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Z. Strakoš1,∗ and J. Liesen2,∗∗

1 Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věžı́ 2, 182 00 Prague 8,
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Numerical solving of real-world problems typically consists of several stages. After a mathematical description of the
problem and its proper reformulation and discretisation, the resulting linear algebraic problem has to be solved. We focus
on this last stage, and specifically consider numerical stability of iterative methods in matrix computations. In iterative
methods, rounding errors have two main effects: They can delay convergence and they can limit the maximal attainable
accuracy. It is important to realize that numerical stability analysis is not about derivation of error bounds or estimates.
Rather the goal is to find algorithms and their parts that are safe (numerically stable), and to identify algorithms and their
parts that are not. Numerical stability analysis demonstrates this important idea, which also guides this contribution. In
our survey we first recall the concept of backward stability and discuss its use in numerical stability analysis of iterative
methods. Using the backward error approach we then examine the surprising fact that the accuracy of a (final) computed
result may be much higher than the accuracy of intermediate computed quantities. We present some examples of rounding
error analysis that are fundamental to justify numerically computed results. Our points are illustrated on the Lanczos method,
the conjugate gradient (CG) method and the generalised minimal residual (GMRES) method.
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1 Introduction

Numerical solution of real-world problems, sometimes labelled as scientific computing, combines tools from the areas of a
given application, applied mathematics, numerical analysis, numerical methods, matrix computations, and computer science.
For example, a part of reality can be described (in mathematical abstraction) by a system of differential and/or integral equa-
tions. After choosing a proper formulation of the mathematical model, the existence and uniqueness of its analytic solution
is investigated. Subsequently, the continuous problem is discretised. Coefficients determining the discrete approximation
are then computed by solving a linear algebraic problem. At all stages the approximation steps are accompanied by errors.
The main types of errors are approximation errors of the model, discretisation errors of the finite dimensional formulation,
and truncation and/or rounding errors of the numerical solution of the linear algebraic problem.

1.1 Errors in mathematical modelling and scientific computing

The stages in the solution of a typical real-world problem described by differential equations are schematically shown in
Fig. 1 and Fig. 2. Any successful solution process starts and ends at the real-world problem stage. Going down the structure
represents constructing an approximate solution. Going up represents an interpretation of the results which should always
include understanding of the errors. The analysis of errors in the part of the process starting and ending with the mathematical
model is called verification in the PDE literature. It aims to verify that the equations constituting the mathematical model
were solved correctly (modulo an acceptable inaccuracy). Validation of a mathematical model, on the other hand, asks to
which extent the mathematical model and its numerical solution describe the real-world problem, see, e.g., the discussion
by Babuška [7] and Oden et al. [49]. Each stage of the solution process requires its own knowledge and expertise. A mistake
at any of the stages can hardly be compensated for by excellence at the others.

The PDE literature on error analysis typically does not consider the specific contribution of the last stage (truncation
and/or rounding errors). It often concentrates only on discretisation errors (for an example of a more general discussion
we refer to [81]). A somewhat paradoxical nature of this fact with respect to rounding errors was pointed out by Parlett
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Real-world prReal-world problem

Integro-differential equations:ential equations: model

Infinite dimensional problemInfinite dimensional problem

Existence and uniqueness of solutionExistence and uniqueness of solution

Discretized pretized problem: approximation

Finite dimensional approximationFinite dimensional approximation

ConverConvergence to analytic solutiongence to analytic solution

Algebraic prAlgebraic problem: computation

LinearizationLinearization

Matrix computationMatrix computation

Fig. 1 Stages in the numerical solution
process of a real-world problem.

Correspondence to respondence to reality

Errors of the modelors of the model

Caused by simplifying assumptionsCaused by simplifying assumptions

Limits applicability of resultsLimits applicability of results

Discretization erretization errors

Determined by discretization methodsDetermined by discretization methods

Limit relevance of numerical solutionsLimit relevance of numerical solutions

Computationals errComputationals errors

Truncation and rounding errorsruncation and rounding errors

Limit numerical accuracyLimit numerical accuracy

Fig. 2 Errors in the numerical solution
process of a real-world problem.

in his essay devoted to the work of Wilkinson [61, pp. 19–20]. Numerical stability and condition number checks as well
as knowledge-based recommendations concerning solvers are listed among the missing features of general purpose finite
element programs for structural mechanics, cf. the recent monograph edited by Stein [69, pp. 3–4]. The situation in other
application areas is not significantly different. When the error at the computational stage is not properly integrated into
the error analysis of the whole solution process, assuming that the computational stage provides (or with a high accuracy
approximates) the exact solution of the discretised problem, we may have to deal with the following possible consequences:

• Either the computation of the approximate solution of the algebraic problem consumes unnecessary time and resources
by aiming at an unnecessarily high accuracy,

• or a computational error which is not under control impinges on the other stages and spoils the numerical solution.

The first consequence can limit the size or the level of detail of the model by negatively affecting the required computation
time. The second consequence is even more dangerous. In the worst case it can lead to wrong (e.g. physically incorrect)
results that have little or no relation to the actual real-world problem.

1.2 Specification of the subject

We concentrate on methods for solving large linear algebraic systems of the form

Ax = b , (1)

where A is an N by N real or complex matrix, and the right hand side b is a real or complex vector of length N . We also
consider the related problem of computing eigenvalues of the matrix A. The title of our paper reflects its content and it is
worth three comments:

1. Numerical stability analysis, as explained above, is an essential part of scientific computing. Unless rounding errors
are kept under control, things may go wrong due to numerical instabilities.

2. Large scale means that we consider large problems that arise in real-world applications. Their solution process can
typically not be based on standard textbook algorithms that are applied in the style of cookbook recipes. Rather these
problems require expertise from many areas. The numerical linear algebra part, in particular, requires the combination
of iterative and direct methods. By combining both, we can strengthen their advantages and suppress their weaknesses.
For example, direct techniques, such as incomplete factorisations and approximate inverses, may greatly enhance the
error reduction capability of individual iterations at the price of making the iterations more expensive. Direct techniques
may also increase robustness of the combined solver. The principal contribution of the iterative part is the possibility
of stopping at some desired accuracy level. This, however, requires a meaningful stopping criterion which balances
computational errors with discretisation errors and other errors in the solution process.
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3. Linear attributes to the problem to be solved (linear algebraic systems or eigenvalue problems), not to phenomena
which must be dealt with in the process of construction, analysis and application of modern iterative methods. In fact,
modern iterative methods of numerical linear algebra, such as Krylov subspace methods, are strongly nonlinear.

1.3 Characterisation of convergence is a nonlinear problem

Answering the question as to how fast we can get an acceptable approximate solution in modern large scale linear algebraic
solvers, such as preconditioned Krylov subspace methods, requires approaches radically different from the convergence
theory of classical iterative methods, such as SOR or Chebyshev semiiteration.As pointed out for example by Hackbusch [34,
p. 270], the terms convergence and asymptotical convergence rate lose their meaning, because Krylov subspace methods
typically reach (in exact precision) the exact solution in a finite number of iterations. Hence no limit can be formed. In finite
precision arithmetic this finite termination property is lost. But this is not why we consider Krylov subspace methods, such
as the conjugate gradient (CG) method [36] and its generalisations, iterative. Rather the reason is that these methods are
of practical interest only if a sufficiently accurate approximate solution is found in a small number of iterations (usually
significantly smaller than the dimension N of the linear algebraic problem). Consequently, we must study the method’s
behaviour from the first iteration, which generally represents a very difficult nonlinear phenomenon in a finite-dimensional
space. Even in the symmetric positive definite case, the convergence of the CG method does not only depend on the spectrum
of A but also on the right hand side of the linear system, which is related to boundary conditions and the external field. For
interesting examples related to the one-dimensional Poisson equation we refer to the work of Beckermann and Kuijlaars [9],
see also Liesen and Tichý [46]. In more general cases the situation is significantly more complicated, since the spectrum
or other simple characteristics of the matrix cannot be relied upon as an indicator of the convergence behaviour, partially
because the role of the specific right hand sides can be much more pronounced.

Such difficulties can be demonstrated on the following simple two-dimensional convection-diffusion model problem,

−ν∆u + w · ∇u = 0 in Ω , (2)

u = g on ∂Ω , (3)

where the scalar valued function u(η1, η2) represents the concentration of the transported quantity, w = [w1, w2]T the wind,
ν the scalar diffusion parameter, and Ω the unit square. When the problem is convection-dominated, i.e. ν � ‖w‖, the
Galerkin finite element discretisation leads to nonphysical oscillations of the discretised solution. This has been known for
several decades, and the model problem (2)–(3) has for many years been used to test various stabilisation techniques such
as the streamline upwind Petrov Galerkin (SUPG) discretisation, see [38, 11, 48]. For a recent description and examples
based on bilinear finite elements and a regular grid we refer to the work of Elman and Ramage [19, 20]. The resulting linear
algebraic systems have also been used as challenging examples for convergence analysis of iterative solvers. For example,
the generalised minimal residual (GMRES) method [67] applied to such systems typically exhibits an initial period of slow
convergence followed by a faster decrease of the residual norm. Ernst conjectured in [21] that the duration of the initial
phase is governed by the number of steps needed for boundary information to pass from the inflow boundary across the
(discretised) domain following the longest streamline of the velocity field. He also illustrated that for these PDE-related
linear algebraic problems eigenvalues alone give misleading information about convergence. He focused in his analysis on
the field of values. Using the eigendecomposition of the discretised operator, Fischer et al. analysed in [23] the choice of
parameters in the SUPG discretisation and their relation to convergence of GMRES. Since the analyses in [21] and [23]
are based on the discretised operator only, they can not explain the dependence of the length of the initial period of slow
convergence on the paricular right hand side of the linear system, and hence on the boundary conditions. Using properly
chosen operator-based tools such as the polynomial numerical hulls [33], it is possible, however, to describe the worst case
convergence behaviour.

In our paper [45], see also [44], we consider a regular grid with bilinear elements, and a wind aligned with the η2-axis, i.e.
w = [0, 1]T . The eigenvalues and eigenvectors of the discretised operator are known analytically, but the transformation to the
eigenvector coordinates is highly ill-conditioned. Therefore any analysis based on this transformation must involve a rather
complicated pattern of cancellation of potentially huge components of the initial residual (right hand side) in the individual
eigenspaces, otherwise the results are quantitatively useless. Instead of using this technically complicated and physically
unnatural approach, we propose another idea. Assume that a well-conditioned transformation of a given linear algebraic
system yields a new system with a structure of the matrix, not necessarily diagonal, for which the GMRES convergence can
with the transformed right hand side easily be analysed. Then the geometry of the space is not significantly distorted by the
transformation, and using the particular structure of the transformed system we can describe the GMRES convergence for
the original problem. Following [16, 19, 20], the transformation used in [45] is orthonormal, and the transformed system
is block diagonal with tridiagonal Toeplitz blocks. The GMRES convergence for individual tridiagonal Toeplitz systems is
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then analysed by linking it to the GMRES convergence for scaled Jordan blocks. This is possible because of the dominance
of convection over diffusion in the model problem. Such approach clearly describes the relationship between the boundary
conditions in the model problem and the initial phase of slow GMRES convergence for the discretised algebraic system.
It cannot, however, be used for the subsequent phase of convergence. Although [45] presents some preliminary qualitative
considerations, that problem still remains open.

1.4 Main focus and organisation of the paper

Rounding errors can delay convergence and limit the maximal attainable accuracy. In solving linear algebraic systems arising
from mathematical modelling of real-world problems, the required accuracy is usually not high, and therefore limitations
of the maximal attainable accuracy typically need not be considered. Still, numerical stability analysis is fundamental to
justify the accuracy of the computed results.

Our paper is organised as follows. Sect. 2 presents the backward error as an illustration of backward stability analysis.
An interesting consequence is given in Sect. 3: The number of significant digits in the intermediate quantities computed in
finite precision arithmetic may be quite irrelevant to the accuracy of the final output. Sect. 4 presents examples of the link
between numerical stability and computational cost, as well as an example of stopping criteria justified by rounding error
analysis. Closing remarks summarise the most important points.

2 Backward error and backward stability

At the algebraic stage of the solution process of a real-world problem, cf. Fig. 1, a goal is to find an approximate solution for
the linear algebraic system (1). We assume that the system is large, which requires incorporation of an iterative method in
combination with direct techniques such as preconditioning. The principal questions are how the accuracy of the approximate
algebraic solution should be measured and when the iteration should be stopped.

Clearly, a stopping procedure must include a reliable evaluation of the computational error combining two components:
The truncation error due to preliminary stopping of the iteration, and rounding errors. Whenever we stop iterations using
some stopping criteria, we must know whether the computed approximation gives relevant information about the solution
of the real-world problem despite the presence of rounding errors. As mentioned above, we will not consider cases in which
the maximal attainable accuracy plays a role in the evaluation of the computational error.

In an ideal situation errors at all three stages (model – discretisation – computation) should be in balance. Suppose that
we have a perturbation theory of the model, and that we are able to express the discretisation errors and computational errors
backwards as perturbations of the original model. Then it seems reasonable to stop the iteration process on the algebraic
level when the discretisation and computational contributions to the whole backward error are in a desired proportion (which
is problem dependent) to the error of the model.

We apply the concept of perturbations and backward error, which was fully developed in the fundamental work of
Wilkinson [79, 80] in the context of numerical methods for solving algebraic problems. Due to the error of the mathematical
model and the discretisation error, cf. Fig. 2, the resulting particular linear algebraic system Ax = b represents a whole
class of admissible systems. Each system in this class corresponds (possibly in a stochastic sense) to the original real-
world problem. Differences between linear systems in this class (or, say, between Ax = b and any other system in this
class) correspond to the size of the model and discretisation errors. For example, the values of material constants or some
other characteristics used in the formulation of the mathematical model are often determined only to one or two digits
of accuracy. Subsequently, replacing the infinite dimensional problem (PDE) by a finite dimensional one introduces (part
of) the discretisation error. Additional errors occur when the entries of A and b have to be computed with the help of
numerical quadrature.

As a consequence, with respect to the original real-world problem, a solution x̃ of

(A + ∆A) x̃ = b + ∆ b (4)

is as good as the solution x of Ax = b when the perturbations ∆A and ∆b are small.

2.1 Relative residual and normwise backward error

Consider an approximate solution xn computed at the nth iteration of an iterative algorithm. Then

Axn = b − rn , rn = b − Axn . (5)
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Thus −rn represents the unique perturbation ∆b of the right hand side b such that xn is the exact solution of the per-
turbed system

Axn = b + ∆b . (6)

The relative size of the perturbation restricted to the right hand side is ‖rn‖/‖b‖ (‖·‖ in this paper denotes the Euclidean norm,
but any other norm could be used here too). With x0 = 0 this represents the widely used relative residual norm ‖rn‖/‖r0‖.
With x0 �= 0 the relative residual norm lacks this backward error interpretation, and for ‖r0‖ � ‖b‖ it represents a rather
insecure measure of convergence. In fact, a nonzero x0 containing no useful information about x, e.g. a random x0, might
lead to a completely “biased” r0 with ‖r0‖ � ‖b‖. Such a choice potentially creates an illusion of fast convergence to a
high relative accuracy, all measured by the relative residual norm. For examples see [59, relation (2.8), and the discussion
of Figs. 7.9 and 7.10], where the source and the danger of such illusions is outlined. Hegedüs [35] suggested that a simple
way around this difficulty is to rescale the initial approximation. Given a preliminary initial guess xp, it is easy to determine
the scaling parameter ζmin such that

‖r0‖ = ‖b − Axpζmin‖ = min
ζ

‖b − Axpζ‖, ζmin =
b∗Axp

‖Axp‖2 . (7)

Thus, by setting x0 = xpζmin, we ensure ‖r0‖ ≤ ‖b‖. The extra cost for implementing this little trick is negligible; it should
be used whenever a nonzero x0 is considered. Still, xp should be based on information about the problem, otherwise it can,
even with (7), delay convergence.

The cases in which b is inaccurate while A is known accurately are rather rare. Therefore we need to allow perturbations
in both A and b. The backward error for xn as an approximate solution for Ax = b is a measure of the amounts by which
both A and b have to be perturbed so that xn is the exact solution of the perturbed system

(A + ∆A) xn = b + ∆b . (8)

As shown by Rigal and Gaches [63], also see [37, Theorem 7.1], the normwise relative backward error of xn, defined by

β(xn) ≡ min { β : (A + ∆A) xn = b + ∆b , ‖∆A‖ ≤ β‖A‖ , ‖∆b‖ ≤ β‖b‖} , (9)

satisfies

β(xn) =
‖rn‖

‖b‖ + ‖A‖ ‖xn‖ =
‖∆Amin‖

‖A‖ =
‖∆bmin‖

‖b‖ . (10)

In other words, β(xn) is equal to the norm of the smallest relative perturbations in A and b such that xn exactly solves the
perturbed system.

We strongly believe that if no other (more problem-specific and more sophisticated, see [2, 3, 4]) criterion is available,
this relative backward error should always be preferred to the (relative) residual norm ‖rn‖/‖r0‖. In practice ‖A‖ has to
be replaced by some approximation – when available – or simply by the Frobenius norm of A. The theoretical reasons for
preferring the relative backward error are well known, see for example [1, 37] and also [4, 3]. In [53], the backward error idea
has been used to derive a family of stopping criteria which quantify levels of confidence in A and b. These stopping criteria
have then been implemented in generally available software [54] for solving linear algebraic systems and least squares
problems. The relative normwise backward error is recommended and used by numerical analyst, see for example [8, 24].
It is known that the residual norm can be very misleading and easily misinterpreted. It is surprising and somewhat alarming
that ‖rn‖/‖r0‖ remains in use as the main (and usually the only) indicator of convergence of iterative processes.

If the backward error is small, the computed approximate solution xn is an exact solution of a nearby problem. The
forward error ‖x − xn‖ can be bounded using perturbation theory, see [37] for a collection of corresponding results. But
the size of the worst-case bounds for ‖x − xn‖, though an important indicator of possible inaccuracies, does not always
tell the whole story. For ill-conditioned matrices, for example, xn can be computed with a small backward error β(xn).
The corresponding perturbation bound for ‖x − xn‖ may not ensure, however, a single digit of accuracy of the computed
approximate solution xn, when compared with the exact solution x of the (possibly inaccurate) algebraic problem (1). Still,
xn can be perfectly acceptable approximate solution with respect to the underlying real-world problem.

It should be noted that normwise backward errors ignore the structure of nonzero elements of A, as well as the relative
size and importance of the individual entries in A and b. An alternative is using componentwise backward errors, see [1, 37].
For A large and sparse, however, the use of componentwise criteria can become expensive. Moreover, it is not clear whether
the componentwise approach is in general preferable to the normwise approach. This is particularly true in light of the nature
of iterations with matrix-vector products as basic building blocks, as well as in the context of model and discretisation errors.
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2.2 A simple example

The presented elementary ideas are demonstrated on the following example suggested by Liesen and Tichý. Consider the
two-dimensional Poisson equation

−∆u = 32(η1 − η2
1 + η2 − η2

2) (11)

on the unit square with zero Dirichlet boundary conditions. The exact solution is given by

u(η1, η2) = 16(η1η2 − η1η
2
2 − η2

1η2 + η2
1η2

2) . (12)

We discretise the problem using linear finite elements on a regular triangular grid with the meshsize h. Then the resulting
linear algebraic system (1) is formed with approximation errors both in A and b of order h2. The matrix A is symmetric and
positive definite. For the approximate solution of (1) we apply the CG method, and stop the iteration whenever the normwise
backward error drops below the level hα, i.e. our stopping criterion is

‖b − Axn‖
‖b‖ + ‖A‖ ‖xn‖ < hα , (13)

where α > 0 is a parameter. Clearly, α should not be smaller than 2, otherwise the computational error can become
significantly larger than the discretisation error. However, it should not be much larger than 2 either, since otherwise we will
spend unnecessary work by enforcing the computational error to be much smaller than the discretisation error. The situation
is illustrated on Fig. 3 and Fig. 4. The first one shows the discretisation error u − x for h = 1/101 (x is approximated for
our purpose sufficiently accurately by applying the standard MATLAB direct solver to Ax = b). Here x is a function of
h, but we omit that in our notation. Fig. 4 shows the total error u − xn obtained by using the CG method with stopping
criterion (13) for α = 3. Clearly, both errors are of the same order of magnitude (10−4). Increasing α would smooth u−xn

closer to the form of u − x. The computed solution does not change significantly with increasing α, but the computational
cost does.

This simple example shows the advantage of stopping iterations whenever discretisation and computational errors are in
balance. Such balance is of course problem-dependent. In our experiment, for example, the gradient of the solution is for
small α not well approximated; for getting a good gradient approximation the value of α would have to be much larger than
for the simple approximation of the solution. It might also be desirable to evaluate the balance in a more sophisticated way.
The principle, however, remains the same. The sophisticated stopping criteria can be considered a backward perturbation [3]
and can be linked with other variational crimes (e.g. [74]). Our example also shows that, apart from some very special
situations, a common textbook comparison of direct and iterative solvers which is based on the same accuracy level of
the computed approximations makes little sense in practical computations. An iteration should always be accompanied by
measuring the size of the error (in an appropriate way) and it should be stopped when a desired accuracy level is reached.
In practical problems the sufficient accuracy level is frequently many orders of magnitude lower than the accuracy obtained
with direct solvers.
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Fig. 3 Discretisation error u − x.
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Fig. 4 Total error u − xn with stopping tolerance for the
normwise backward error set to h3.
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2.3 Summary

Using the normwise backward error is numerically safe, because it can be computed with negligible additional rounding
error (which can be easily bounded) and there are no hidden assumptions that may be violated in finite precision arithmetic.
Moreover, the normwise backward error can be viewed as a practical application of the backward analysis idea which was
present in the work of several founders of modern scientific computing such as Turing, and Goldstine and Von Neumann,
and which was mathematically fully formalised and promoted (in the context of algebraic solvers) by Wilkinson, see the
description in [61]. In the backward analysis we ask and answer the question as to how close the problem (8), which is
solved exactly by xn, is to the (original algebraic) problem (1), which is solved approximately by xn. Perhaps this is our
primary concern, given that the data A and b represent the original real-world problem inaccurately anyway. For numerical
stability analysis the backward analysis in the sense of Wilkinson was a revolution – it allowed us to separate properties of a
given problem (its sensitivity to perturbations) from the numerical stability properties of the methods, algorithms and their
implementations [79, 80, 37].

In numerical stability analysis of iterative methods the backward analysis principle is developed further. For a fixed n the
errors in iterations 1 through n are not only mapped backwards to perturbations of the original data, but the mapping can
lead to “perturbed” problems of larger dimensionality which preserve some key information. The next section will recall
results in this direction with a surprising consequence. In particular, it will demonstrate a general philosophical difficulty of
mechanical forward error evaluation based on intermediate quantities.

3 Intermediate quantities and accuracy of final results

Assume that we wish to guarantee the accuracy of a final result computed by a given algorithm using given data. It may seem
that if we wish to guarantee a prescribed number of digits in the final result, then we should compute all intermediate results
with at least the same number of accurate digits. This suggestive view is, however, generally not correct. On the contrary,
as formulated by Parlett [61, p. 22],

“. . . the number of significant digits in the intermediate numbers generated in a computation may be quite irrelevant
to the accuracy of the output.”

This quote shows the importance and strength of numerical stability analysis, and backward stability analysis in particular.
Though rounding errors on the roundoff unit level present in elementary computer operations can be considered “random”,
the way these tiny elementary rounding errors are spread through the computation is anything but random. Vital correlations
between inaccurately computed quantities can lead to highly accurate final results. In order to understand the way elementary
rounding errors affect the computed results we need a deep mathematical understanding of the algorithm, and to perform
a thorough numerical stability analysis. That might be complicated, lengthy and full of unpleasant detailed bounds and
formulas. Its goal is, however, to achieve understanding, which can usually be formulated in a very simple and elegant way.

3.1 Backward-like analysis of the Lanczos method

To be more specific, consider the Lanczos method [42] which is frequently used for computing dominant eigenvalues of
Hermitian matrices and operators (generalisations of the Lanczos algorithm can also be used for solving non-Hermitian
eigenproblems, but we will not consider that here). Given a Hermitian N by N matrix A and an initial vector q1 of length N ,
the Lanczos method in exact arithmetic determines in the iterations 1 through n an N by n matrix Qn with the first column
q1, such that

Q∗
n A Qn = Tn , and Q∗

nQn = In , (14)

where Tn is an n by n Hermitian tridiagonal matrix and In is the n by n identity matrix (the columns of Qn are orthonormal).
Eigenvalues of Tn are considered approximations of the (usually dominant) eigenvalues of A. We will present some more
details about the Lanczos method in Sect. 4, for a thorough description and analysis see the book by Parlett [60] and the
seminal paper of Paige [55].

In the presence of rounding errors, the computed analogy Q̃n of the exact Qn does not have orthogonal columns. Even
worse, the columns of Q̃n may quickly become numerically linearly dependent. Moreover, for the computed Q̃n and T̃n,

Q̃∗
n A Q̃n �= T̃n , (15)

and most of the computed entries in T̃n may not exhibit a single digit of accuracy. They may differ from the analogous
entries in Tn by orders of magnitude, which means that

T̃n − Tn is large. (16)
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Still, the backward error-like analysis of Greenbaum [28], see also [31], which is based on the results by Paige [55], shows
that, and also why, (16) does not mean a total disaster. This analysis shows that there exist

• an M by M matrix An, where M ≥ N , possibly M � N , An having all its eigenvalues close to the eigenvalues of A;
• an M by n matrix Qn having orthonormal columns such that

Q
∗
n An Qn = T̃n . (17)

Consequently, the highly inaccurate computed matrix T̃n can be viewed as a result of the exact precision Lanczos algorithm
applied to a different problem, possibly of much larger dimensionality, but preserving the very fundamental property of the
original problem: All eigenvalues of An lie nearby the original eigenvalues of A. Since the exact arithmetic relations hold
for An, Qn and T̃n, the eigenvalues of the matrix T̃n can be used for approximating the eigenvalues of An, and therefore
the eigenvalues of A.

3.2 Summary

We have seen that in the application of the Lanczos method the number of correct digits in the computed elements of T̃n

is irrelevant for the accuracy of the approximations to the eigenvalues of A. Hence, despite (16), the eigenvalues of A can
be approximated to high accuracy using T̃n. However, using T̃n, the eigenvalues of A are not approximated in the same
order and speed as they would be approximated with the exact Tn. Indeed, T̃n may produce multiple approximations of
the original eigenvalues, with the multiplicities generated due to the rounding error amplifications in the application of the
Lanczos method. Consequently, approximation of some other eigenvalues of A can in finite precision arithmetic be delayed
(for details we refer to [30, 29, 70, 27, 71]). If we want to prevent these side effects, we must apply some correction procedure
such as partial reorthogonalization [62]. That will not come without a significant cost in both computer time and memory.
Numerical stability analysis tells us when it is reasonable to pay extra expenses, and when paying such expenses is nothing
but an unreasonable waste of resources.

But how can we recognise that an eigenvalue of T̃n is close enough to some eigenvalue λi of the original matrix A ? This
will be explained in the following section.

4 Examples of the mathematical theory of finite precision computations

Rounding errors in finite precision computations have another consequence: From the point of view of a formal definition
of numerical algorithms, scientific computing lacks proper theoretical foundations. Some mathematicians feel that rounding
errors prevent the existence of any elegant mathematical theory covering finite precision computations. Some theoretical
computer scientists miss a formal model of computing with floating point numbers and, consequently, a complexity theory
analogous to the complexity theory of combinatorial (and direct) algorithms. For a survey of related questions and an outline
of the program for resolving them we refer to [10, 68]. An interesting related discussion can be found in [40].

The pessimistic conclusion is that there are practically no results linking complexity and numerical stability of numerical
computations [13]. In scientific computing, however, the question of the cost of obtaining a satisfactory approximate solution
of a given problem for a given particular data set or class of data is frequently more important than the question about
complexity of the abstract problem which covers the worst-case data. In practical problems data rarely correspond to the worst
case, and efficient algorithms typically take advantage of all specific information which can be found during the computation.
If complexity is replaced by computational cost, then the pessimistic view does not apply. There are many results linking
computational cost with numerical stability. For some important iterative methods (including the Lanczos method, CG and
GMRES) there exist mathematical explanations of their behaviour in finite precision arithmetic. Before presenting some
results, we recall the basic mathematical relationship between the Lanczos method, CG and Gauss quadrature. For proofs
and detailed explanations we refer to [71] and to the original literature pointed out in that paper.

4.1 The Lanczos method, the CG method and Gauss quadrature

Given an N by N Hermitian matrix A and a starting vector q1 of length N , the Lanczos method generates (in exact arithmetic,
which is assumed throughout this subsection) a sequence of orthonormal vectors q1, q2, . . . via the following recurrence:

Given q1, define q0 = 0, β1 = 0, and for n = 1, 2, . . . , let

αn = (Aqn − βnqn−1, qn) ,

wn = Aqn − αnqn − βnqn−1 , (18)
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βn+1 = ‖wn‖ ,

qn+1 = wn/βn+1 .

Here (·, ·) denotes the Euclidean inner product. Denoting Qn = [q1, . . . , qn], and

Tn =




α1 β2

β2 α2
. . .

. . .
. . . βn

βn αn




, (19)

the recurrence (18) can be written in the matrix form

where the last matrix on the right hand side is equal to βn+1qn+1e
T
n (en denotes the nth column of the n by n identity

matrix).
Assume that the matrix A is Hermitian positive definite. The standard implementation of the CG method was given in [36,

(3:1a)–(3:1f)]:

Given x0, define r0 = b − Ax0, p0 = r0, and for n = 1, 2, . . . , let

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1),

xn = xn−1 + γn−1 pn−1, (20)

rn = rn−1 − γn−1 Apn−1,

δn = (rn, rn)/(rn−1, rn−1),

pn = rn + δn pn−1 .

The residual vectors {r0, r1, . . . , rn−1} form an orthogonal basis and the direction vectors {p0, p1, . . . , pn−1} form an
A-orthogonal basis of the nth Krylov subspace Kn(A, r0),

Kn(A, r0) ≡ span{r0, Ar0, . . . A
n−1r0} . (21)

The nth CG approximation xn minimises the energy norm of the error over the affine subspace x0 + Kn(A, r0), i.e.,

‖x − xn‖A ≡ ((x − xn), A(x − xn))1/2 = min
z∈x0+Kn(A,r0)

‖x − z‖A . (22)

Consider q1 = r0/‖r0‖. Then the link between the Lanczos and the CG methods can be explained in two lines: Using the
change of variables

xn = x0 + Qn yn , (23)

the coefficients yn used to form the CG approximation xn are determined by solving

Tnyn = ‖r0‖e1 . (24)

We now present what we consider the essence of both the Lanczos and the CG method. Denote the eigendecomposition
of A by

A = U diag (λ1, . . . , λN ) U∗ , λ1 ≤ . . . ≤ λN , (25)

U = [u1, . . . , uN ] , U∗ U = U U∗ = IN ,
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Fig. 5 Distribution function ω(λ).

and consider the squared size of the components of q1 in the individual invariant eigenspaces of A,

ωi = |(q1, ui)|2 ,

N∑
i=1

ωi = 1 . (26)

Then A and q1 determine the following distribution function ω(λ) with N points of increase at the eigenvalues of A,

ω(λ) = 0 for λ < λ1 ,

ω(λ) =
i∑

l=1
ωl for λi ≤ λ < λi+1 ,

ω(λ) = 1 for λN ≤ λ ,

(27)

see Fig. 5, and the corresponding Riemann-Stieltjes integral

∫ ξ

ζ

f(λ) dω(λ) =
N∑

i=1

ωif(λi) (28)

(for ζ ≤ λ1 and λN ≤ ξ).
The nth iteration of the CG method is determined by (23)–(24). The matrix Tn is symmetric positive definite, with

the eigendecomposition

Tn = Sn diag (θ(n)
1 , . . . , θ(n)

n ) S∗
n , θ

(n)
1 ≤ . . . ≤ θ(n)

n , (29)

Sn = [s(n)
1 , . . . , s(n)

n ] , S∗
n Sn = Sn S∗

n = In .

Consider the squared size of the components of e1 in the individual invariant eigenspaces of Tn (the squared size of the first
entries of the eigenvectors of Tn),

ω
(n)
j = |(e1, s

(n)
j )|2 ,

N∑
j=1

ω
(n)
j = 1 . (30)

Then Tn and e1 determine the distribution function ω(n)(λ) with n points of increase at the eigenvalues of Tn,

ω(n)(λ) = 0 for λ < θ
(n)
1 ,

ω(n)(λ) =
j∑

l=1
ω

(n)
l for θ

(n)
j ≤ λ < θ

(n)
j+1 ,

ω(n)(λ) = 1 for θ
(n)
n ≤ λ .

Now comes the key point. The Riemann-Stieltjes integral determined by ω(n)(λ),
∫ ξ

ζ

f(λ) dω(n)(λ) =
n∑

j=1

ω
(n)
j f(θ(n)

j ) , (31)

(here ζ ≤ θ
(n)
1 and θ

(n)
n ≤ ξ) is nothing but the n-point Gauss quadrature approximation of the original Riemann-Stieltjes

integral (28) determined by ω(λ). Since ω(λ) contains all essential information about A and q1 (apart from the change of
variables represented by the eigenvectors), and, similarly, ω(n)(λ) contains all essential information about Tn and e1, we
may conclude:
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The Lanczos method and the CG method can be viewed as matrix formulations of the Gauss quadrature approxi-
mation of some underlying Riemann-Stieltjes integral.

This relationship is essentially known since the paper by Hestenes and Stiefel [36]. Despite intense efforts of Golub and his
many collaborators, who promoted and used its various forms for decades, it has not been fully appreciated by the scientific
computing community. Omitting details, whenever we use the algorithms (18) or (20), we in fact perform Gauss quadrature.
This observation nicely illustrates deep links of modern numerical linear algebra to other disciplines, and shows the strongly
nonlinear character of many of its problems.

4.2 Accuracy of eigenvalue approximations computed by the Lanczos method

In finite precision computations the computed quantities in the Lanczos method satisfy

AQn = QnTn + βn+1qn+1e
T
n + Fn (32)

where

‖Fn‖ ≤ n1/2‖A‖ε1 , (33)

and ε1 is proportional to the machine precision, see [50, 51, 52, 60]. Here we skip any specific notation for computed
quantities. It may seem that since the matrix Fn, which accounts for effects of local rounding errors, is small in norm,
nothing dramatic may happen. Just the opposite is true; the effects of rounding errors seem to be devastating. The computed
Lanczos vectors q1, q2, . . . , qn can quickly loose not only their mutual orthogonality, but also their linear independence.
However, Paige showed in his Ph.D. thesis in 1971 [50] that the mathematical elegance of the exact arithmetic theory can
to a large extent be saved. He proved that loss of orthogonality follows a beautiful mathematical structure. We will present
a consequence of his theory which demonstrates some of the difficulties which had to be handled, and also the beauty of
the conclusions.

Assume, for simplicity, that the eigenvalues and eigenvectors of the computed Tn can be determined exactly. This
assumption is not too restrictive, since they can indeed be computed very accurately. Given an eigenpair θ

(n)
j , s

(n)
j of Tn,

the value of θ
(n)
j is considered an approximation to some eigenvalue of A, and z

(n)
j = Qns

(n)
j an approximation of

the corresponding eigenvector. The θ
(n)
j and z

(n)
j are called the Ritz values and vectors. How can we determine whether

θ
(n)
j and z

(n)
j are indeed good approximations of an eigenvalue and eigenvector of A? We limit ourselves to the question

about eigenvalues (a slightly more complicated case of eigenvectors can be found in [55, 60, 70]). A simple linear algebra
exercise gives

min
i

|λi − θ
(n)
j | ≤ ‖Az

(n)
j − θ

(n)
j z

(n)
j ‖ / ‖z

(n)
j ‖

≤ (|eT
ns

(n)
j |βn+1 + n1/2‖A‖ε1) / ‖z

(n)
j ‖ . (34)

It seems that all is under control, since in exact arithmetic ‖z
(n)
j ‖ = 1. If the norm of the computed vector z

(n)
j is close to one,

then, considering that n1/2‖A‖ε1 is a worst-case bound for some small quantity, the accuracy of θ
(n)
j is also computationally

determined by the value

δnj = |eT
ns

(n)
j |βn+1 , (35)

which can easily be determined from the bottom entry of the vector s
(n)
j . However, in finite precision computations the

norm of z
(n)
j cannot be guaranteed to be close to one. The vector z

(n)
j is computed as a linear combination of the columns

of Qn, and since they can become numerically linearly dependent, ‖z
(n)
j ‖ can become very small. In order to justify (35) as

an accuracy test in finite precision computations, we must resolve the difficulty represented by possibly vanishing ‖z
(n)
j ‖ in

the denominator of (34). An ingenious analysis of Paige [55, pp. 241 & 249] lead to the following result: For any pair θ
(n)
j ,

z
(n)
j determined at the iteration n of a finite precision arithmetic Lanczos computation, it holds that

min
i

|λi − θ
(n)
j | ≤ max

{
2.5(δnj + n1/2 ‖A‖ ε1), [(n + 1)3 +

√
3 n2] ‖A‖ ε2

}
, (36)

|(z(n)
j , qn+1)| = |ε(n)

jj |/δnj , (37)
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where |ε(n)
jj | ≤ ‖A‖ε2, and ε1 and ε2 are multiples of the machine precision.

Summarising, small δnj implies convergence of θ
(n)
j to some eigenvalue of A, and this holds in exact as well as in finite

precision arithmetic. Moreover, the orthogonality of the newly computed Lanczos vector qn+1 can in a finite precision
computation be lost only in the directions of the converged Ritz vectors.

This result is truly fascinating. It allows us to verify the accuracy of the results of finite precision Lanczos computations
practically at no cost. But this is only possible as a consequence of the numerical stability theory developed by Paige. Without
that, the computed δnj would give no guarantee whatsoever about the closeness of θ

(n)
j to some eigenvalue of the matrix A.

For further discussion we refer to [71, pp. 69–70].

4.3 Estimating error norms in the CG method (20) for Ax = b

With f(λ) ≡ λ−1 the relation between the integrals (28) and (31) can be described in the following way. The integral (28)
becomes equal to ‖x−x0‖2

A/‖r0‖2, and the value of its nth Gauss quadrature approximation (31) is the difference between
this and the error in the nth CG iteration measured by ‖x − xn‖2

A/‖r0‖2,

‖x − x0‖2
A

‖r0‖2 = n-point Gauss quadrature +
‖x − xn‖2

A

‖r0‖2 . (38)

This relation was developed in [14] in the context of moments. It was a subject of extensive work motivated by estimation
of the error norms in CG in the papers [22, 25] and [27]. Work in this direction continued and led to the papers [26, 47, 12].

Based on the idea from [27, pp. 28–29], we can eliminate the unknown term ‖x−x0‖2
A/‖r0‖2 by subtracting the identities

for iterations n and n + d, where d is a positive integer. Then, multiplying by ‖r0‖2,

‖x − xn‖2
A = EST2 + ‖x − xn+d‖2

A (39)

where

EST2 = ‖r0‖2 [(n + d)-point Gauss quadrature − n-point Gauss quadrature] . (40)

The energy norm of the error in the CG method is strictly decreasing. When ‖x − xn‖2
A � ‖x − xn+d‖2

A, EST gives a tight
lower bound for ‖x − xn‖A.

The value of EST2 can be determined in different ways. In [26] it has been proposed to find it as a difference between
two continued fractions (without computing the fractions themselves; that approach was improperly used in [27]). Another
possibility is to evaluate

EST2 = rT
0 (xn+d − xn) , (41)

see [78]. The value of EST2 can also be derived without using Gauss quadrature as a direct consequence of [36, Theorem 6.1]

EST2 =
n+d−1∑

i=n

γi‖ri‖2 , (42)

where both γi and ‖ri‖2 are available directly from the conjugate gradient algorithm, see (20).
In exact arithmetic all formulas for EST2 lead to identical results. In finite precision arithmetic, however, they can differ

substantially. What is their relevance in finite precision computations? This question cannot be answered without a thorough
numerical stability analysis. As in Sect. 4.2, the goal of such an analysis is very practical. We need to justify the estimates
for the energy norm of the error that should replace or complement the existing convergence measures.

This numerical stability question about the estimates for the energy norm of the error in the CG method was first
posed in [27]. It was also partially answered in that paper for the estimates using continued fractions. A detailed analysis
followed in [71], which proved that the estimate (42) is numerically stable and it can be used in finite precision arithmetic
computations while the estimate (41) is, in general, numerically unstable. Interested readers are referred also to the recent
manuscript [73], which is less technical, but which offers, in addition, an easy introduction to estimating norms of the errors
in the preconditioned CG method.

We next illustrate our results by an example. As in [73, 72] we use matrices from the collection Cylshell by R. Kouhia
(http://www.hut.fi/˜kouhia/) that is available from the Matrix Market (http://math.nist.gov/MatrixMarket/) library of test
problems. Matrices in the Cylshell collection correspond to low order finite element discretisations of cylindrical shell
elements, loaded in such a way that only the last element of the right hand side b is nonzero. These matrices exhibit large
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Fig. 6 Convergence characteristics and the lower bound
for the energy norm of the error computed using (42) when
the preconditioned CG method is applied to a system from
the Cylshell collection, d = 50.
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Fig. 7 Influence of the parameter d on the tightness of the
bound (42). The tightness of the lower bound improves with
increasing d (here d = 4, 20, and 50).

condition numbers and the algebraic problems are very difficult to precondition using standard techniques such as incomplete
Cholesky decompositions. We use matrices from this collection repeatedly because they allow us to demonstrate nice features
of the bounds presented above, but they also reveal possible difficulties with their application. We used the matrix s3rmt3m3
with N = 5357, containing 207123 nonzero elements. The experiments were performed in MATLAB 6.5 on a PC with
machine precision 10−16 using MATLAB 6.5. We used the preconditioned CG method as implemented in MATLAB with
MATLAB’s incomplete Cholesky preconditioner (threshold = 10−5).

Fig. 6 shows the value of EST computed using (42) (bold solid line) for d = 50 together with the values of the energy
norm of the error ‖x − xn‖A (dashed line), the residual norm ‖b − Axn‖ (dash-dotted line) and the normwise backward
error ‖b − Axn‖/(‖b‖ + ‖A‖ ‖xn‖) (dotted line). We see that if the value ‖x − xn‖A decreases rapidly with n, then the
lower bound (42) is very tight. When the decrease of ‖x − xn‖A is slow, the bound might not be monotonic and it can also
significantly differ from the actual value. This is definitely a drawback which has to be considered (the bound should be used
with other convergence measures). One should also note the behaviour of the residual norm and the normwise backward
error. They both are significantly non-monotonic.

Fig. 7 shows besides the relative energy norm of the error, ‖x − xn‖A/‖x − x0‖A (dashed line) its estimates obtained
using (42) for different values of the parameter d (here d = 4, 20, and 50). We can see that larger d improves the quality of
the bound. Apart from the rather small value d = 4, the differences are not dramatic.

Fig. 8 shows in addition to ‖x − xn‖A/‖x − x0‖A (dashed line) and its estimate obtained using (42) with d = 50 (bold
solid line) also its estimate obtained using (41) with d = 50 (solid line). We can observe that (41) gives for n ≥ 500
quite misleading information. Though the formula (41) can be evaluated with a high accuracy proportional to the machine
precision, it should not be applied in finite precision computations. It has been derived using the strong assumption about
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Fig. 8 Stable and unstable lower bounds for the energy norm of the er-
ror. The numerically unstable bound (41) can in finite precision arithmetic
give values that significantly overestimate the true relative energy norm of
the error.
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preserving global orthogonality among the residual vectors in the CG method. Once this assumption is violated by using
finite precision arithmetic, (41) is completely disqualified for estimating the energy norm of the CG error.

We can point out again the importance of numerical stability analysis. It tells us that a given stopping criterion derived under
some particular assumptions can with no restrictions be used in finite precision computations, while the use of some other
(equivalent in exact arithmetic) stopping criterion derived under different assumptions can lead to computational disasters.

4.4 Loss of orthogonality and convergence behaviour in the GMRES method

In Sect. 1.3 we have already mentioned the GMRES method proposed by Saad and Schultz [67]. In this section we present
some results concerning the numerical behaviour of this important method.

GMRES is widely used for solving unsymmetric linear algebraic systems arising from the discretisation of partial
differential equations. In iteration n, the method minimises the Euclidean norm of the residual rn = b−Axn over xn in the
affine space x0 + Kn(A, r0). Theoretical results about the GMRES residual norms therefore provide lower bounds for the
residual norms of other methods that use the same Krylov subspaces. Several mathematically equivalent implementations
have been proposed in the literature. These may differ, however, in finite precision arithmetic. It is therfore essential to
identify the optimal ones which should be used in practical computations. In addition to that, a strong relationship between
convergence of GMRES and loss of orthogonality among the computed basis vectors of the Krylov subspaces has been
noticed in some GMRES implementations. It is important to find a theoretical explanation for this phenomenon.

In exact arithmetic, GMRES can be described as follows. It starts with an initial approximation x0, computes the initial
residual r0 = b−Ax0, and then determines a sequence of approximate solutions x1, . . . , xn such that xn ∈ x0 +Kn(A, r0),
and hence rn ∈ r0 + AKn(A, r0). The choice of xn is based on the minimal residual principle

‖rn‖ = min
z∈x0+Kn(A,r0)

‖b − Az‖ , (43)

which can be equivalently formulated as the orthogonal projection principle

rn ⊥ AKn(A, r0) . (44)

For a nonsingular matrix A, both (43) and (44) determine the unique sequence of approximate solutions x1, . . . , xn, see [67].
Now let v1 ≡ r0/‖r0‖, w1 ≡ Av1/‖Av1‖, and consider two sequences of orthonormal vectors, v1, v2, . . . and w1, w2, . . .,

such that for each n,

Kn(A, r0) = span{v1, . . . , vn} , Vn ≡ [v1, . . . , vn] , V ∗
n Vn = In , (45)

AKn(A, r0) = span{w1, . . . , wn} , Wn ≡ [w1, . . . , wn] , W ∗
nWn = In . (46)

Then the minimal residual principle (43) can be formulated as

‖rn‖ = min
y

‖r0 − AVny‖ (47)

= min
t

‖r0 − Wnt‖ . (48)

The residual rn is therefore the least squares residual for the least squares problems AVny ≈ ‖r0‖ v1 and Wnt ≈ ‖r0‖ v1.
We recall two main approaches which explicitly compute the basis vectors v1, v2, . . . , vn, respectively v1, w1, . . . , wn−1,

defined in (45) and (46). In the first approach, the approximate solution xn is expressed as

xn = x0 + Vn yn , (49)

which leads to the classical GMRES method of Saad and Schultz [67]. In the second approach the approximate solution is
expressed as

xn = x0 + [v1, Wn−1] tn (50)

for some tn. Its implementation is more straightforward than the one based on (49), and hence it was called “simpler GM-
RES” [77]. On the other hand, the approximate solution is in this approach determined via the basis vectors v1, w1, . . . , wn−1,
which are not mutually orthogonal (v1 is in general not orthogonal to w1, . . . , wn−1; here we mean the exact arithmetic re-
lationship, not a deterioration of orthogonality due to rounding errors). This fact raises some suspicions concerning potential
numerical problems of this approach. These problems will be studied in the following subsection.

For completeness, we mention that a variety of methods based on either (43) or (44) have been proposed that neither
explicitly compute the vectors v1, v2, . . . , vn, nor the vectors v1, w1, . . . , wn−1. For example, the method by Khabaza [41]
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uses the vectors r0, Ar0, . . . , A
n−1r0; Orthomin [76], Orthodir [83], Generalised Conjugate Gradient (GCG) [5, 6] and

Generalised Conjugate Residual (GCR) [17, 18] compute an AT A-orthogonal basis of Kn(A, r0). These methods played an
important role in the development of the field and they could be useful in some applications. They are, however, numerically
less stable than the classical implementation of GMRES. For further details see [43, 65].

4.4.1 Simpler GMRES is potentially unstable

We are going to explain, while omitting details which can be found in [43], that the GMRES implementation based on (50) is
potentially numerically unstable. The key argument is given by the following identity for the relative residual norm (see [43,
relations (3.5) and (3.6)]),

‖rn‖
‖r0‖ = σmin([v1, Wn]) σ1([v1, Wn]) =

2 κ([v1, Wn])
κ([v1, Wn])2 + 1

, (51)

where σmin(·) denotes the minimal singular value and σ1(·) the maximal singular value of the given matrix, and κ(·) ≡
σ1(·)/σmin(·) the corresponding condition number. Identity (51) shows that the conditioning of the basis [v1, Wn] of the
Krylov subspace Kn+1(A, r0) is fully determined (except for an unimportant multiplicative factor) by the size of ‖rn‖/‖r0‖,
and vice versa. In particular,

κ([v1, Wn])−1 ≤ ‖rn‖
‖r0‖ ≤ 2 κ([v1, Wn])−1 , (52)

so that the relative residual norm is small if and only if [v1, Wn] is ill-conditioned.
How does this affect the numerical stability of simpler GMRES? The basis Wn is computed by a recursive columnwise

QR-factorisation of the matrix [Av1, AWn−1], i.e.

A[v1, Wn−1] = [Av1, AWn−1] = WnGn , (53)

where Gn is the n-by-n upper triangular factor in the QR-factorisation. Using (50), the vector tn solves the least squares prob-
lem

‖rn‖ = min
t

‖r0 − A[v1, Wn−1] t‖ = min
t

‖r0 − WnGn t‖ . (54)

Now suppose, for clarity, that Wn is computed in the numerically most stable way, and that the orthogonality among its
columns is in finite precision computations preserved up to a small multiple of the machine precision ε. Then (51)–(52) hold,
up to a small multiple of the machine precision, also for the quantities computed using finite precision arithmetic. Hence the
residual norm and the conditioning of the matrix [v1, Wn−1] are in finite precision computations strongly related. A decrease
of ‖rn‖ necessarily leads to ill-conditioning of the computed [v1, Wn−1]. But if [v1, Wn−1], and hence A[v1, Wn−1], is
ill-conditioned, which must happen for ‖rn‖ getting small, then the computed Gn will also be ill-conditioned. This can
result in a large error in the computed tn. We stress that the principal source of this error is not connected to the conditioning
of A. Hence simpler GMRES is potentially unstable even for very well-conditioned matrices A. Because of the different
choice of the basis ((45) instead of (46)) this numerical trouble cannot occur in classical GMRES.

Summarising, minimal residual Krylov subspace methods can be formulated and implemented using different bases
and different orthogonalisation processes. This section shows that using different bases is important in getting revealing
theoretical results about convergence of the method, and a correct choice of basis is fundamental for getting numerically
stable implementations. We have explained that using the best orthogonalisation technique in building the basis does not
compensate for a possible loss of accuracy in the given implementation which is caused by a poor choice of the basis.

4.4.2 Loss of orthogonality and convergence in modified Gram-Schmidt GMRES

In the rest of this paper we will focus on the classical GMRES formulation based on (47) and (49), and we will study numerical
stability of various implementations based on different orthogonalisation processes for building up the matrix Vn in (45).
When Vn is computed using Householder reflections, then the rounding error analysis of the QR-factorisation developed by
Wilkinson [80, pp. 152–161, 236, and 382–388] proves that (unlessA is close to numerically singular) the loss of orthogonality
among v1, . . . , vn is proportional to the machine precision ε [15, relation (2.4)]. With approximately orthonormal Vn the
idea behind the rounding error analysis of the whole algorithm is straightforward. Replacing computed Vn by a proper
nearby matrix with exactly orthonormal columns (see [15, Lemma 3.3]) proves that in the Householder reflections-based
implementations of GMRES, the backward error at the final step is proportional to the machine precision ε [15, Corollary 4.2].
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Consequently, in the Householder reflections based GMRES the ultimate backward error and residual norms are essentially
the same as those guaranteed by direct solving of the system Ax = b via the Householder or Givens QR-factorisations.

Preserving orthogonality of the columns in the computed Vn close to ε is costly. The commonly used GMRES implemen-
tations use the modified Gram-Schmidt (MGS) orthogonalisation for computing Vn, which turns out to be much cheaper
than the Householder reflections based GMRES. However, the orthogonality among the vectors v1, v2, . . . , vn is typically
gradually lost, which eventually leads to a loss of linear independence. Consequently, modified Gram-Schmidt GMRES
(MGS GMRES) can not be analysed using the approach from [15], where everything relied upon the fact that Vn has almost
orthonormal columns. How much is lost in terms of convergence and the ultimate attainable accuracy? This question is
answered next.

When the MGS orthogonalisation is used, the computed vectors v1, . . . , vn depend on the (ill-)conditioning of the matrix
[r0, AVn]. More specifically, the loss of orthogonality among the computed basis vectors is bounded by

‖I − V ∗
n+1Vn+1‖F ≤ κ([r0γ, AVnDn]) O(ε), (55)

for all γ > 0 and positive diagonal n by n matrices Dn, here ‖ · ‖F denotes the Frobenius norm of a matrix. One possibility
is to scale the columns of [r0γ, AVnDn] so they have unit length. That is, take

γ = ‖r0‖−1 , Dn = diag (‖Av1‖−1, . . . , ‖Avn‖−1) . (56)

The corresponding condition number and the bound (55) would then be no more than a factor
√

n + 1 away from its minimum,
see [75], so this is a nearly optimal scaling. Other convenient choices are discussed in [59]. Extensive experimental evidence
suggests that for the nearly optimal scaling (56), the bound (55) is tight, and usually

‖I − V ∗
n+1Vn+1‖F ≈ κ([r0γ, AVnDn]) O(ε) . (57)

It was observed that when MGS was used, leading to MGS GMRES, the loss of orthogonality in Vn+1 was accompanied by a
decreasing relative residual norm ‖rn‖/‖r0‖, see [32] and also [66]. That is, significant loss of orthogonality in MGS GMRES
apparently did not occur before convergence measured by ‖rn‖/‖r0‖ occurred. This behaviour was analysed numerically
in [32, 64] and a partial quantitative explanation which corresponded to our intuition was offered there. GMRES approximates
r0 by the columns of AVn, therefore the condition number of [r0, AVn] has to be related to the GMRES convergence. A
stronger and more complete theoretical explanation of the observed behaviour is derived in [57, 58, 59, 56].

We will now describe the main observation in detail. Consider a plot with two lines obtained from a MGS GMRES finite
precision computation. One line represents the normwise relative backward error ‖rn‖/(‖b‖+ ‖A‖ ‖xn‖) and the other the
loss of orthogonality ‖I −V ∗

n+1Vn+1‖F (both plotted using the same logarithmic scale) as a function of the iteration step n.
We have observed that these two lines are always almost reflections of each other through the horizontal line defined by
their intersection. For a clear example of this, see the dashed lines in Fig. 9. In other words, in finite precision MGS GMRES
computations, the product of the normwise relative backward error and the loss of orthogonality (as a function of the iteration
step) is almost constant and of the order of the machine precision. Orthogonality among the computed MGS basis vectors
is effectively maintained until convergence of the normwise relative backward error (and also the relative residual norm) to
the maximal attainable accuracy. Total loss of orthogonality among the computed basis vectors implies convergence of the
normwise relative backward error to O(ε), which is equivalent to the (normwise) backward stability of MGS GMRES.

Using the results of [57, 58], the main ideas of the proof are simple and elegant. In terms of formulas, we wish to prove
that for the quantities computed in a finite precision arithmetic application of MGS GMRES it holds

‖rn‖
‖b‖ + ‖A‖ ‖xn‖ · ‖I − V ∗

n+1Vn+1‖F = O(ε) . (58)

A first step, which we have already discussed, consists of a formal proof of the tight relation (57) for the loss of orthogonality
(for details see [59]). Using (57), the identity (58) is reduced to

‖rn‖
‖b‖ + ‖A‖ ‖xn‖ · κ ([r0γ, AVnDn]) = O(1) . (59)

Our efforts in proving the last identity have led to solving fundamental and very difficult problems in the seemingly very
loosely related area of scaled total least squares, see [57, 58].

The proof itself (as yet in some details incomplete) is, however, technical and tedious. Therefore in [59] we restrict
ourselves to proving and discussing exact arithmetic results about the product of the normwise relative backward error
‖rn‖/(‖b‖ + ‖A‖ ‖xn‖) and the condition number κ([r0γ, AVnDn]). A detailed rounding error analysis, together with the
results relating the genuine loss of orthogonality ‖I − V ∗

n+1Vn+1‖F to the relative backward error, is still in progress.
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Fig. 9 Convergence characteristics of MGS GMRES applied to SHER-
MAN2 with b from Matrix Market and x0 = 0.

For illustration of the results mentioned here we include an example for the matrix SHERMAN2 from the Matrix Market
collection. In Fig. 9, dots denote the norm of the directly computed relative residual (‖b − Axn‖/‖r0‖), the dashed-dotted
line the relative error (‖x−xn‖/‖x−x0‖; x was determined by the MATLAB direct solver), the mostly decreasing dashed
line the normwise relative backward error (‖b − Axn‖/(‖b‖ + ‖A‖ ‖xn‖)), the monotonically increasing dashed line the
loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (‖I − V ∗

n Vn‖F ), the dotted line norm of
the approximate solution (‖xn‖) and the solid line the smooth upper bound for the norm of the relative residual which is used
in the paper [59, relation (3.9)]. For the experiment we have used the right hand side given by Matrix Market (representing
discretised conditions of the real-world problem) and x0 = 0. We see that convergence to maximal attainable accuracy
measured by all characteristics occurs in about 800 steps. One should also note the close symmetry of the dashed lines,
illustrating the results formulated above.

The smoothed upper bound (solid line) is sometimes very close to the dots, but sometimes the difference is noticeable. We
cannot go into details here, but we sketch the main difficulty we have to deal with. The tightness of the bound is determined by
the distance of the ratio δn ≡ σmin([r0γ, AVnDn])/σmin([AVnDn]) to one. In order to analyse the tightness of the bound
for the norm of the relative residual, we must therefore first describe the necessary and sufficient condition for preserving
the smallest singular value of a matrix while appending (or deleting) a column. This condition represents a subtle matrix
theory result. Then we have to study whether this condition is satisfied in MGS GMRES computations. That leads into a
quantitative formulation of the fact that although δn can become under some circumstances very close or even equal to one,
such situation cannot occur after MGS GMRES has converged to some particular accuracy (cf. the iteration steps between
700 and 800 in Fig. 9 where the smooth upper bound is very tight). Summarizing, the case δn close to one does not represent
a serious obstacle for the theory, but it makes the whole theoretical explanation of the observed facts very subtle and difficult,
see [57, 58, 59].

5 Concluding remarks

Summarising, modern numerical linear algebra, which aims at solving linear algebraic problems, often exhibits strongly
nonlinear properties. This is true both in exact and in finite precision arithmetic.

We have recalled the backward error principle and have illustrated the power and the beauty of backward error analysis
on several examples of different nature. Among other consequences, it turns out that highly accurate final results can be
achieved despite inaccurately computed intermediate quantities. Although in finite precision arithmetic some basic axioms
do not hold, a theory linking the cost of numerical computations with the accuracy of the computed results can be built.
This can be regarded as a mathematical theory of finite precision computation in solving particular problems or classes of
problems using particular methods. This theory also shows that the exact and finite precision arithmetic parts of problems
in numerical linear algebra are deeply interconnected.

Throughout this paper we have presented examples showing that analysis of methods in numerical linear algebra and
of their computational behaviour can be tedious and difficult, with intermediate steps full of complicated estimates and
formulas. The resulting understanding is, however, often formulated as an elegant mathematical conclusion easily described
in a common language. As an example, in the Lanczos method for computing eigenvalues of Hermitian matrices and in the
MGS implementation of the GMRES method, such conclusions read: Loss of orthogonality means convergence. Analysis
leading to such deep understanding is based on unexpected and revealing links between different areas of mathematics far
beyond the borders of numerical linear algebra.
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