].

For the sake of numerical stability, we are interested in finding condensed forms for
Hermitian pencils under unitary transformations. In other words, we try to reduce both
matrices of the pencil via a simultaneous unitary similarity transformation.
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One possible condensed form for Hermitian pencils is the diagonal form. However, the
problem of computing this form reduces to the problem of diagonalizing two Hermitian
matrices simultaneously. It is well known that this is possible if and only if the matrices
commute (see, e.g., [21]).

Other possible condensed forms are the so-called anti-triangular or more general anti-
m-Hessenberg forms.

Definition 1 Let X = (xjk) ∈ Cn×n and m ∈ N. We say that X is lower anti-m-
Hessenberg if xjk = 0 for all j, k such that j + k ≤ n−m, i.e., X has the pattern

[

¡
¡
¡¡

¡
¡
¡

¡
¡¡

¡
¡¡

¡
¡

]

.

Analogously, we say that X is upper anti-m-Hessenberg if we have xj,k = 0 for all j, k with
j + k > n+m+ 1. If X is lower anti-0-Hessenberg, i.e., X has the pattern

[

¡
¡
¡¡
]

,

we also say that X is lower anti-triangular. If X is lower anti-1-Hessenberg, we also
say that X is lower anti-Hessenberg. Analogously, we define upper anti-triangular and
upper anti-Hessenberg matrices.

As long as it is not stated otherwise, ’anti-triangular’ and ’anti-m-Hessenberg’ always
means ’lower anti-triangular’ and ’lower anti-m-Hessenberg’, respectively. Analogous to
the matrix case, we define anti-triangular and anti-m-Hessenberg forms for pencils.

In this paper we will discuss necessary and sufficient conditions for the existence of anti-
triangular and anti-m-Hessenberg forms for (possibly singular) Hermitian pencils. In this
task, it is sufficient to discuss the existence of these forms under simultaneous congruence,
for if P is a nonsingular matrix such that P ∗(λG−H)P is in anti-triangular form (or in anti-
m-Hessenberg form), then P can be chosen to be unitary. This follows easily by applying a
QR-decomposition on P , see also Lemma 2 in the following section. Hence, both G and H

are simultaneously unitarily similar to anti-triangular matrices (or to anti-m-Hessenberg
matrices, respectively).

It will turn out that the existence of anti-triangular forms for singular Hermitian pencils
is equivalent to the existence of anti-m-Hessenberg forms for certain regular Hermitian pen-
cils. This motivates our interest in anti-m-Hessenberg forms in addition to anti-triangular
forms.

But besides this, the special case of anti-1-Hessenberg forms of Hermitian pencils is of
interest itself. During the numerical computation of the Schur form of a matrix, the matrix
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is usually reduced to Hessenberg form in the first step (see, e.g., [8]). Anti-Hessenberg forms
in the Hermitian case seem to be the analogue of Hessenberg forms in the general case.

The motivation for the research in this paper arises from structured eigenvalue problems
in control theory and in the numerical simulation of mechanical systems.

The first application is the linear quadratic optimal control problem, see [12, 13, 18]
and the references therein. This is the problem of minimizing the cost functional

1

2

∫ ∞

t0

(

x(t)∗Qx(t) + u(t)∗Ru(t) + u(t)∗S∗x(t) + x(t)∗Su(t)
)

dt (1)

subject to the dynamics

Eẋ(t) = Ax(t) +Bu(t), t0 < t (2)

x(t0) = x0, (3)

where A,E,Q ∈ Cn×n, B, S ∈ Cn×m, R ∈ Cm×m, Q, R Hermitian, x0, x(t), u(t) ∈ Cn,
and t0, t ∈ R. It is known that solutions of (1)–(3) can be obtained via the solution of a
boundary value problem, see [17, 18] and the references therein. For the solution of this
boundary value problem one has to compute deflating subspaces of the matrix pencil

λ





E 0 0
0 −E∗ 0
0 0 0



−





A 0 B

Q A∗ S

S∗ B∗ R



 . (4)

Applying a row permutation, we see that the pencil (4) is equivalent to the pencil

λA− B = λ





0 −E∗ 0
E 0 0
0 0 0



−





Q A∗ S

A 0 B

S∗ B∗ R



 . (5)

Multiplying A by i, we find that λiA − B is a Hermitian pencil, i.e., both iA and B
are Hermitian. Clearly, both pencils λA − B and λiA − B have the same right deflating
subspaces and the eigenvalues of λiA−B coincide with the eigenvalues of λA−B multiplied
by i. Therefore, to analyze and compute eigenvalues and deflating subspaces, it is sufficient
to consider the Hermitian pencil λiA−B. It should be noted, however, that if the original
problem is real, then we have obtained an Hermitian nonreal problem in this way. For
the real case one has to discuss ’skew-Hermitian/Hermitian’ pencils λS − H, i.e., pencils
where S is skew Hermitian and H is Hermitian. This case is more complicated, because
one has to deal with an additional symmetry. It is well known that the spectra of skew-
Hermitian/Hermitian pencils are symmetric with respect to the imaginary axis (see [23]).
In the real case, the spectra have an additional symmetry with respect to the real axis.
In this paper, we only consider the complex case. The real case is referred to a later
discussion.
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Other applications of Hermitian pencils arise in the numerical treatment of quadratic
eigenvalue problems in mechanics. In quadratic eigenvalue problems one is interested in
computing λ ∈ C and x ∈ Cn\{0} such that

(A+ λB + λ2C)x = 0,

where typically A,C ∈ Cn×n are Hermitian and B is Hermitian or skew Hermitian. Hermit-
ian quadratic eigenvalue problems arise for example in the analysis of geometrical nonlinear
buckling structures with finite element methods (see [3, 9]) or in the theory of damped os-
cillatory systems (see [6, 11]). With the substitution µ = 1

λ
for λ 6= 0, the problem can be

linearized such that it reduces to the generalized Hermitian eigenvalue problem

µ

[

B A

A 0

] [

λx

x

]

=

[

−C 0
0 A

] [

λx

x

]

, (6)

see, e.g., [9]. Quadratic eigenvalue problems with B skew Hermitian arise in numerical
simulation of the deformation of anisotropic materials (see [14]) and the acoustic simulation
of poroelastic materials (see [20]). In this case, the substitution µ = iλ leads to the
linearized eigenvalue problem

µ

[

0 iC

−iC −iB

] [

λx

x

]

=

[

−C 0
0 −A

] [

λx

x

]

, (7)

For a detailed study of Hermitian quadratic eigenvalue problems, and more general, of
matrix polynomials see [6].

Anti-triangular forms for Hermitian pencils are related to Schur-like forms for skew-
Hamiltonian/Hamiltonian pencils that are discussed in [16]. A skew-Hamiltonian/Hamil-
tonian pencil is a pencil λS −H such that S is skew-Hamiltonian, that is SJ − JS∗ = 0,
and such that H is Hamiltonian, that is HJ + JH∗ = 0, where

J =

[

0 I

−I 0

]

.

Thus, skew-Hamiltonian/Hamiltonian pencils are structured with respect to an indefinite
inner product, defined by the matix J . Condensed forms for matrices and pencils that
are structured with respect to indefinite inner products have been widely discussed in the
literature, see [4, 5, 7, 12, 15, 19, 25], to name a few.

If λS − H is a skew-Hamiltonian/Hamiltonian pencil, then the pencil λiJS − JH is
Hermitian. Furthermore, if λS −H is in Schur-like form, i.e., λS −H has the pattern

[

@@
@@

]

,
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then the corresponding Hermitian pencil λiJS − JH is congruent to a pencil in anti-
triangular form and has the pattern

[

@@

@@

]

∼
[

¡¡
¡¡

]

.

(Here, ∼ denotes congruence.) From this point of view, it seems that anti-triangular forms
for Hermitian pencils are the natural forms to look for if one is interested in obtaining
condensed forms under unitary transformations.

Hessenberg-like forms for Hamiltonian matrices have been discussed in, e.g., [1, 4].
Anti-Hessenberg forms for Hermitian matrices correspond to Hessenberg-like forms for
Hamiltonian matrices.

In [16] it was shown that not every regular skew-Hamiltonian/Hamiltonian pencil can
be reduced to Schur-like form. This generalizes a result on Hamiltonian matrices (see [15]).
The reason why a Schur-like form does not always exist is because certain conditions on
the purely imaginary eigenvalues have to be satisfied. This comes from the fact that purely
imaginary eigenvalues of Hamiltonian matrices have signs ε = ±1 that are invariant under
structure-preserving transformations, see [15], or [6, 12] for a more general setting. An
analogous situation holds in the pencil case (see [16, 22]).

However, the consideration of Hermitian pencils is more general than the consideration
of skew-Hamiltonian/Hamiltonian pencils, since the case of odd-sized pencils is included in
the context of Hermitian pencils. Furthermore, only the case of regular pencils is discussed
in [16], and it is the purpose of this paper to include the singular case. This case is of
interest as well; see for example [18] for applications when the pencil (5) is singular.

In Section 2 we will discuss basic properties of Hermitian anti-triangular and anti-m-
Hessenberg matrices and in Section 3 we discuss corresponding forms for the case of regular
Hermitian pencils. In Section 3 another important condensed form for Hermitian pencils is
derived, the so-called sign condensed form. In a certain sense, this form displays ’how far
away’ a Hermitian pencil is from being congruent to anti-triangular or anti-m-Hessenberg
form. The case of singular pencils will be discussed in section 4.

Throughout the paper we use the following notation.

1. Given two square matrices A, B, we define the direct sum A⊕B of A and B by

A⊕B =

[

A 0
0 B

]

.

Analogously we define the direct sum of square pencils.

2. By Zp we denote the p×p zip matrix Zp = [δi+j,p+1]
p
i,j=1 with ones on the anti-diagonal

and zeros elsewhere. By Op we denote the p× p zero matrix.
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3. By σ(λ) we denote the sign of λ ∈ R, that is

σ(λ) =







1 if λ > 0,
0 if λ = 0,
−1 if λ < 0.

4. By A ∼ B we denote that the matrices A and B are congruent.

5. By spec(A) we denote the spectrum of a square matrix A.

6. By ej we denote the jth unit vector.

7. The abbreviation “w.l.o.g.” for “without loss of generality” will be frequently used.

2 Anti-triangular and anti-m-Hessenberg forms

In this section we discuss conditions when Hermitian matrices can be transformed to anti-
triangular and anti-m-Hessenberg matrices via unitary congruence transformations. It
turns out that the conditions for unitary congruence are the same as for congruence.

Lemma 2 Let A ∈ Cn×n. If A is congruent to an anti-m-Hessenberg matrix for some
m ∈ N then A is unitarily similar to an anti-m-Hessenberg matrix.

Proof. Let Ã be in anti-m-Hessenberg form and let Ã and A be congruent, i.e., there
exists a nonsingular matrix P ∈ Cn×n, such that P ∗AP = Ã. Let P = QR be a QR-
decomposition (see [8]) of P . Then Q∗AQ = R−∗ÃR−1 is still anti-m-Hessenberg.

Let us recall that the inertia index of a Hermitian matrix G is

Ind(G) = (ν+, ν−, ν0),

where ν+, ν−, ν0 are the numbers of positive, negative and zero eigenvalues of G, respec-
tively. Conditions for the existence of both anti-triangular and anti-m-Hessenberg forms
will be based on the following lemma.

Lemma 3 Let A ∈ Cn×n be Hermitian and let Ind(A) = (ν+, ν−, ν0). Then A is congruent
to a matrix of the form

[

0 A2

A∗
2 A3

]

, (8)

where A3 ∈ Ck×k, A2 ∈ C(n−k)×k if and only if |ν+ − ν−| ≤ 2k + ν0 − n.
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Proof. (⇒): Let A be in the form (8). Then there exist S ∈ C(n−k)×(n−k) and T ∈ Ck×k

nonsingular such that

SA2T =

[

Im 0
0 0

]

,

where m ≤ k, n− k. From this we obtain that

[

S 0
0 T ∗

]

A

[

S∗ 0
0 T

]

=









m n− k −m m k −m

0 0 Im 0
0 0 0 0
Im 0 A31 A32

0 0 A∗
32 A33









,

for some A31, A32, and A33. Furthermore, we obtain









I 0 0 0
0 I 0 0

−1
2
A31 0 I 0

−A∗
32 0 0 I

















0 0 Im 0
0 0 0 0
Im 0 A31 A32

0 0 A∗
32 A33

















I 0 −1
2
A31 −A32

0 I 0 0
0 0 I 0
0 0 0 I









=









0 0 Im 0
0 0 0 0
Im 0 0 0
0 0 0 A33









.

This implies Ind(A) = (m,m, n−k−m)+Ind(A33). Moreover, sinceA33 is a (k−m)×(k−m)
matrix, we obtain from n− k −m ≤ ν0 that

|ν+ − ν−| ≤ k −m = 2k + n− k −m− n ≤ 2k + ν0 − n.

(⇐): Assume w.l.o.g. that ν+ − ν− ≥ 0; otherwise consider −A. Then the matrix

Ã =









0 0 Iν− 0
0 Oν0

0 0
Iν− 0 0 0
0 0 0 Iν+−ν−









is congruent to A, since Ind(Ã) = (ν+, ν−, ν0). It remains to show that ν− + ν0 ≥ n − k

and this follows from

ν− + ν0 = n− ν+ = n− ν− − (ν+ − ν−)

≥ n− ν− − (2k + ν0 − n) = 2(n− k)− (ν− + ν0).

Corollary 4 Let A ∈ Cn×n be Hermitian, Ind(A) = (ν+, ν−, ν0), and m ∈ N, where
m < n.
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1. If n−m is even, then A is congruent to an anti-m-Hessenberg matrix if and only if

|ν+ − ν−| ≤ ν0 +m.

2. If n−m is odd, then A is congruent to an anti-m-Hessenberg matrix if and only if

|ν+ − ν−| ≤ ν0 +m+ 1.

Proof. Let us first consider the case that n −m is even. If A is congruent to an anti-m-
Hessenberg matrix, then in particular A is congruent to a matrix of the form

[

0 A2

A∗
2 A3

]

,

where A3 ∈ Ck×k and A2 ∈ C(n−k)×k with k := n+m
2

. Hence, Lemma 3 implies that

|ν+ − ν−| ≤ 2k + ν0 − n = ν0 +m.

Conversely assume that |ν+ − ν−| ≤ ν0 +m. Then Lemma 3 implies that A is congruent
to a matrix of the form

[

0 A2

A∗
2 A3

]

,

where A2 ∈ C(n−k)×k and A3 ∈ Ck×k. Let S ∈ C(n−k)×(n−k) and T ∈ Ck×k be nonsingular,
such that

SA2T =
[

0 Ã2

]

,

where Ã2 ∈ C(n−k)×(n−k) is anti-triangular. Clearly such matrices always exist. It follows
that

[

S 0
0 T ∗

] [

0 A2

A∗
2 A3

] [

S∗ 0
0 T

]

=

[

0 SA2T

(SA2T )
∗ T ∗A3T

]

is anti-triangular, and thus, A is congruent to an anti-triangular matrix. The case that
n −m is odd follows in an analogous way, noting that in this case an anti-m-Hessenberg
form of A has the structure

[

0 A2

A∗
2 A3

]

,

where A3 ∈ Ck×k and A2 ∈ C(n−k)×k with k := n+m+1
2

.

The next result is a special case of Corollary 4.

Corollary 5 Let A ∈ Cn×n be Hermitian and let Ind(A) = (ν+, ν−, ν0).

1. If n is even, A is congruent to an anti-triangular matrix if and only if

|ν+ − ν−| ≤ ν0.
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2. If n is odd, A is congruent to an anti-triangular matrix if and only if

|ν+ − ν−| ≤ ν0 + 1.

We see from these results that the inertia indices of Hermitian matrices play a key role
in the discussion of anti-triangular and anti-m-Hessenberg forms. The following lemma
establishes an auxiliary result for the computation of the inertia index of some special
Hermitian matrices.

Lemma 6 Let A ∈ Cn×n be an Hermitian matrix of the form

A =





0 0 A13

0 A22 A23

A∗
13 A∗

23 A33,



 ,

where A13 ∈ Cm×k and A22 ∈ C(n−m−k)×(n−m−k).

1. If m = k and A13 is invertible, then Ind(A) = (m,m, 0) + Ind(A22).

2. If A22 ∈ C(n−m−k)×(n−m−k) is invertible, then

Ind(A) = Ind

([

0 A13

A∗
13 Ã33

])

+ Ind(A22),

where Ã33 = A33 − A∗
23A

−1
22 A23.

Proof. This follows easily using Schur complements.

3 Condensed forms for regular Hermitian pencils

In this section we discuss condensed forms for regular Hermitian pencils, that is, pencils
λG−H ∈ Cn×n such that both G and H are Hermitian and such that det(λG−H) 6≡ 0.
These forms are the canonical form, anti-triangular forms that can be obtained via a unitary
similarity transformation that operates simultaneously on G and H, anti-m-Hessenberg
forms, and the so-called sign condensed form. First let us recall the well-known canonical
form for Hermitian pencils (see [22]).

Theorem 7 Let λG −H be a regular Hermitian pencil. Then there exists a nonsingular
matrix P ∈ Cn×n such that

P ∗(λG−H)P = (λG1 −H1)⊕ . . .⊕ (λGl −Hl), (9)

where the blocks λGj −Hj have one and only one of the following forms.
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1. Blocks associated with paired nonreal eigenvalues λ0, λ
∗
0:

λ

[

0 Zr

Zr 0

]

−
[

0 ZrJr(λ0)
Jr(λ0)

∗Zr 0

]

.

2. Blocks associated with real eigenvalues λ0 and sign ε ∈ {1,−1}:

λεZr − εZrJr(λ0) = λε





0 1
...

1 0



− ε









0 λ0

λ0 1
... ...

λ0 1 0









.

3. Blocks associated with the eigenvalue ∞ and sign ε ∈ {1,−1}:

λεZrJr(0)− εZr = λε









0 0
0 1

... ...

0 1 0









− ε





0 1
...

1 0



 .

Proof. See [22].

Definition 8 Let λG−H be a regular Hermitian pencil and let λGj−Hj be a single block
of the canonical form (9) of λG − H. If λGj − Hj is a block of type (2) or (3) then the
parameter ε that appears in the canonical form (9) is called the sign associated with the
block λGj −Hj.

Besides the eigenvalues of a Hermitian pencil, the signs associated with blocks to real
eigenvalues or the eigenvalue ∞ are invariants under congruence. The collection of these
signs is sometimes referred to as the sign characteristic (see, e.g., [7, 12] for related
work on H-selfadjoint matrices, where H is a nonsingular Hermitian matrix). It will turn
out that especially the signs of odd-sized blocks play a key role in our investigation of
condensed forms. This motivates the following definition of the sign sum.

Definition 9 Let λG − H ∈ Cn×n be a regular Hermitian pencil and let λ0 ∈ R ∪ {∞}
be a real eigenvalue of λG − H with partial multiplicities (p1, . . . , pr, pr+1, . . . , pm), where
p1, . . . , pr are odd and pr+1, . . . , pm are even.

1. The tupel (ε1, . . . , εm) is called the sign characteristic of λ0, where εj is the sign
associated with the block in the canonical form (9) that corresponds to λ0 and pj.

2. The integer Signsum(λ0, G,H) := ε1 + . . . + εr is called the sign sum of λ0 with
respect to λG −H. If there is no risk of confusion we write Signsum(λ0) instead of
Signsum(λ0, G,H).
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In addition, we set Signsum(λ0, G,H) = 0, whenever λ0 ∈ R ∪ {∞} is not an eigenvalue
of λG − H. We note that if in the canonical form (9) there are only even-sized blocks
associated with λ0, then Signsum(λ0) = 0, since the sign sum is obtained by the sum of
the signs that correspond to odd-sized blocks. The following theorem allows to ‘split’ a
regular Hermitian pencil into an anti-triangular part and a diagonal part. Furthermore,
all the information on the sign sum, i.e., all information on the signs that is needed in the
following, can be read off the diagonal part. For the proof of this result, we first state the
following auxiliary remark.

Remark 10 Let A ∈ Cn×n be Hermitian.

1. If A =





0 A12 0
A∗

12 A22 0
0 0 A33



, then A is congruent to





0 0 A12

0 A33 0
A∗

12 0 A22



.

2. If A =









0 0 A13 0
0 A22 A23 0
A∗

13 A∗
23 A33 0

0 0 0 A44









, then A is congruent to









0 0 0 A13

0 A22 0 A23

0 0 A44 0
A∗

13 A∗
23 0 A33









.

Theorem 11 (Sign condensed form) Let λG−H ∈ Cn×n be a regular Hermitian pen-
cil. Then there exists m ∈ N and a nonsingular matrix P ∈ Cn×n such that

P ∗(λG−H)P = λ





0 0 G13

0 G22 G23

G∗
13 G∗

23 G33



−





0 0 H13

0 H22 H23

H∗
13 H∗

23 H33



 , (10)

where G13, H13 ∈ Cm×m are anti-triangular and

λG22 −H22

= λ











ε1Ip1
0

. . .

εkIpk

0 0











−











ε1λ1Ip1
0

. . .

εkλkIpk

0 εk+1Ipk+1











, (11)

where λ1 < . . . < λk and ε1, . . . , εk+1 ∈ {1,−1}. Furthermore, we have for all λ0 ∈ R∪{∞}
that

Signsum(λ0, G,H) = Signsum(λ0, G22, H22).

Proof. Assume, w.l.o.g., that λG−H is in the canonical form (9). The proof now proceeds
by induction on the number l of distinct real eigenvalues, including the eigenvalue ∞.

l = 0: If λG − H has neither real eigenvalues nor the eigenvalue ∞, then clearly all
the blocks in the canonical form (9) have even sizes. Thus, applying Remark 10 part 1
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repeatedly, we find that λG − H is congruent to a pencil in form (10), where the block
λG22 −H22 does not appear.

l ⇒ l+1: Let us pick an eigenvalue λ0 ∈ R ∪ {∞} of λG−H. For the sake of briefness of
notation, we consider only the case λ0 ∈ R. The case λ0 =∞ can be proved analogously.
(This can be seen easily by interchanging the roles of G and H.) After a possible reordering
of blocks, we may assume that

λG−H = λ

[

G1 0
0 G2

]

−
[

H1 0
0 H2

]

,

where λG1 −H1 contains all the blocks associated with λ0 and λG2 −H2 contains all the
other blocks. We assume furthermore that λG1−H1 contains p+ odd-sized blocks with sign
+1 and p− odd-sized blocks with sign −1, i.e., in particular we have Signsum(λ0) = p+−p−.
Then, applying Remark 10 several times to λG1−H1 and possibly reordering some blocks,
we find that

λG−H

∼ λ













0 0 0 0 Ĝ15

0 Ip+
0 0 0

0 0 −Ip− 0 0
0 0 0 G2 0

Ĝ∗
15 0 0 0 Ĝ55













−















0 0 0 0 Ĥ15

0 λ0Ip+
0 0 Ĥ25

0 0 −λ0Ip− 0 Ĥ35

0 0 0 H2 0

Ĥ∗
15 Ĥ∗

25 Ĥ∗
35 0 Ĥ55















,

where Ĝ15 and Ĥ15 are anti-triangular. Let us assume, w.l.o.g., that p+ ≥ p−. Setting

P =
1√
2





√
2Ip+−p− 0 0
0 Ip− Ip−
0 −Ip− Ip−





and noting that

P ∗



λ





Ip+−p− 0 0
0 Ip− 0
0 0 −Ip−



−





λ0Ip+−p− 0 0
0 λ0Ip− 0
0 0 −λ0Ip−







P

= λ





Ip+−p−0 0
0 0 Ip−
0 Ip− 0



−





λ0Ip+−p− 0 0
0 0 λ0Ip−
0 λ0Ip− 0



 ,

by applying Remark 10, we obtain that

λG−H ∼ λ









0 0 0 Ǧ14

0 Ip+−p− 0 0
0 0 G2 0
Ǧ∗

14 0 0 Ǧ44









−









0 0 0 Ȟ14

0 λ0Ip+−p− 0 0
0 0 H2 0
Ȟ∗

14 0 0 Ȟ44









,
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where Ǧ14 and Ȟ14 are anti-triangular and the block λIp+−p− − λ0Ip+−p− displays the sign
sum of λ0. Using the induction hypothesis on λG2 − H2, the result follows by one more
application of Remark 10.

Remark 12 The pencil P ∗(λG−H)P has the pattern

λ











¡
¡

¡
¡

@@











−











¡
¡

¡
¡

@@











,

and the sign sum of each real eigenvalue or the eigenvalue∞ of λG−H can be easily read
off the subpencil λG22 −H22, since obviously we have

Signsum(λα, G22, H22) = εαpα for α = 1, . . . , k + 1.

Remark 13 In [16], it was shown how to obtain an analogue of form (10) for skew-Hamil-
tonian/Hamiltonian pencils. This method can be easily adapted to Hermitian pencils.
Doing so, one can see that in a step-wise reduction, the reduction to the blocks G13 and

H13 can be executed via unitary transformations.

In the following we will deduce necessary and sufficient conditions for the existence of
anti-triangular forms and anti-m-Hessenberg forms for Hermitian pencils. Given a Her-
mitian pencil λG−H, we note that for every t ∈ R, we have a Hermitian matrix tG−H.
It is clear that if the pencil λG − H is in anti-triangular form then so is the Hermitian
matrix tG − H. It will turn out that also the converse is true - at least in the case that
the size of the pencil is even. Therefore, the results of section 2 imply that the existence
of anti-triangular forms for the Hermitian pencil λG − H is linked to conditions on the
indices of the matrices tG−H, where t is real.

Moreover, we will see that these conditions on indices can be interpreted as conditions
on the sign sums of the real eigenvalues and the eigenvalue∞ of the pencil λG−H. Since
we may assume that the pencil is in sign condensed form and since the blocks G13 and
H13 in (10) are already in anti-triangular form, it remains to consider the block (11) that
inherits all information on the sign sums. The following lemma examines this block and
will be applied repeatedly.

Lemma 14 Consider the pencil λG22−H22 in form (11). Furthermore, let t1, t2 ∈ R such
that

(λ1 ≤ . . . ≤ λα−1 <) t1 < λα ≤ . . . ≤ λα+β < t2 (< λα+β+1 ≤ . . . ≤ λk).

13



(Here, we allow α, β = 0, . . . , k, where α + β ≤ k, and we ignore terms if they are not

defined.) Then setting Ind(tG22 −H22) =
(

ν+(t), ν−(t), ν0(t)
)

, we obtain that

(

ν+(t2)− ν−(t2)
)

−
(

ν+(t1)− ν−(t1)
)

= 2

α+β
∑

j=α

εjpj. (12)

and
(

ν+(t2)− ν−(t2)
)

+
(

ν+(t1)− ν−(t1)
)

= 2

(

α−1
∑

j=1

εjpj

)

− 2

(

k+1
∑

j=α+β+1

εjpj

)

. (13)

Proof. We obtain that

ν+(t1)− ν−(t1) =

(

α−1
∑

j=1

εjpj

)

−
(

α+β
∑

j=α

εjpj

)

−
(

k+1
∑

j=α+β+1

εjpj

)

, (14)

ν+(t2)− ν−(t2) =

(

α−1
∑

j=1

εjpj

)

+

(

α+β
∑

j=α

εjpj

)

−
(

k+1
∑

j=α+β+1

εjpj

)

. (15)

This implies the assertion.

We are now able to discuss necessary and sufficient conditions for the existence of anti-
triangular forms for regular Hermitian pencils. We start with a result for the case that the
size of the pencil is even.

Theorem 15 Let λG − H ∈ C2n×2n be a regular Hermitian pencil and for t ∈ R let

Ind(tG−H) =
(

ν+(t), ν−(t), ν0(t)
)

. Then the following statements are equivalent.

1. λG−H is congruent to a pencil in anti-triangular form.

2. λG−H is unitarily congruent to a pencil in anti-triangular form.

3. For all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t).

4. For almost all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t).

5. If λ0 ∈ R ∪ {∞} is an eigenvalue of λG−H then Signsum(λ0) = 0.

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2)⇒ 3): Let P ∈ C2n×2n be nonsingular such that P ∗(λG−H)P is in anti-triangular form.
Then clearly P ∗(tG−H)P is Hermitian anti-triangular for all t ∈ R. Thus, 2) follows from
Corollary 5.
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3)⇒ 4): This implication is trivial.

4) ⇒ 5): W.l.o.g. we may assume that λG − H is in sign condensed form (10). If λ0 is
not an eigenvalue of λG22 −H22 then trivially Signsum(λ0) = 0. Thus, let us consider an
eigenvalue λα of λG22 −H22. There are two possible cases.

Case (1) Assume that λα ∈ R, that is α ∈ {1, . . . , k}, where λ1, . . . , λk are as in (11).

Choose t1, t2 ∈ R such that

λ1 < · · · < λα−1 < t1 < λα < t2 < λα+1 < · · · < λk,

and furthermore such that |ν+(tj) − ν−(tj)| ≤ ν0(tj) holds for j = 1, 2 and that t1G −H

and t2G − H are nonsingular. This is possible, since the pencil λG − H is regular, i.e.,
tG−H is nonsingular for almost all t ∈ R, and, in addition, condition 3) holds. Then, we
obtain from (10) and Lemma 6 that

(

ν+(tj), ν−(tj), ν0(tj)
)

= (m,m, 0) + Ind(tjG22 −H22) for j = 1, 2.

Since t1G − H and t2G − H are nonsingular, we have ν0(t1) = ν0(t2) = 0. Therefore, we
obtain from Lemma 14 that

0 = ν0(t2) + ν0(t1) ≥ |ν+(t2)− ν−(t2)|+ |ν+(t1)− ν−(t1)|
≥

∣

∣

∣

(

ν+(t2)− ν−(t2)
)

−
(

ν+(t1)− ν−(t1)
)∣

∣

∣ = 2 · |Signsum(λα)|.

This implies Signsum(λα) = 0.

Case (2) If the assumption of Case (1) does not hold, then λα =∞.

In this case, we choose t1, t2 ∈ R such that

t1 < λ1 < . . . < λk < t2,

and furthermore such that |ν+(tj) − ν−(tj)| ≤ ν0(t) holds for j = 1, 2 and that t1G − H

and t2G−H are nonsingular. Then we obtain from Lemma 14 that

0 ≥
∣

∣

∣

(

ν+(t2)− ν−(t2)
)

+
(

ν+(t1)− ν−(t1)
)∣

∣

∣
= 2 |Signsum(λ∞)|.

5) ⇒ 1): This follows directly from Theorem 11, since 5) implies that the subpencil
λG22 −H22 does not appear.

Remark 16 The condition Signsum(λ0) = 0 means that in the canonical form (9) the odd-
sized blocks associated with λ0 occur in pairs with opposite signs +1 and −1, respectively.
(The pairing applies only to the signs, but not to the sizes of the blocks!) This condition
can also be interpreted in the following way. If the columns of V0 form a basis of the
deflating subspace associated with λ0 ∈ R, then Ind(V ∗

0 GV0) = (k, k, 0) for an integer
k ∈ N. Analogously, if the columns of V0 form a basis of the deflating subspace associated
with ∞, then Ind(V ∗

0 HV0) = (k, k, 0) for an integer k ∈ N. (For a proof see [16] on related
work for skew-Hamiltonian/Hamiltonian pencils.)
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Our next result gives necessary and sufficient conditions for the existence of anti-
Hessenberg forms for a Hermitian pencil λG − H. Again, we will consider the indices
of the Hermitian matrices tG − H, where t ∈ R, and then interpret these conditions in
terms of the sign sums of the real eigenvalues and the eigenvalue ∞. First, we consider
the case that the size of the pencil is odd.

Theorem 17 Let λG−H ∈ C(2n+1)×(2n+1) be a regular Hermitian pencil and for t ∈ R let

Ind(tG−H) =
(

ν+(t), ν−(t), ν0(t)
)

. Then the following statements are equivalent.

1. λG−H is congruent to a pencil in anti-Hessenberg form.

2. λG−H is unitarily congruent to a pencil in anti-Hessenberg form.

3. For all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) + 1.

4. For almost all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) + 1.

5. For every real eigenvalue λ0 ∈ R ∪ {∞} we have that |Signsum(λ0)| ≤ 1 and if
λ1 < . . . < λr ≤ ∞ denote the real eigenvalues (including ∞) with nonzero sign sum,
then λ1, . . . , λr satisfy the property

Signsum(λα) = −Signsum(λα+1), α = 1, . . . , r − 1. (16)

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2) ⇒ 3): Let P ∈ C(2n+1)×(2n+1) be nonsingular such that the pencil P ∗(λG − H)P is
in anti-Hessenberg form. Then P ∗(tG −H)P is Hermitian anti-Hessenberg for all t ∈ R.
Thus, 2) follows from Corollary 4.

3)⇒ 4): This implication is trivial.

4) ⇒ 5): W.l.o.g. we may assume that λG −H is in sign condensed form (10). Again, it
is sufficient to consider the subpencil λG22 −H22 that has the form (11). Let us consider
an eigenvalue λα of λG22 −H22.

Case (1) Assume that λα ∈ R, that is λα ∈ {λ1, . . . , λk}. Choose t1, t2 ∈ R such that

λ1 < · · · < λα−1 < t1 < λα < t2 < λα+1 < · · · < λk,

and such that tjG−H is nonsingular and |ν+(tj)− ν−(t)| ≤ ν0(tj) + 1 for j = 1, 2. Then
we obtain from Lemma 14 and ν0(t1) = ν0(t2) = 0 that

2 ≥ |ν+(t1)− ν−(t1)|+ |ν+(t2)− ν−(t2)|
≥

∣

∣

∣

(

ν+(t1)− ν−(t1)
)

−
(

ν+(t2)− ν−(t2)
)∣

∣

∣
= |2Signsum(λα)|.

This implies |Signsum(λα)| ≤ 1.

16



Case (2) If the assumption of Case (1) does not hold, then λα =∞.

In this case, we choose t1, t2 ∈ R such that

t1 < λ1 < · · · < λk < t2,

and such that tjG − H is nonsingular and |ν+(tj) − ν−(tj)| ≤ ν0(tj) + 1 for j = 1, 2.
Applying Lemma 14 once more, we conclude that

2 ≥ 2|Signsum(λ∞)|.

For the second part of 3) we first note that |Signsum(λβ)| = 1 for all the eigenvalues λβ of
λG22−H22, since this subpencil does not contain eigenvalues with sign sum zero. We pick
an α ∈ {1, . . . , k} and distinguish two cases.

Case (a) Assume α < k. Then choose t1, t2 ∈ R such that tjG − H is nonsingular,
|ν+(tj)− ν−(t)| ≤ ν0(tj) + 1 for j = 1, 2, and such that

λ1 < · · · < λα−1 < t1 < λα < λα+1 < t2 < λα+2 < · · · < λk.

Applying Lemma 14 again, we obtain that

2 ≥ 2|Signsum(λα) + Signsum(λα+1)|.

This implies Signsum(λα) = −Signsum(λα+1), since both terms do not vanish.

Case (b) If the assumption of Case (a) does not hold, then α = k. If λG22 − H22 does
not have the eigenvalue ∞, then λα is already the eigenvalue of maximal modulus and
nothing must be proved. Otherwise, choose t1, t2 ∈ R such that tjG − H is nonsingular,
|ν+(tj)− ν−(t)| ≤ ν0(tj) + 1 for j = 1, 2, and such that

t1 < λ1 < · · · < λk−1 < t2 < λk.

Then we obtain from Lemma 14 that

2 ≥ |ν+(t2)− ν−(t2)|+ |ν+(t1)− ν−(t1)|
≥ |ν+(t2)− ν−(t2) + ν+(t1)− ν−(t1)|
= 2|Signsum(λk) + Signsum(λ∞)|.

This implies Signsum(λk) = −Signsum(λ∞).

5)⇒ 1): Again, we may assume that the pencil is in sign condensed form (10). It remains
to show that the subpencil λG22 − H22 of the form (11) is congruent to anti-Hessenberg
form. From 5) we find in particular that all the eigenvalues of λG22 − H22 are simple.
Again, we consider two different cases.

Case (1) Assume that λG22 −H22 does not have the eigenvalue ∞.
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This implies in particular that k = 2q+1 is odd, since the size of λG22−H22 is necessarily
odd and all its eigenvalues are simple. Let us assume, w.l.o.g., that the sign ε1 of λ1 is equal
to one. Otherwise, we may consider the pencil −(λG − H). Then, property (16) implies
that the eigenvalues with sign +1 interlace the eigenvalues with sign −1. We visualize that
by the following formula.

λ1 < λ3 < · · · < λ2q−1 < λ2q+1 sign 1
λ2 < λ4 < · · · < λ2q sign − 1

(17)

By row and column permutations we find that

λG22 −H22 ∼ λ

[

−Iq 0
0 Iq+1

]

−
[

−H̃1 0

0 H̃2

]

,

where spec(H̃1) = {λ2, λ4, . . . , λ2q} and spec(H̃2) = {λ1, λ3, . . . , λ2q+1}.
The interlacing property (17) allows us to solve an inverse eigenvalue problem (see [2]
or [8]). There, it is shown that (17) is sufficient for the existence of a unitary matrix
Q ∈ C(q+1)×(q+1) such that

Q∗H̃2Q =

[

H̃21 H̃22

H̃∗
22 H̃23

]

,

where H̃23 ∈ R and spec(H̃21) = spec(H̃1). From this, we see that

λG22 −H22 ∼ λ





−Iq 0 0
0 Iq 0
0 0 1



−





−H̃1 0 0

0 H̃21 H̃22

0 H̃∗
22 H̃23



 .

Note that we obtain from spec(H̃21) = spec(H̃1) that every eigenvalue of the upper principal
subpencil

λ

[

−Iq 0
0 Iq

]

−
[

−H̃1 0

0 H̃21

]

occurs with algebraic multiplicity 2 and opposite signs. Hence, the pencil satisfies condition
4) of Theorem 15 and there exists a nonsingular P ∈ C2q×2q such that

P ∗

(

λ

[

−Iq 0
0 Iq

]

−
[

−H̃1 0

0 H̃21

])

P

is in anti-triangular form. This implies that

[

P 0
0 1

]∗



λ





−Iq 0 0
0 Iq 0
0 0 1



−





−H̃1 0 0

0 H̃21 H̃22

0 H̃∗
22 H̃23









[

P 0
0 1

]

is in anti-Hessenberg form.
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Case (2) If the assumption of Case (1) does not hold, then λG22 −H22 has the eigenvalue
∞.

This implies that k = 2q is even. Again, property (16) implies that the eigenvalues with
sign +1 interlace the eigenvalues with sign −1, where we assume again that ε1 = 1. Thus,
we have the following situation.

λ1 < λ3 < · · · < λ2q−1 with sign + 1
λ2 < λ4 < · · · < λ2q with sign − 1

(18)

Furthermore, the eigenvalue∞ has the sign +1. By row and column permutations we find
that

λG22 −H22 ∼ λ





Iq 0 0
0 −Iq 0
0 0 0



−





H̃1 0 0

0 −H̃2 0
0 0 1



 ,

where spec(H̃1) = {λ1, λ3, . . . , λ2q−1} and spec(H̃2) = {λ2, λ4, . . . , λ2q}.
The interlacing property (18) allows us to solve another inverse eigenvalue problem.

In [26], it is shown that (18) is sufficient for the existence of a rank-one updating with a
vector x ∈ Rq such that spec(H̃1 + xx∗) = spec(H̃2). From this, we see that





Iq 0 x

0 Iq 0
0 0 1







λ





Iq 0 0
0 −Iq 0
0 0 0



−





H̃1 0 0

0 −H̃2 0
0 0 1













Iq 0 0
0 Iq 0
x∗ 0 1





= λ





Iq 0 0
0 −Iq 0
0 0 0



−





H̃1 + xx∗ 0 x

0 −H̃2 0
x∗ 0 1



 .

Again, we see from Theorem 15 that the upper principal 2q × 2q subpencil is congruent
to a pencil in anti-triangular form, and thus, λG22 −H22 is congruent to a pencil in anti-
Hessenberg form.

Theorem 15 and Theorem 17 are special cases of a more general result for anti-m-
Hessenberg forms. This general result can be shown by induction on m. For the induction
step, we need the following lemma.

Lemma 18 Let λG22 −H22 ∈ Cn×n be a pencil in form (11). Furthermore, let us denote

Ind(tG22 −H22) =
(

ν+(t), ν−(t), ν0(t)
)

, and assume that

|ν+(t)− ν−(t)| ≤ ν0(t) +m+ 1 for almost all t ∈ R.

Then there exists a nonsingular matrix P ∈ Cn×n such that

P ∗(λG22 −H22)P = λ

[

G′ 0
0 G′′

]

−
[

H ′ 0
0 H ′′

]

,

where the size of λG′′ −H ′′ is odd and such that the following conditions are satisfied.
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1. Setting Ind(tG′ −H ′) =
(

µ+(t), µ−(t), µ0(t)
)

, we have that

|µ+(t)− µ−(t)| ≤ µ0(t) +m for almost all t ∈ R.

2. Setting Ind(tG′′ −H ′′) =
(

π+(t), π−(t), π0(t)
)

, we have that

|π+(t)− π−(t)| ≤ π0(t) + 1 for almost all t ∈ R.

Proof. Let s1, . . . , sk+1 ∈ R be arbitrary with the condition that we have for j = 1, . . . , k+1
that |ν+(sj)− ν−(sj)| ≤ ν0(sj) +m+ 1, and such that

s1 < λ1 < s2 < . . . < sk < λk < sk+1.

This implies in particular that ν0(sj) = 0. Applying Lemma 14, we find the recursive
formula

(

ν+(sα+1)− ν−(sα+1)
)

−
(

ν+(sα)− ν−(sα)
)

= 2pαεα. (19)

Thus, the map α 7→
(

ν+(sα)−ν−(sα)
)

is increasing whenever εα is positive and decreasing

whenever εα is negative. Hence, ’extremal points’ such that |ν+(sα) − ν−(sα)| = m + 1,
can only be reached for an α such that εα 6= εα−1.

Next, assume that there exists an index l ∈ {1, . . . , k + 1} such that

|ν+(sl)− ν−(sl)| = m+ 1.

(We may always start with the largest m̃ such that there exists an index l ∈ {1, . . . , k+1}
with |ν+(sl)−ν−(sl)| = m̃+1. The statement of the lemma is then correct for anym ≥ m̃.)
Then, we obtain from the recursive formula (19) that the possible values for ν+(sj)−ν−(sj),
j = 1, . . . , k + 1, include m + 1 and m − 1, but neither m nor −m. Moreover, we may
assume w.l.o.g. that ε1 = +1. Then, the recursive formula (19) implies in particular

− (m+ 1) ≤ ν+(s1)− ν−(s1) < m. (20)

Define

G′
0 =















Ip1−1

ε2Ip2

. . .

εkIpk

0















, G′′
0 = [1], and

H ′
0 =















λ1Ip1−1

ε2λ2Ip2

. . .

εkλkIpk

εk+1Ipk+1















, H ′′
0 = [λ1].
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Then G = G′′
0 ⊕G′

0 and H = H ′′
0 ⊕H ′

0. Moreover, setting
(

%+(t), %−(t), %0(t)
)

:= Ind(tG′
0 − H′

0),

we obtain using formula (14) that

%+(s1)− %−(s1) = ν+(s1)− ν−(s1) + 1 ,

%+(sj)− %−(sj) = ν+(sj)− ν−(sj)− 1 for j > 1.

This implies

−m ≤ %+(s1)− %−(s1) ≤ m and,

−m− 2 ≤ %+(sj)− %−(sj) ≤ m for j > 1.

Next, let l < k+1 be the smallest index such that %+(sl)− %−(sl) = −m− 2 if there exists

such an index. From our discussion of ‘extremal points’ of the map α 7→
(

ν+(sα)−ν−(sα)
)

,

we find that this is only possible if εl−1 = −1 and εl = +1. Let G′
1 and H ′

1 be the matrices
that are obtained from G′

0 and H ′
0, respectively, by changing the (l−1)th and lth diagonal

blocks in the following way:

G′
1 =











. . .

−Ipl−1−1

Ipl−1

. . .











, H ′
1 =











. . .

−λl−1Ipl−1−1

λlIpl−1

. . .











.

Here, the dotted parts stand for the blocks that have remained unchanged. Furthermore,
set

G′′
1 =





G′′
0

−1
1



 and H ′′
1 =





H ′′
0

−λl−1

λl





and redefine
(

%+(t), %−(t), %0(t)
)

= Ind(tG′
1 − H′

1). Then %+(sl)− %−(sl) = −m, i.e.,

−m ≤ %+(sj)− %−(sj) ≤ m for j ≤ l

%+(sj)− %−(sj) = ν+(sj)− ν−(sj)− 1 for j > l.

After a finite number of steps, analogously constructing G′
r, H

′
r, G

′′
r , and H ′′

r , respectively,
from given matrices G′

r−1, H
′
r−1, G

′′
r−1, and H ′′

r−1, and redefining
(

%+(t), %−(t), %0(t)
)

= Ind(tG′
r − H′

r),

we finally obtain

−m ≤ %+(sj)− %−(sj) ≤ m for j < k + 1,

%+(sk+1)− %−(sk+1) = ν+(sk+1)− ν−(sk+1)− 1.
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We now distinguish two cases.

Case (1) Assume %+(sk+1)− %−(sk+1) > −m− 2.

In this case, we have in particular that

−m ≤ %+(sk+1)− %−(sk+1) ≤ m

taking into account the possible values of the map α 7→
(

ν+(sα) − ν−(sα)
)

. Next, set

λG′ −H ′ = λG′
r −H ′

r and λG′′ −H ′′ = λH ′′
r −H ′′

r . Then λG′ −H ′ satisfies condition 1)
of the lemma. On the other hand, note that the eigenvalues of λG′′ −H ′′ by construction
have sign sum with modulus equal to one and satisfy the interlacing property (16). Hence,
Theorem 17 implies that λG′′ − H ′′ satisfies condition 2) of the lemma. Moreover, it is
clear that the size of λG′′ −H ′′ is odd. This concludes the proof of case (1).

Case (2) Assume %+(sk+1)− %−(sk+1) = −m− 2.

This implies ν+(sk+1) − ν−(sk+1) = −m − 1 and from Lemma 14 and (20) we obtain
that

−2εk+1pk+1 = ν+(sk+1)− ν−(sk+1) + ν+(s1)− ν−(s1)

< −m− 1 +m = −1.

This implies εk+1 = +1 and pk+1 > 0, i.e., the pencil λG − H has the eigenvalue ∞.
Furthermore, ν+(sk+1) − ν−(sk+1) is minimal and therefore, we must have εk = −1. Let
λG′ −H ′ be obtained from λG′

r −H ′
r by changing the kth and (k + 1)th diagonal blocks

only, in detail

λG′ −H ′ = λ







. . .

−Ipk−1

0






−







. . .

−λkIpk−1

Ipk+1−1






,

where the dotted parts stand again for the blocks that have remained unchanged. Moreover,
set

λG′′ −H ′′ = λ





G′′
r

−1
0



−





H ′′
r

−λk
1



 .

Redefining
(

%+(t), %−(t), %0(t)
)

= Ind(tG′
r − H′

r), we obtain that

|%+(sj)− %−(sj)| ≤ m

for all j = 1, . . . , k + 1. The rest of case (2) is analogous to case (1). This concludes the
proof.
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Theorem 19 Let λG − H ∈ Cn×n be a regular Hermitian pencil and let m ≤ n be such

that n−m is even. Furthermore, let Ind(tG−H) =
(

ν+(t), ν−(t), ν0(t)
)

for t ∈ R. Then
the following statements are equivalent:

1. λG−H is congruent to a pencil in anti-m-Hessenberg form.

2. λG−H is unitarily congruent to a pencil in anti-m-Hessenberg form.

3. For all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) +m.

4. For almost all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) +m.

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2) ⇒ 3): Let P ∈ Cn×n be nonsingular such that P ∗(λG − H)P is in anti-m-Hessenberg
form. Then 2) follows from Corollary 4.

3)⇒ 4): This implication is trivial.

4)⇒ 1): We proceed by induction on m.

m = 0 and m = 1: These have already been proved, see Theorems 15 and 17.

m⇒ (m+1): Once again we may assume that λG−H is in sign condensed form (10) and
it is sufficient to consider the subpencil λG22−H22 that has the form (11). By Lemma 18,
we find that there exists a nonsingular matrix P̃ ∈ Cn×n such that

P̃ ∗(λG22 −H22)P̃ = λ

[

G′ 0
0 G′′

]

−
[

H ′ 0
0 H ′′

]

,

where λG′′ − H ′′ has odd size, and setting Ind(tG′ − H ′) =
(

µ+(t), µ−(t), µ0(t)
)

and

Ind(tG′′ −H ′′) =
(

π+(t), π−(t), π0(t)
)

, the following conditions are satisfied for almost all

t ∈ R:

|µ+(t)− µ−(t)| ≤ µ0(t) +m,

|π+(t)− π−(t)| ≤ π0(t) + 1.

Let n′ and n′′ denote the sizes of λG′ − H ′ and λG′′ − H ′′, respectively. By assumption,
n − (m + 1) is even and thus, so is n′ − m, since n − n′ = n′′ is odd. Therefore, by the
induction hypothesis and by Theorem 17, the pencil λG′ −H ′ is congruent to a pencil in
anti-m-Hessenberg form and λG′′ − H ′′ is congruent to a pencil in anti-Hessenberg form,
i.e.,

λG22 −H22
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∼ λ



















0 Ĝ12 Ĝ13 0 0 0

Ĝ∗
12 Ĝ22 Ĝ23 0 0 0

Ĝ∗
13 Ĝ∗

23 Ĝ33 0 0 0
0 0 0 0 Ǧ12 Ǧ13

0 0 0 Ǧ∗
12 Ǧ22 Ǧ23

0 0 0 Ǧ∗
13 Ǧ∗

23 Ǧ33



















−



















0 Ĥ12 Ĥ13 0 0 0

Ĥ∗
12 Ĥ22 Ĥ23 0 0 0

Ĥ∗
13 Ĥ∗

23 Ĥ33 0 0 0
0 0 0 0 Ȟ12 Ȟ13

0 0 0 Ȟ∗
12 Ȟ22 Ȟ23

0 0 0 Ȟ∗
13 Ȟ∗

23 Ȟ33



















∼ λ



















0 0 0 0 Ĝ12 Ĝ13

0 0 Ǧ12 Ǧ13 0 0
0 Ǧ∗

12 Ǧ22 Ǧ23 0 0
0 Ǧ∗

13 Ǧ∗
23 Ǧ33 0 0

Ĝ∗
12 0 0 0 Ĝ22 Ĝ23

Ĝ∗
13 0 0 0 Ĝ∗

23 Ĝ33



















−



















0 0 0 0 Ĥ12 Ĥ13

0 0 Ȟ12 Ȟ13 0 0
0 Ȟ∗

12 Ȟ22 Ȟ23 0 0
0 Ȟ∗

13 Ȟ∗
23 Ȟ33 0 0

Ĥ∗
12 0 0 0 Ĥ22 Ĥ23

Ĥ∗
13 0 0 0 Ĥ∗

23 Ĥ33



















(21)

where the submatrices have the following forms.

Ĝ12, Ĥ12 ∈ C(n
′
−m

2
)×( n

′
−m

2
) are anti-triangular, Ĝ13, Ĥ13 ∈ C(n

′
−m

2
)×m,

Ǧ12, Ȟ12 ∈ C(n
′′
−1

2
)×( n

′′
−1

2
) are anti-triangular, Ǧ13, Ȟ13 ∈ C(n

′′
−1

2
)×1,

and the other blocks have corresponding sizes. Hence, the pencil (21) is in anti-(m+1)-
Hessenberg form.

In Theorem 19, we did not give conditions on the sign sums as in the Theorems 15
and 17. In principle, this is also possible for the case m > 1. But then the conditions
become very complicated, since we have to consider many subcases. Therefore, we prefer
the conditions given in Theorem 19.

Clearly, Theorem 19 does not hold in the case that n−m is odd. For example, let us
consider the case m = 0 and n = 3. The Hermitian pencil

λ





0 0 1
0 1 0
1 0 0



−





0 0 1
0 2 0
1 0 0





is in anti-triangular form, but we immediately obtain Signsum(2) = 1. We see from this
example that the eigenvalue that is displayed in the middle of the anti-diagonal plays an
exceptional role and has to be treated differently from the rest of the eigenvalues. In fact,
we may omit the eigenvalue that is displayed in the middle of the anti-diagonal, and its
tribute to the sign sum may also be omitted, such that we can use the fact that n− 1−m

is even and apply Theorem 19. This is done in the proof of the next theorem.

Theorem 20 Let λG − H ∈ Cn×n be a regular Hermitian pencil and let m ≤ n be such

that n −m is odd. Furthermore, let Ind(tG −H) =
(

ν+(t), ν−(t), ν0(t)
)

for t ∈ R. Then
the following statements are equivalent.
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1. λG−H is congruent to a pencil in anti-m-Hessenberg form.

2. λG−H is unitarily congruent to a pencil in anti-m-Hessenberg form.

3. There exists t0 ∈ R ∪ {∞} and ε ∈ {1,−1} such that

|ν+(t)− ν−(t) + ε| ≤ ν0(t) +m for all t < t0

and |ν+(t)− ν−(t)− ε| ≤ ν0(t) +m for all t > t0.

4. There exists t0 ∈ R ∪ {∞} and ε ∈ {1,−1} such that

|ν+(t)− ν−(t) + ε| ≤ ν0(t) +m for almost all t < t0

and |ν+(t)− ν−(t)− ε| ≤ ν0(t) +m for almost all t > t0.

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2) ⇒ 3): Let P ∈ Cn×n be nonsingular such that P ∗(λG − H)P is in anti-m-Hessenberg
form. Thus, P ∗(tG − H)P is Hermitian anti-m-Hessenberg for all t ∈ R. This means in
particular that

P ∗(tG−H)P =





0 0 tG13 −H13

0 tg22 − h22 tG23 −H23

tG∗
13 −H∗

13 tG∗
23 −H∗

23 tG∗
33 −H∗

33



 ,

where tG13−H13 ∈ C(n−m−1

2
)×( n+m−1

2
), and tg22−h22 ∈ C, and where the other blocks have

corresponding sizes. If g22 6= 0, then let t0 = h22

g22
, otherwise set t0 = ∞. Then Lemma 6

for t 6= t0 implies that

Ind(tG−H) = Ind(tG̃− H̃) + Ind(tg22 − h22), (22)

where

tG̃− H̃ =

[

0 tG13 −H13

tG∗
13 −H∗

13 ∗

]

.

Let
(

µ+(t), µ−(t), µ0(t)
)

= Ind(tG̃− H̃). Set ε = −σ(t̃g22− h22) for some t̃ < t0, and note

that tG̃− H̃ is in anti-m-Hessenberg form with size n− 1. Thus, since n− 1−m is even,
we can apply Theorem 19 and we obtain from (22) for t > t0 that

|ν+(t)− ν−(t) + ε| = |µ+(t)− µ−(t)| ≤ µ0(t) +m = ν0(t) +m,

since µ0(t) = ν0(t) for t 6= t0. Analogously we obtain for t > t0 that

|ν+(t)− ν−(t)− ε| = |µ+(t)− µ−(t)| ≤ µ0(t) +m = ν0(t) +m.

3)⇒ 4): This implication is trivial.
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4) ⇒ 1): W.l.o.g. we may assume that ε = 1. Otherwise, we may consider the pencil
−(λG − H). Repeating our proof strategy once more, we assume that λG − H is in
sign condensed form (10) and we consider the subpencil λG22 − H22. By 2) there exists
t0 ∈ R ∪ {∞} such that

|ν+(t)− ν−(t) + 1| ≤ ν0(t) +m for almost all t < t0
|ν+(t)− ν−(t)− 1| ≤ ν0(t) +m for almost all t > t0.

(23)

Case (1) Assume that t0 can be chosen to be finite, i.e., t0 ∈ R.

We show next that we may assume that t0 is an eigenvalue of λG22−H22. For this, let
λα be the largest eigenvalue λα̃ ≤ t0 of λG22 −H22. Clearly, we have

|ν+(t)− ν−(t) + 1| ≤ ν0(t) +m for almost all t < λα (since λα ≤ t0),

|ν+(t)− ν−(t)− 1| ≤ ν0(t) +m for almost all t > t0.

Thus, it remains to show that |ν+(t)− ν−(t)− 1| ≤ ν0(t) +m for almost all t ∈ (λα, t0] if

this interval is nonempty. But this follows from the fact that t 7→
(

ν+(t)− ν−(t)− 1
)

and

ν0(t) are constant on (λα, λα+1) (or (λ,∞) if there exists no finite eigenvalue λα+1 > λα),
and by the choice of λα we have t0 ∈ (λα, λα+1) (or t0 ∈ (λα,∞), respectively).

Hence, we may assume that t0 = λα is an eigenvalue of λG22 − H22. Let α be chosen
minimal with the property that (23) is satisfied for all t0 = λβ, where β ≥ α, i.e.,

|ν+(t)− ν−(t) + 1| ≤ ν0(t) +m for almost all t < λβ,

|ν+(t)− ν−(t)− 1| ≤ ν0(t) +m for almost all t > λβ,
(24)

if β ≥ α, but
|ν+(t)− ν−(t)− 1| ≤ ν0(t) +m for almost all t > λγ (25)

is not true if γ < α. For the rest of Case (1), we distinguish two different subcases.

Subcase (1a) Assume that α > 1. Then (25) is not true for γ = α − 1, i.e., there exist
infinitely many t1 such that λα−1 < t1 < λα and such that

|ν+(t1)− ν−(t1)− 1| > ν0(t1) +m.

On the other hand, we know from (24) for β = α that t1 can be chosen such that

|ν+(t1)− ν−(t1) + 1| ≤ ν0(t1) +m.

Both inequalities hold simultaneously only if

ν+(t1)− ν−(t1)− 1 < −
(

ν0(t1) +m
)

.
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Next, we show that εα = +1. Choose t2 such that λα < t2 (< λα+1 if λα+1 exists) and
∣

∣

∣ν+(t2)− ν−(t2)− 1
∣

∣

∣ ≤ ν0(t2) +m. Then Lemma 14 implies that

(

ν+(t2)− ν−(t2)
)

−
(

ν+(t1)− ν−(t1)
)

= 2εαpα.

If εα is equal to −1, then ν0(t1) = ν0(t2) = 0 implies that

ν+(t2)− ν−(t2) < ν+(t1)− ν−(t1) ≤ −
(

ν0(t1) +m
)

= −
(

ν0(t2) +m
)

,

which is a contradiction to |ν+(t2)− ν−(t2)− 1| ≤ ν0(t2)+m. Thus, εα = 1. By permuting
some rows and columns, we obtain that

λG22 −H22 ∼ λ

[

g 0

0 G̃

]

− λ

[

h 0

0 H̃

]

,

where λg − h ∈ C is a 1× 1 pencil with eigenvalue λα. Setting
(

µ+(t), µ−(t), µ0(t)
)

= Ind(tG̃− H̃),

we find that

|µ+(t)− µ−(t)| =
{

|ν+(t)− ν−(t) + 1| for all t < λα

|ν+(t)− ν−(t)− 1| for all t > λα.

This implies that |µ+(t)− µ−(t)| ≤ ν0(t) +m = µ0(t) +m for almost all t ∈ R. Hence, by
Theorem 19 the pencil λG22 −H22 is congruent to a pencil

λ





g 0 0

0 0 Ĝ23

0 Ĝ∗
23 Ĝ33



−





h 0 0

0 0 Ĥ23

0 Ĥ∗
23 Ĥ33



 ,

where the subpencil

λ

[

0 Ĝ23

Ĝ∗
23 Ĝ33

]

− λ

[

0 Ĥ23

Ĥ∗
23 Ĥ33

]

is in anti-m-Hessenberg form. Thus, we finally obtain

λG22 −H22 ∼ λ





0 0 Ĝ23

0 g 0

Ĝ∗
23 0 Ĝ33



−





0 0 Ĥ23

0 h 0

Ĥ∗
23 0 Ĥ33



 ,

and this pencil is in anti-m-Hessenberg form.

Subcase (1b) If α 6> 1, then α = 1. Thus, (23) holds for all t0 = λβ. This means in
particular that both

|ν+(t)− ν−(t) + 1| ≤ ν0(t) +m , (26)

|ν+(t)− ν−(t)− 1| ≤ ν0(t) +m (27)
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hold for almost all t ∈ R. Permuting some rows and columns, we obtain that

λG22 −H22 ∼ λ

[

g 0

0 G̃

]

− λ

[

h 0

0 H̃

]

,

where λg − h ∈ C is a 1× 1 pencil with eigenvalue λ1 . Setting
(

µ+(t), µ−(t), µ0(t)
)

= Ind(tG̃− H̃),

we find that

|µ+(t)− µ−(t)| =
{

|ν+(t)− ν−(t) + ε1| for all t < λ1

|ν+(t)− ν−(t)− ε1| for all t > λ1.

Then (26) and (27) imply that

|µ+(t)− µ−(t)| ≤ ν0(t) +m = µ0(t) +m,

for almost all t ∈ R and hence we may proceed as in Case (1a).

Case (2) Assume that t0 cannot be chosen to be finite.

In this case we have

|ν+(t)− ν−(t) + 1| ≤ ν0(t) +m for all t <∞, (28)

but for any c ∈ R, there exist infinitely many t > c such that

|ν+(t)− ν−(t)− 1| > ν0(t) +m.

Choose t2 > λk such that |ν+(t2) − ν−(t2) − 1| > ν0(t2) +m = m and t1 < λ1. Then we
have in particular that ν+(t2)− ν−(t2)− 1 < −m using the same argumentation as in Case
(1a) and moreover ν+(t1)− ν−(t1) + 1 ≤ m by (28). We obtain from Lemma 14 that

−2εk+1pk+1 =
(

ν+(t2)− ν−(t2)
)

+
(

ν+(t1)− ν−(t1)
)

< (−m+ 1) + (m− 1) = 0.

This implies εk+1 = +1 and then, we may proceed as in Case (1a). This concludes the
proof.

Analogous to the proof of Theorem 15, we obtain conditions on the sign sum for the
real eigenvalues and the eigenvalue ∞. We only state this for the anti-triangular case.

Corollary 21 Let λG − H ∈ C(2n+1)×(2n+1) be a regular Hermitian pencil. Then the
following statements are equivalent:

1. λG−H is congruent to a pencil in anti-triangular form.

2. λG−H is unitarily congruent to a pencil in anti-triangular form.

3. There exists exactly one eigenvalue λ0 ∈ R with Signsum(λ0) = ±1 and for every
eigenvalue λα ∈ R ∪ {∞} with λα 6= λ0 we have that Signsum(λα) = 0.
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4 Condensed forms for singular Hermitian pencils

In this section we include the case of singular Hermitian pencils. Although in this case an
anti-triangular form does not necessarily display the roots of the elementary divisors, it still
displays a nested set of invariant subspaces and therefore, the consideration of condensed
forms of singular Hermitian pencils does still make sense.

Analogous to the regular case, we derive a sign condensed form and then discuss the ex-
istence of anti-triangular and anti-m-Hessenberg forms. Let us first consider the canonical
form (see [22]).

Theorem 22 Let λG−H ∈ Cn×n be a Hermitian pencil. Then there exists a nonsingular
matrix P ∈ Cn×n such that

P ∗(λG−H)P = λ

[

G′ 0
0 G′′

]

−
[

H ′ 0
0 H ′′

]

, (29)

where the following conditions are satisfied.

1. The subpencil λG′ −H ′ is block diagonal with diagonal blocks of the form

λ





0 0 Zr

0 0 0
Zr 0 0



−





0 0 Jr(0)
∗Zr

0 0 e∗1
ZrJr(0) e1 0



 ∈ C(r+1)×(r+1), (30)

where r ≥ 0.

2. The subpencil λG′′ −H ′′ is regular and in canonical form (9).

Proof. The proof follows directly from [22], Lemma 3.

In the following, if we speak of the sign characteristic or the sign sum of λ0 ∈ R ∪ {∞}
with respect to λG − H, we mean the sign characteristic or sign sum, respectively, of
λ0 ∈ R ∪ {∞} with respect to the regular subpencil λG′′ −H ′′ in the canonical form (29)
of λG−H. Next, we generalize Theorem 11 to the case of singular pencils.

Theorem 23 (Sign condensed form) Let λG−H ∈ Cn×n be a Hermitian pencil. Then
there exists a nonsingular matrix P ∈ Cn×n such that

P ∗(λG−H)P = λ





0 0 G13

0 G22 G23

G∗
13 G∗

23 G33



−





0 0 H13

0 H22 H23

H∗
13 H∗

23 H33



 , (31)

where the subpencil

λ

[

0 G13

G∗
13 G33

]

−
[

0 H13

H∗
13 H33

]
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is regular and G13, H13 ∈ Cm×m are lower anti-triangular. Furthermore,

λG22 −H22

= λ















Ol 0
ε1Ip1

. . .

εkIpk

0 0















−















Ol 0
ε1λ1Ip1

. . .

εkλkIpk

0 εk+1Ipk+1















,
(32)

where λ1 < · · · < λk. In addition, we have for all λ0 ∈ R ∪ {∞} that

Signsum(λ0, G,H) = Signsum(λ0, G22, H22).

Proof. Let λG − H be in canonical form (29) and let l denote the number of singular
blocks of type (30). We prove the result by induction on l.

l = 0: This is Theorem 11.

l ⇒ (l + 1): It follows from Remark 10 that

λG−H = λ









0 0 Zr 0
0 0 0 0
Zr 0 0 0

0 0 0 G̃









−









0 0 Jr(0)
∗Zr 0

0 0 e∗1 0
ZrJr(0) e1 0 0

0 0 0 H̃









∼ λ









0 0 0 Zr

0 0 0 0

0 0 G̃ 0
Zr 0 0 0









−









0 0 0 Jr(0)
∗Zr

0 0 0 e∗1
0 0 H̃ 0

ZrJr(0) e1 0 0









,

where the number of blocks of type (30) of the subpencil λG̃ − H̃ is equal to l. By the
induction hypothesis we find that λG̃−H̃ is congruent to a pencil that is in sign condensed
form (31). Thus, the result follows by again applying Remark 10.

We are now able to discuss necessary and sufficient conditions for the existence of anti-
triangular and anti-m-Hessenberg forms for the singular case. A condition on sign sums of
real eigenvalues (including ∞) of the regular subpencil that is analogous to the condition
in Theorem 15 or Corollary 21 does not hold as we can see from the following example.
The Hermitian pencil

λ

[

0 0
0 0

]

−
[

0 0
0 1

]

is already in anti-triangular form, but Signsum(∞) = 1. The background is that the
problem of reducing a singular Hermitian pencil to anti-m-Hessenberg form is basically the
problem of reducing a regular subpencil to anti-(m+ l)-Hessenberg form, where l denotes
the number of singular blocks of the pencil.
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Theorem 24 Let λG−H ∈ Cn×n be a Hermitian pencil and let m ≤ n be such that n−m

is even. Furthermore, let Ind(tG−H) =
(

ν+(t), ν−(t), ν0(t)
)

for t ∈ R. Then the following

statements are equivalent:

1. λG−H is congruent to a pencil in anti-m-Hessenberg form.

2. λG−H is unitarily congruent to a pencil in anti-m-Hessenberg form.

3. For all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) +m.

4. For almost all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t) +m.

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2)⇒ 3): As in the regular case, this follows from Corollary 4.

3)⇒ 4): This implication is trivial.

4)⇒ 1): Assume that λG−H is in sign condensed form (31), i.e.,

λG−H = λ









0 0 0 G14

0 Ol 0 G24

0 0 G33 G34

G∗
14 G∗

24 G∗
34 G44









−









0 0 0 H14

0 Ol 0 H24

0 0 H33 H34

H∗
14 H∗

24 H∗
34 H44









,

where λG14 −H14 ∈ Ck×k is regular. For all t ∈ R that are not eigenvalues of the regular
pencil

λ

[

0 G14

G∗
14 G44

]

−
[

0 H14

H∗
14 H44

]

we have that
Ind(tG−H) = (k, k, 0) + (0, 0, l) + Ind(tG33 −H33).

Setting
(

µ+(t), µ−(t), µ0(t)
)

:= Ind(tG33 −H33), we obtain for almost all these t that

|µ+(t)− µ−(t)| = |ν+(t)− ν−(t)| ≤ ν0(t) +m = µ0(t) +m+ l.

The size of λG33−H33 is n−2k− l such that n−2k− l− (m− l) = n−m−2k−2l is even.
Thus, Theorem 19 can be applied and λG33 −H33 is congruent to a pencil λĜ33 − Ĥ33 in
anti-(m+ l)-Hessenberg form. Hence

λG−H ∼ λ









0 0 0 G14

0 Ol 0 G24

0 0 Ĝ33 ∗
G∗

14 G∗
24 ∗ G44









−









0 0 0 H14

0 Ol 0 H24

0 0 Ĥ33 ∗
H∗

14 H∗
24 ∗ H44









,

and this pencil is in anti-m-Hessenberg form.

We have a corresponding result for the case that n−m is odd. Analogous to the regular
case, the entry on the middel of the leftmost nonzero anti-diagonal plays an exceptional
role.
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Theorem 25 Let λG − H ∈ Cn×n be a Hermitian pencil and let n ≥ m ∈ N such that

n −m is odd. Furthermore, let Ind(tG − H) =
(

ν+(t), ν−(t), ν0(t)
)

for t ∈ R. Then the

following statements are equivalent.

1. λG−H is congruent to a pencil in anti-m-Hessenberg form.

2. λG−H is unitarily congruent to a pencil in anti-m-Hessenberg form.

3. There exists t0 ∈ R ∪ {∞} and ε ∈ {1,−1}, such that

|ν+(t)− ν−(t) + ε| ≤ ν0(t) +m for all t < t0

and |ν+(t)− ν−(t)− ε| ≤ ν0(t) +m for all t > t0.

4. There exists t0 ∈ R ∪ {∞} and ε ∈ {1,−1}, such that

|ν+(t)− ν−(t) + ε| ≤ ν0(t) +m for almost all t < t0

and |ν+(t)− ν−(t)− ε| ≤ ν0(t) +m for almost all t > t0.

Proof. 1)⇒ 2): This follows directly from Lemma 2.

2) ⇒ 3): Assume, there exists a nonsingular matrix P ∈ C2n×2n such that P ∗(λG −H)P
is in anti-m-Hessenberg form, thus, P ∗(tG −H)P is Hermitian anti-m-Hessenberg for all
t ∈ R. This means in particular that

P ∗(tG−H)P =





0 0 tG13 −H13

0 tg22 − h22 tG23 −H23

tG∗
13 −H∗

13 tG∗
23 −H∗

23 tG∗
33 −H∗

33



 ,

where tG13 − H13 ∈ C(n−m−1

2
)×( n+m−1

2
), tg22 − h22 ∈ C, and the other blocks have corre-

sponding sizes. If the subpencil λg22 − h22 is regular, we may proceed as in the proof of
Theorem 20. Otherwise, λg22 − h22 ≡ 0. Then it follows from Lemma 3 that

|ν+(t)− ν−(t)| ≤ 2
n+m− 1

2
+ ν0(t)− n = ν0(t) +m− 1

for all t ∈ R. Hence, 2) is trivially satisfied for any t0 ∈ R ∪ {∞}.
3)⇒ 4): is trivial.

4)⇒ 1): This implication is proved analogous to the proof of Theorem 24.

It was our main goal to obtain necessary and sufficient conditions for the existence
of anti-triangular forms for general (including singular) Hermitian pencils. This explicit
result follows now directly from Theorem 24 and Theorem 25.

32



Corollary 26 Let λG − H ∈ C2n×2n be a Hermitian pencil. Furthermore, for t ∈ R let

Ind(tG−H) =
(

ν+(t), ν−(t), ν0(t)
)

. Then the following statements are equivalent:

1. λG−H is congruent to a pencil in anti-triangular form.

2. λG−H is unitarily congruent to a pencil in anti-triangular form.

3. For all t ∈ R we have that |ν+(t)− ν−(t)| ≤ ν0(t).

Corollary 27 Let λG−H ∈ C(2n+1)×(2n+1) be a Hermitian pencil. Furthermore, for t ∈ R
let Ind(tG−H) =

(

ν+(t), ν−(t), ν0(t)
)

. Then the following statements are equivalent:

1. λG−H is congruent to a pencil in anti-triangular form.

2. λG−H is unitarily congruent to a pencil in anti-triangular form.

3. There exists t0 ∈ R ∪ {∞} and ε ∈ {1,−1} such that

|ν+(t)− ν−(t) + ε| ≤ ν0(t) for all t < t0,

|ν+(t)− ν−(t)− ε| ≤ ν0(t) for all t > t0.

5 Conclusions

We have obtained the so-called sign condensed form for general Hermitian pencils. This
form is a mixture of an anti-triangular form and a diagonal form, where the diagonal
form displays all the ‘singularity’ and all the sign sums of the real eigenvalues of the
pencil (or of the regular subpencil), including the eigenvalue ∞. We have furthermore
obtained necessary and sufficient conditions for the existence of anti-triangular and anti-
m-Hessenberg forms for Hermitian pencils in terms of conditions on the sign sum of the real
eigenvalues and the eigenvalue ∞ and in terms of the inertia indices of certain Hermitian
matrices. The latter conditions hold also in the case that the pencil is singular. If a
Hermitian pencil can be transformed to anti-m-Hessenberg form via congruence, then the
transformation matrices can be chosen to be unitary, i.e., in this case both matrices of the
pencil are simultaneously unitarily similar to anti-m-Hessenberg forms.
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