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Abstract. We analyze the residuals of GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 856–859], when the method is applied to tridiagonal Toeplitz matrices.
We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled
Jordan blocks. This problem has been studied previously by Ipsen [BIT, 40 (2000), pp. 524–535]
and Eiermann and Ernst [Private communication, 2002], but we formulate and prove our results
in a different way. We then extend the (lower) bidiagonal Jordan blocks to tridiagonal Toeplitz
matrices and study extensions of our bidiagonal analysis to the tridiagonal case. Intuitively, when a
scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus
(compared to the modulus of the subdiagonal), the GMRES residual norms for both matrices and the
same initial residual should be close to each other. We confirm and quantify this intuitive statement.
We also demonstrate principal difficulties of any GMRES convergence analysis which is based on
eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned. Such
analyses are complicated by a cancellation of possibly huge components due to close eigenvectors,
which can prevent achieving well-justified conclusions.
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1. Introduction. Consider solving a linear algebraic system Ax = b, real or
complex, where A is an N by N nonsingular matrix with GMRES [9]. Starting from
an initial guess x0, this method computes the initial residual r0 = b − Ax0 and a
sequence of iterates, x1, x2, . . . so that the nth residual rn = b−Axn satisfies

‖rn‖ = ‖pn(A)r0‖ = min
p∈πn

‖p(A)r0‖,(1.1)

where πn denotes the set of polynomials of degree at most n with value one at the
origin and ‖·‖ denotes the 2-norm. It is easy to see from (1.1) that (in exact arithmetic)
the GMRES algorithm terminates, i.e., computes the solution x, in at most N steps.
We also wish to point out that, unless there is a well-justified reason for choosing a
nonzero initial approximation, one should consider x0 = 0 (see [8]).

Suppose that the vectors r0, Ar0, . . . , A
nr0 generating the (n + 1)st Krylov sub-

space Kn+1(A, r0) = span{r0, Ar0, . . . , A
nr0} are linearly independent. Then rn is a

nonzero vector and GMRES cannot terminate before the step n+1. Denote by Kn+1

the matrix of the Krylov vectors,

Kn+1 = [r0, Ar0, . . . , A
nr0] ≡ [r0,WnRn] ,(1.2)
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where Wn has orthonormal columns and Rn is upper triangular.
In [5, Theorem 2.1] Ipsen shows that rn is determined by the first row of the

Moore–Penrose pseudoinverse of Kn+1,

rTn = ‖rn‖2 eT1 K
+
n+1.(1.3)

Based on this result she argues that as long as the matrix Kn+1 is well-conditioned,
the decrease of the GMRES residual norms in the steps 1 to n must be slow. Then
she applies this relation to analyze the GMRES behavior for scaled Jordan blocks [5,
Theorem 3.1].

In [6, pp. 1505–1506], it is shown that

rTn = ‖rn‖2 eT1 [r0,Wn]+ ,(1.4)

which refines Ipsen’s argument about the relation between ill-conditioning of the
Krylov matrix and convergence of the GMRES residual norms. The proofs in [6]
are based on the elementary geometrical interpretation of the pseudoinverse (orthog-
onality relations).

In this paper we study the GMRES residuals for linear systems with tridiagonal
Toeplitz matrices T . We start with results analogous to those of Ipsen for scaled
Jordan blocks, and then we analyze their extensions. We are particularly interested
in the case when the entries on the superdiagonal of T are significantly smaller in
modulus (absolute value) than the entries on the subdiagonal. This represents an
example of very large eigenvector conditioning (even infinite when the matrix reduces
to a scaled Jordan block); i.e., we deal with highly nonnormal matrices. Rather
than applying a worst-case analysis based on properties of the matrix T only, we
exploit the structure of T and relate the GMRES convergence to the structure and
numerical values of the entries of the initial residual r0. This allows qualitative as
well as quantitative statements about the influence of T as well as r0 on the GMRES
residuals. In proofs, we follow, as in [6, pp. 1505–1506], the elementary orthogonality
idea.

Analytic results for scaled Jordan blocks and general tridiagonal Toeplitz matrices
are given in sections 2 and 3, respectively. Section 4 shows numerical experiments,
and section 5 contains concluding remarks. In this paper we do not consider rounding
errors, i.e., we assume exact arithmetic.

2. Scaled Jordan blocks. For given nonzero parameters γ and λ, consider an
N by N scaled Jordan block J ,

J = γS + λI ≡ γ(S + τI) , τ ≡ λ

γ
,(2.1)

where I is the identity and S = [e2, . . . , eN , 0] is the down shift matrix (ej denotes
the jth vector of the standard Euclidean basis). The scaling does not affect GMRES
convergence; it is used for convenience only. The GMRES residual norms for systems
with scaled Jordan blocks have been studied in [2] and in [5, section 3]. Here we study
the same problem, but we formulate and prove our results differently from [2, 5].

Theorem 2.1. Suppose that GMRES is applied to a system with the matrix
J = γ(S + τI) and the initial residual r0 = [ρ1, . . . , ρN ]T . Let ρl be the first nonzero
entry of r0. Then for n = 0, 1, . . . , N − l the GMRES residuals satisfy

rTn = ‖rn‖2 [1,−τ, . . . , (−τ)n] [r0, Sr0, . . . , S
nr0]

+ ,(2.2)
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‖rn‖ ≥
( n∑

j=0

|τ |2j
)− 1

2

σmin ([r0, Sr0, . . . , S
nr0]) ,(2.3)

and rN−l+1 = 0, where σmin(X) denotes the minimal singular value of the matrix X.
Furthermore, for n = 0, 1, . . . , N − l,

‖rn‖ ≤ (n + 1)
1
2 ‖r0‖

( n∑
j=0

|τ |2j
)− 1

2

.(2.4)

Proof. Since Kn+1(J, r0) = Kn+1(S, r0) and ρl �= 0, it is easy to see that for
n = 0, 1, . . . , N − l the matrices [r0, Jr0, . . . , J

nr0] have full column rank. Hence, for
n = 0, 1, . . . , N − l, (1.3) (see also [6, Theorem 2.1]) shows that

rTn = ‖rn‖2 eT1 [r0, Jr0, . . . , J
nr0]

+ ≡ ‖rn‖2 gTn .(2.5)

The identity [r0, Jr0, . . . , J
nr0]

+ [r0, Jr0, . . . , J
nr0] = I gives

gTn [r0, Jr0, . . . , J
nr0] = eT1 .

We next prove, by induction,

gTn [r0, Sr0, . . . , S
nr0] = [1,−τ, . . . , (−τ)n] .(2.6)

Clearly,

0 = gTn Jr0 = γ gTnSr0 + λ gTn r0 = γ gTnSr0 + λ , i.e., gTnSr0 = −τ,

and the general step,

0 = gTn J
kr0 = gTn (γS + λI)kr0

= gTn

(
k∑

j=0

(
k
j

)
γk−jλjSk−j

)
r0

= γkgTnS
kr0 +

k∑
j=1

(
k
j

)
γk−jλj(−τ)k−j

= γkgTnS
kr0 − (−λ)k +

k∑
j=0

(
k
j

)
(−λ)k−jλj

= γkgTnS
kr0 − (−λ)k,

from which gTnS
kr0 = (−τ)k. Multiplying (2.6) from the right by the pseudoinverse

[r0, Sr0, . . . , S
nr0]

+ and using the fact that gn lies in the range of [r0, Sr0, . . . , S
nr0]

proves (2.2). Then (2.3) follows in an obvious way. To show (2.4), we denote the N
by n + 1 matrix on the left-hand side and the vector on the right-hand side of (2.6)
by R and t, respectively. Then, using (2.5),

‖rn‖ = ‖gn‖−1 ≤ ‖R‖ ‖t‖−1

≤ ‖R‖F ‖t‖−1

≤ (n + 1)
1
2 ‖r0‖ ‖t‖−1 ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.
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Writing (2.6) for the maximal n = N − l in a transposed form gives the upper
triangular system for the nonzero entries of gN−l = [0, . . . , 0, χl, χl+1, . . . , χN ],

⎡
⎢⎢⎢⎣

ρl ρl+1 . . . ρN
ρl . . . ρN−1

. . .
...
ρl

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

χl

χl+1

...
χN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
−τ
...

(−τ)N−l

⎤
⎥⎥⎥⎦ .(2.7)

The identity (2.5) now immediately implies the following.
Corollary 2.2. With the assumptions and notation of Theorem 2.1,

rN−l = ‖rN−l‖2 gN−l and ‖rN−l‖ = ‖gN−l‖−1,(2.8)

where the nonzero entries of gN−l are determined from (2.7) by back substitution.
Theorem 2.1 and Corollary 2.2 show how the GMRES residuals depend on J

(particularly on the ratio of λ and γ) and the structure of r0. The bound (2.4) is
interesting for large values of |τ | only, i.e., for diagonally dominant matrices J . In
the following examples we give explicit formulas for the nth GMRES residual and its
norm for some specific initial residuals.

Example 2.3. Suppose that r0 = el is the lth standard basis vector. Then for
n = 0, 1, . . . , N − l, [r0, Sr0, . . . , S

nr0] = [el, el+1, . . . , el+n]. Hence (2.2) yields

rTn = ‖rn‖2 [0, . . . , 0, 1,−τ, . . . , (−τ)n, 0, . . . , 0] ,

where rTn has l − 1 leading and N − n − l trailing zeros, respectively. Taking norms
on both sides shows that

‖rn‖ =

( n∑
j=0

|τ |2j
)− 1

2

,(2.9)

i.e., that equality holds in (2.3) with σmin ([r0, Sr0, . . . , S
nr0]) = 1. We see that for

r0 = el, the GMRES residual norms suffer from slow convergence until the very last
step whenever |τ | ≤ 1. In their unpublished note [2], Eiermann and Ernst give a proof
of (2.9) as well as a slightly weaker form of (2.4) based on a formula for the GMRES
minimizing polynomial. They also point out that (2.9) is equivalent to the identity

min
p∈πn

{ n∑
j=0

∣∣∣∣p(j)(τ)

j!

∣∣∣∣
2}

=

( n∑
j=0

|τ |2j
)−1

,

where p(j)(τ) denotes the jth derivative of the polynomial p(τ). This can be of interest
independent of the GMRES context.

Example 2.4. Consider the particular case r0 = e ≡ [1, 1, . . . , 1]T . Then for
n = 1, 2, . . . , N − 1,

[e, Se, . . . , Sne]+ =

[
e1, −e1 + e2, . . . , −en−1 + en, −en +

1

N − n
Sn e

]T
,

which can easily be verified using the four Moore–Penrose conditions; see, e.g., [11,
p. 102]. The GMRES residuals are therefore given by
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rTn
‖rn‖2

= [1,−τ, . . . , (−τ)n] [e, Se, . . . , Sne]+

=

[
1 + τ,−(τ + τ2), . . . , (−1)n−1(τn−1 + τn),

(−τ)n

N − n
, . . . ,

(−τ)n

N − n

]
,

and hence

‖rn‖ =

(
|1 + τ |2

n−1∑
k=0

|τ |2k +
|τ |2n
N − n

)− 1
2

.

Similarly to the case r0 = el, the GMRES residual norms converge for r0 = e slowly
until the very last step whenever |τ | ≤ 1. Unlike in the case r0 = el, for r0 = e the
GMRES convergence depends on the sign of the real part of τ . In particular,

‖rn‖ =
(

N−n
4n(N−n)+1

) 1
2

for τ = 1,

‖rn‖ = (N − n)
1
2 for τ = −1.

Thus the stagnation is more severe when τ = −1 (recall that ‖r0‖ = N
1
2 ).

These examples demonstrate that if |τ | ≤ 1, then slow convergence of the GMRES
residual norms can typically be expected.

3. Tridiagonal Toeplitz matrices. Given nonzero parameters γ, λ, and µ,
consider an N by N tridiagonal Toeplitz matrix T ,

T = γS + λI + µST ≡ γ (S + τI + ζST ) , τ ≡ λ

γ
, ζ ≡ µ

γ
.(3.1)

Adding a nonzero superdiagonal µST to J in (2.1) causes the resulting matrix T to
have N distinct eigenvalues,

σk = λ + µζ−
1
2 ωk , ωk ≡ 2 cos

kπ

N + 1
, k = 1, . . . , N,(3.2)

with the corresponding normalized eigenvectors given by

yk = νk [∆uk] , k = 1, . . . , N,(3.3)

where

uk =

(
2

N + 1

) 1
2
[
sin

kπ

N + 1
, . . . , sin

Nkπ

N + 1

]T
,

∆ = diag
(
ζ−

1
2 , ζ−1, . . . , ζ−

N
2

)
,

νk =

⎛
⎝ 2

N + 1

N∑
j=1

ζ−j sin2 jkπ

N + 1

⎞
⎠

− 1
2

;

see, e.g., [10, pp. 113–115]. Please note that the matrix U = [u1, . . . , uN ] represents the
real orthonormal and symmetric eigenvector matrix of any N by N symmetric (pos-
sibly complex) tridiagonal Toeplitz matrix. The eigenvector matrix Y = [y1, . . . , yN ]
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of T is, apart from the normalization, obtained from U by scaling the rows by the

powers of ζ−
1
2 . Hence the condition number of Y equals max(|ζ| 1−N

2 , |ζ|N−1
2 ).

When |γ| ≈ |µ|, meaning |ζ| ≈ 1, then Y is well-conditioned and one may base
the GMRES convergence analysis on the eigenvalues of T and the components of r0
in the direction of the individual eigenvectors of T .

This paper is motivated by the application of GMRES to convection-diffusion
problems with dominating convection [7]. Then the interesting case is characterized
by |γ| ≈ |λ| � |µ|, meaning |τ | ≈ 1 and |ζ| � 1. The principal question is, To
what extent does the behavior of the GMRES residual for T and a given r0 resemble
the behavior of the GMRES residual for the corresponding J and the same r0? We
focus on this question but we also present some general statements valid for arbitrary
nonzero values of γ, λ, and µ.

We would like to stress the following subtle point: When |ζ| is small, the matrix
T can be viewed as a small perturbation of the matrix J . It is therefore tempting to
conclude that for each given r0 the Krylov subspaces generated by T and J are in
some sense close to each other. This would imply that generally the GMRES residual
norms for J and r0 are close to the GMRES residual norms for T and r0. However,
it is well known that a small perturbation of a general matrix does not ensure a
small change of the Krylov subspace, not even when the matrix is symmetric positive
definite. (An instructive example is given below.) It is the structure of J and T that
makes such arguments applicable and our analysis possible.

3.1. Explicit mapping. The standard approach to GMRES convergence anal-
ysis is based on the eigendecomposition T = Y DY −1, D = diag (σ1, . . . , σN ), giving

‖rn‖ = ‖Y pn(D)Y −1r0‖ = min
p∈πn

‖Y p(D)Y −1r0‖(3.4)

≤ ‖Y ‖ ‖Y −1‖ ‖r0‖ min
p∈πn

max
k

|p(σk)|;(3.5)

see [3, Theorem 5.4] and [9, Proposition 4]. The resulting worst-case bound (3.5)
frequently is the basis for discussions of GMRES convergence. However, it does not
take into account the fact that for some initial residuals GMRES may behave very
differently than for others. In practical problems we work with some particular initial
residuals and we are rarely interested in the worst-case behavior. Moreover, when the
eigenvector matrix Y is ill-conditioned, then some components of the vector Y −1r0
can be very large, potentially much larger than ‖r0‖. On the other hand, the norm
of the linear combination Y [pn(D)Y −1r0] in (3.4) is bounded from above by ‖r0‖.
This linear combination therefore can contain a significant cancellation, which is not
reflected in the minimization problem (3.5). Hence the principal weakness of (3.5) in
case of ill-conditioned eigenvectors is not the potentially large multiplicative factor

‖Y ‖ ‖Y −1‖, in our case equal to max(|ζ| 1−N
2 , |ζ|N−1

2 ). The principal weakness is rather
the minimization problem itself. In general, any description of GMRES convergence
using the possibly large coordinates Y −1r0 of r0 in the eigenvector basis, and the
mapping from Y −1r0 to the nth GMRES residual rn, should be applied with proper
care for the cancellation that might occur in the presence of close eigenvectors. For
more discussion on this topic, see [7] and [12]. In the following we will show the
difference when the mapping from Y −1r0 to rn is replaced by the mapping from r0
to rn.

Let us examine the identity

rn = pn(T ) r0 = ∆Upn(D)U∆−1r0 .(3.6)
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We interpret pn(T ) as the mapping from r0 to rn, and we denote, for simplicity,

pn(T ) = Cn. The entries c
(jk)
n of Cn, j, k = 1, 2, . . . , N , are given by

c(jk)
n = eTj Cn ek = eTj ∆Upn(D)U∆−1ek = ζ

k−j
2 uT

j pn(D)uk .(3.7)

The jth entry of rn can be expressed as

eTj rn = eTj Cnr0 =

N∑
k=1

c(jk)
n ρk.(3.8)

Note that since T is tridiagonal, the matrices Tn and thus the matrices Cn, for
n = 0, 1, . . . , N − 1, in general have exactly n nonzero subdiagonals and n nonzero

superdiagonals. In particular, c
(jk)
n = 0 for |j − k| > n.

Theorem 3.1. For each n until GMRES terminates the mapping Cn from r0
to rn represents a banded matrix with 2n + 1 nonzero diagonals. We denote the
column vectors formed by the entries of each diagonal (ordered from the most outer
subdiagonal to the most outer superdiagonal) by

c(−n)
n , c(−n+1)

n , . . . , c(0)n , . . . , c(n−1)
n , c(n)

n .

Then the subdiagonals and superdiagonals are related by

c(d)n = ζd c(−d)
n ,(3.9)

and the nth GMRES residual can therefore be written in the form

rn = Cnr0 =

n∑
d=0

[Sdr0] 	
[

0d

c
(−d)
n

]
+ ζ

n∑
d=1

ζd−1[(ST )dr0] 	
[

c
(−d)
n

0d

]
,(3.10)

where a	b denotes the element-by-element multiple (Hadamard product) of the vectors
a and b, and 0d denotes the zero vector of length d.

Proof. For a given n, and d fixed between 1 and n, the vector c
(−d)
n representing the

dth subdiagonal consists of the entries c
(j,j−d)
n , j = d + 1, . . . , N . The manipulations

c(j,j−d)
n = ζ−

d
2 uT

j pn(D)uj−d

= ζ−d ( ζ
d
2 uT

j−d pn(D)uj )

= ζ−dc(j−d,j)
n

finish the proof of (3.9). Relation (3.10) is an obvious consequence of (3.9).
When |ζ| � 1, the strictly upper triangular part of the mapping Cn is much

less significant than its lower triangular part (including the main diagonal). The
significance of the superdiagonals is exponentially decreasing with the distance from
the main diagonal. Since the proof of Theorem 3.1 does not use that pn is the
GMRES polynomial, the statement can be reformulated for any matrix polynomial
p(T ), where T is a tridiagonal Toeplitz matrix.

Using (3.8),

‖rn‖2 =

N∑
j=1

|eTj rn|2 =

N∑
j=1

∣∣∣∣∣
N∑

k=1

c(jk)
n ρk

∣∣∣∣∣
2

.(3.11)
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Since C0 = I, this formula for n = 0 reduces to

‖r0‖2 =

N∑
j=1

∣∣∣∣∣
N∑

k=1

c
(jk)
0 ρk

∣∣∣∣∣
2

=

N∑
k=1

|ρk|2 .(3.12)

A comparison of (3.11) and (3.12) shows that the decrease of the GMRES residual

norms is controlled by the behavior of the individual entries c
(jk)
n defined in (3.7).

Moreover,

‖rn‖ ≤ ‖r0‖ ‖Cn‖ ≤ ‖r0‖ ‖Cn‖F .(3.13)

These bounds are different from the usual worst-case convergence bounds in that Cn

is determined by pn, which depends on the particular r0.
The individual entries of the matrices Cn do not decrease monotonically, but their

behavior is typically very different from the behavior of the entries of the mapping
Y pn(D) from Y −1r0 to rn in (3.4). We do not quantify this in a statement but instead
present a qualitative argument and experiments. The only term that can seemingly

make c
(jk)
n large is ζ

k−j
2 . When, e.g., |ζ| � 1, then for j > k this factor becomes large.

However, c
(jk)
n are the entries of the matrix Cn = pn(T ). Therefore we may expect

that the individual nonzero c
(jk)
n are of moderate size, and mostly decreasing (although

possibly very slowly) with n, which makes the inequalities (3.13) reasonable. The fact
that each iteration step n introduces a new nonzero subdiagonal in the mapping from
r0 to rn hints that when |γ| ≈ |λ| � |µ|, i.e., |τ | ≈ 1 � |ζ|, the GMRES convergence
may be slow.

We emphasize that these considerations about Cn and convergence of GMRES
are based on the particular tridiagonal Toeplitz structure of T . On the other hand,
when the components of Y −1r0 are large, any approach based on Y pn(D) can hardly
lead to a well-justified insight, even when the special structure of T is exploited.

In Figure 3.1 we plot the values log10 (|c(jk)
n |), j, k = 1, . . . , 15, for n = 2, 6, 10, 14,

computed when GMRES is applied to the 15 by 15 matrix T1 = S + I + 0.01ST and
the initial residual r0 = e. Corresponding results for T1 and r0 = rand(15, 1) are
shown in Figure 3.2 (rand is the pseudorandom number generator in MATLAB), and
Figure 3.3 shows results for the diagonally dominant matrix T2 = S+2I+0.01ST and
r0 = e. In Figure 3.4 we plot the respective GMRES residual norms and in Figure 3.5
the values ‖Cn‖F , representing an upper bound on ‖rn‖/‖r0‖; cf. (3.13).

In Figures 3.1 to 3.3 we see a decrease of |c(jk)
n | on the superdiagonals of Cn that

is exponential in the distance from the main diagonal. Hence in the individual sums

|
∑N

k=1 c
(jk)
n ρk |2, j = 1, . . . , N , on the right-hand side of (3.11) only the terms for

j ≥ k play a significant role.

For T1 and r0 = e as well as r0 = rand(15, 1), the significant entries c
(jk)
n maintain

approximately the same orders of magnitude throughout the GMRES iteration. Cor-
respondingly, the residual norms (solid and dash-dot curves in Figure 3.4) decrease
very slowly until the very last step. The initial residual r0 = e presents a case that

yields almost a perfect plateau of significant |c(jk)
n | in every step. The variation of

the entries in r0 = rand(15, 1) causes a larger variation among the absolute values of
the significant entries of Cn. For T2 and r0 = e, GMRES converges faster (cf. the
dashed curve in Figure 3.4) since all significant entries of Cn decrease noticeably in
magnitude in every step. A comparison of Figure 3.4 and Figure 3.5 illustrates that
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Fig. 3.1. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T1 = S + I + 0.01ST and r0 = e.

the inequalities (3.13) are for our data quite sharp, and, consequently, that there is
no significant cancellation among the individual terms in (3.11).

In the following subsection we develop an analogue of Theorem 2.1 for tridiagonal
Toeplitz matrices.

3.2. Extension of the bidiagonal analysis. For each scaled (lower bidiagonal)
Jordan block J and each r0 it is easy to see when GMRES terminates: if ρl is the
first nonzero entry of r0, then GMRES applied to J and r0 terminates in exactly
N − l + 1 steps, giving rN−l �= 0 and rN−l+1 = 0. For a tridiagonal Toeplitz matrix
T with nonzero sub- and superdiagonal, the situation is more complicated. Here the
total number of GMRES steps for a given nonzero pattern of r0 can depend on the
actual numerical values of its nonzero entries. However, since we are not interested in
conditions for termination of GMRES in a given number of steps, we will not specify
this number and merely assume that it is greater than N − l.

Theorem 3.2. Suppose that GMRES is applied to a system with the matrix
T = γ(S + τI + ζST ) and the initial residual r0 = [ρ1, . . . , ρN ]T . Let ρl be the first
nonzero entry of r0. Moreover, suppose that r0 has at least N − l nonzero components
in the directions of the individual eigenvectors of the matrix T (GMRES does not
terminate in the first N − l steps). Then for n = 0, 1, . . . , N − l the GMRES residuals
satisfy

rTn = ‖rn‖2 [1,−τ, . . . , (−τ)n] [r0, (S + ζST )r0, . . . , (S + ζST )nr0]
+ ,(3.14)

‖rn‖ ≥
( n∑

j=0

|τ |2j
)− 1

2

σmin

(
[r0, (S + ζST )r0, . . . , (S + ζST )nr0]

)
.(3.15)
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Fig. 3.2. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T1 = S + I + 0.01ST and r0 = rand(15, 1).
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Fig. 3.3. The values log10 (|c(jk)
n |) for j, k = 1, . . . , N and n = 2 (top left), 6 (top right),

10 (bottom left), 14 (bottom right), computed when GMRES is applied to the 15 by 15 matrix
T2 = S + 2I + 0.01ST and r0 = e.
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Fig. 3.5. The values ‖Cn‖F for T1 = S+I+0.01ST and r0 = e (solid), T1 and r0 = rand(15, 1)
(dash-dot), T2 = S + 2I + 0.01ST and r0 = e (dashed).

Proof. For n = 0, 1, . . . , N− l, the matrix [r0, T r0, . . . , T
nr0] has full column rank.

The rest is similar to the proof of Theorem 2.1, with T and S + ζST taking over the
roles of J and S, respectively. Indeed,

rTn = ‖rn‖2 eT1 [r0, T r0, . . . , T
nr0]

+ ≡ ‖rn‖2 gTn ,

from which we receive gTn [r0, T r0, . . . , T
nr0] = eT1 . Then

0 = gTnTr0 = γgTn (S + ζST ) r0 + λgTn r0, i.e., gTn (S + ζST ) r0 = −τ,
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and an induction shows that in fact gTn (S + ζST )kr0 = (−τ)k for k = 1, 2, . . .. Hence

gTn [r0, (S + ζST )r0, . . . , (S + ζST )nr0] = [1,−τ, . . . , (−τ)n] .(3.16)

Now note that

gn ∈ span{r0, T r0, . . . , Tnr0} = span{r0, (S + ζST )r0, . . . , (S + ζST )nr0} .

A multiplication of (3.16) from the right with

[r0, (S + ζST )r0, . . . , (S + ζST )nr0]
+

yields (3.14). The lower bound (3.15) is a direct consequence.
Consider, for simplicity, the iteration step n = N − l. The principal difference

between the cases with J and T is in the form of (2.7) and (3.16). The system of
equations (3.16) is for l �= 1 underdetermined, and its system matrix is constructed
from r0 in a much more complicated way than in (2.7). However, the system matrix
in (3.16) can be written in the form

[r0, Sr0, . . . , S
N−lr0]

T + ζ
[
0, ST r0, . . . , ζ

−1
{
(S + ζST )N−l − SN−l

}
r0
]T

≡ [O,R] + ζP ,(3.17)

where O denotes the N−l+1 by l−1 zero matrix, and R denotes the upper triangular
matrix described in (2.7). The columns of PT are given by

pj = ζ−1
{

(S + ζST )j − Sj
}
r0 for j = 0, 1, . . . , N − l.(3.18)

Since S and ST do not commute, (S + ζST )j cannot be evaluated by the binomial
theorem. However, for j = 1, . . . , N − l, this expression can be formally written as

(S + ζST )j = Σj,0 + ζΣj,1 + · · · + ζj−1Σj,j−1 + ζjΣj,j .

Here Σj,k denotes the sum of all possible matrix products involving j − k times the
matrix S and k times the matrix ST . In particular, Σj,0 = Sj and Σj,j = (ST )j .
Consequently, for j = 1, . . . , N − l,

pj =
(
Σj,1 + ζΣj,2 + · · · + ζj−2Σj,j−1 + ζj−1Σj,j

)
r0 .(3.19)

Note that the matrix Σj,k is, for 1 ≤ j ≤ N−l and 1 ≤ k ≤ j, the sum of ( j
k ) products

of shift matrices and that ‖Σj,k‖ ≤ ( j
k ). Therefore, assuming |ζ| � (j − 1)−1,

‖pj‖ ≤ ‖r0‖
j∑

k=1

|ζ|k−1

(
j
k

)
= j ‖r0‖ (1 + O(|ζ| j)),

where O(z) is bounded from above by z multiplied by a constant (here close to one).

When |ζ| � (N − l)−
3
2 ,

‖P‖ ≤ (N − l)
1
2 max

j
‖pj‖ ≤ (N − l)

3
2 ‖r0‖

(
1 + O

(
(N − l)−

1
2

))
.

The matrix (3.17) can then be considered a small perturbation of the upper triangular
system matrix in (2.7), extended by a zero block.
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We will now use this perturbation idea for analyzing when GMRES applied to
T and r0 behaves similarly to GMRES applied to J and r0. As mentioned above,
this phenomenon depends in a complicated way on the initial residual r0; cf. (3.16)
and (3.17). Any general result with a nontrivial quantitative meaning can therefore
be expected to reflect this complicated nature. In the following we have chosen to
preserve a quantitative character of the bounds at the price of an assumption on R−1P .

We will use the following notation. The residual for GMRES applied to J with r0
and the auxiliary vector obtained as a solution of (2.7) will be denoted by r

(J)
n and

g
(J)
n , respectively. Analogously, r

(T )
n , respectively, g

(T )
n , will denote the residual for

GMRES applied to T with r0, respectively, the minimum norm solution of (3.16). As
above, let r0 = [ρ1, . . . , ρN ]T with ρl being its first nonzero entry. As in Theorem 3.2
we will assume that GMRES applied to T with r0 does not terminate in the first N− l
steps. Then from (3.16),

g
(T )
N−l = ([O,R] + ζP )

+
[1,−τ, . . . , (−τ)N−l]T

=
(
[O, I] + ζR−1P

)+
R−1[1,−τ, . . . , (−τ)N−l]T

=
(
[O, I] + ζR−1P

)+
g
(J)
N−l .

Taking norms,

‖[O, I] + ζR−1P‖−1 ‖g(J)
N−l‖ ≤ ‖g(T )

N−l‖ ≤ ‖([O, I] + ζR−1P )+‖ ‖g(J)
N−l‖ .(3.20)

Assuming that |ζ| ‖R−1P‖ < 1,

‖([O, I] + ζR−1P )+‖ ≤ (1 − |ζ| ‖R−1P‖)−1 .

Considering that ‖r(T )
N−l‖ = 1/‖g(T )

N−l‖ and ‖r(J)
N−l‖ = 1/‖g(J)

N−l‖, we proved the follow-
ing theorem.

Theorem 3.3. Using the previous notation and the assumptions of Theorem 3.2,

let |ζ| ‖R−1P‖ < 1. Then the GMRES residuals r
(T )
N−l and r

(J)
N−l satisfy the inequalities

(
1 + |ζ| ‖R−1P‖

)
‖r(J)

N−l‖ ≥ ‖r(T )
N−l‖ ≥

(
1 − |ζ| ‖R−1P‖

)
‖r(J)

N−l‖ ,(3.21)

where R represents the matrix formed by the last N − l + 1 columns of the matrix
[r0, Sr0, . . . , S

N−lr0]
T and P = [0, ST r0, . . . , ζ

−1{(S + ζST )N−l − SN−l} r0]T .
The main point can be summarized in the following way. Suppose that a scaled

Jordan block J is extended to a tridiagonal Toeplitz matrix T by a superdiagonal of
sufficiently small modulus (compared to the modulus of the subdiagonal). Assume
that GMRES for T and r0 terminates no earlier than GMRES for J and r0. Then
the convergence of GMRES for T and r0 will be comparable to the convergence of
GMRES for J and r0. We next consider two examples illustrating our results.

Example 3.4. Suppose that r0 = e1. Then for J as well as for T the GMRES
algorithm terminates in step N . Thus, whenever |ζ| ‖R−1P‖ < 1, the inequalities
(3.21) hold with l = 1. Note that for r0 = e1 we have R = I and ‖r0‖ = 1, so that

(1 + |ζ| ‖P‖) ‖r(J)
N−1‖ ≥ ‖r(T )

N−1‖ ≥ (1 − |ζ| ‖P‖) ‖r(J)
N−1‖

≥ (1 − |ζ|(N − 1)
3
2 (1 + O((N − 1)−

1
2 ))) ‖r(J)

N−1‖ ,

when |ζ| � (N − 1)−
3
2 .
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Example 3.5. For r0 = e ≡ [1, 1, . . . , 1]T we can see one of the main differences be-
tween the application of GMRES to linear systems with J and with a general extension
of J to the tridiagonal Toeplitz matrix T : for any nonzero γ and λ, dim KN (J, e) = N ,
and hence GMRES with J and r0 = e terminates in step N . For certain nonzero val-
ues of λ, γ, and µ, however, dim KN (T, e) < N , and hence for certain matrices T and
r0 = e the GMRES algorithm terminates earlier than in step N .

The prime example for the latter case is given by a symmetric T , i.e., γ = µ. The
normalized eigenvectors of each such matrix are given in (3.3) with ∆ = I. These
vectors represent discrete sine functions and thus they satisfy certain symmetries. In
particular, simple technical manipulations show that

uT
k e =

(
2

N + 1

) 1
2

N∑
j=1

sin

(
jkπ

N + 1

)

=

(
2

N + 1

) 1
2 cos

(
kπ

2(N+1)

)
− cos

(
(2N+1)kπ
2(N+1)

)
2 sin

(
kπ

2(N+1)

)

=

(
2

N + 1

) 1
2 cos

(
kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) (
1 − (−1)k

)
= 0 if k is even.

When uT
k r0 = 0, the initial residual r0 has no component in the direction of the

eigenvector uk of T . For a symmetric T and r0 = e, GMRES will therefore terminate
in step N/2 or (N + 1)/2 when N is even or odd, respectively. A similar result holds
for γ = −µ.

In general, however, the normalized eigenvectors of a tridiagonal Toeplitz matrix
T are given by νk[∆uk]. The components of r0 = e in the direction of the individual
eigenvectors of T are generally given by

ν−1
k (uT

k ∆−1 e) = ν−1
k

(
2

N + 1

) 1
2

N∑
j=1

ζ
j
2 sin

(
jkπ

N + 1

)

for k = 1, . . . , N . If |ζ| �= 1, then the initial residual r0 = e usually has a nonzero
component in the direction of each of the individual eigenvectors of T . This implies
that a very small additive perturbation of a symmetric, even positive definite, tridi-
agonal Toeplitz matrix by εS (or by εST ) may cause GMRES (with r0 = e) to iterate
twice as long until it terminates.

Here we are mainly interested in the case |ζ| � 1. Then GMRES for J and
r0 = e, and usually also for T and r0 = e, terminates in step N . If |ζ| ‖R−1P‖ < 1,
then (3.21) holds with l = 1. Since R−1 = I − ST , we get ‖R−1‖ ≤ 2, and since

‖r0‖ = N
1
2 , the lower bound in (3.21) yields

‖r(T )
N−1‖ ≥ (1 − |ζ| ‖(I − ST )P‖) ‖r(J)

N−1‖

≥ (1 − 2|ζ|N2(1 + O((N − 1)−
1
2 ))) ‖r(J)

N−1‖ ,

when |ζ| � (N − 1)−
3
2 . Numerical examples for this bound are given in section 4.
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4. Numerical experiments. The numerical experiments in this section illus-
trate main points presented and discussed above.

Experiment 4.1. We use the 15 by 15 matrices

J = S + I,

T1 = S + I + 0.01ST ,

T2 = S + I + 0.03ST ,(4.1)

T3 = S + I + 0.05ST ,

T4 = S + I + 0.999ST ,

and r0 = e. Since dim KN (J, e) = N , and dim KN (Tj , e) = N for all j, GMRES with
each of the five matrices and r0 = e terminates in step N . The relevant values for the
application of the bound (3.21) are given in the following table:

j ζj ‖R−1
j Pj‖ ζj ‖R−1

j Pj‖ 1 − ζj ‖R−1
j Pj‖

1 0.01 25.58 0.256 0.744
2 0.03 29.50 0.885 0.115
3 0.05 34.33 1.716 �
4 0.999 5.1e+04 5.1e+04 �

For j = 1, 2, we have ζj ‖R−1
j Pj‖ < 1, so that the bounds (3.21) are applicable with

l = 1. The � for j = 3, 4 indicates that since ζj ‖R−1
j Pj‖ > 1, the lower bound in

(3.21) is not applicable.
Figures 4.1 and 4.2 show the GMRES residual norms. Since τ = 1, GMRES

converges slowly when applied to J (solid). For T1 (dash-dot) and T2 (dotted), the
GMRES residual norms are very close to the ones for J . The correspondence between

‖r(J)
14 ‖ and ‖r(Tj)

14 ‖, j = 1, 2, is even closer than predicted by the bounds (3.21). It is
also noteworthy that although this bound is not applicable for T3, the residual norms
in this case (dots) are very close to the ones for J as well. The results for T4 (dashed)
show that for a larger perturbation (here ζ4 = 0.999) the (N − 1)st GMRES residual
norm for a tridiagonal Toeplitz matrix can differ significantly from the corresponding
one for the Jordan block.

Experiment 4.2. In Figure 4.3 we used the 15 by 15 matrices

J = S + I,

T4 = S + I + 0.999ST (as in Experiment 4.1),

T5 = S + I + ST ,

and r0 = e. This experiment demonstrates the difference in the GMRES residual norm
curves for T4 (dash-dot) and T5 (dotted), despite the fact that T4 = T5 − 0.001ST

is only a small perturbation of the symmetric matrix T5. It is interesting to observe
that until termination of GMRES for T5 the convergence curves are very close to each
other.

Experiment 4.3. Our last experiment comes from the streamline upwind Petrov–
Galerkin (SUPG) discretization of a convection-diffusion model problem with domi-
nating convection. This model problem with rectangular domain, regular grid, and a
constant grid aligned convection motivated our work, leading to the results presented
in this paper. Here we use it for a short illustration.
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Fig. 4.1. Residual norms ‖rn‖/‖r0‖ of GMRES applied to the five different 15 by 15 matrices
given in (4.1) and the initial residual r0 = e.
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Fig. 4.2. Close-up of Figure 4.1.

As explained in [1, 2] and [7], the SUPG discretized model operator can be writ-
ten as an N2 by N2 block-diagonal matrix with N by N nonsymmetric tridiagonal
Toeplitz blocks Tj = γj(S + τjI + ζjS

T ), j = 1, . . . , N , on its diagonal. Example
values for |τj | and |ζj |, as well as the corresponding quantities related to (3.21) with
N = 15 and r0 = e1, are given in Table 4.1.
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Fig. 4.3. Residual norms ‖rn‖/‖r0‖ of GMRES applied to 15 by 15 matrices J = S+ I (solid),
T5 = S + I + ST (dotted), T4 = T5 − 0.001ST (dash-dot), and the initial residual r0 = e.

Table 4.1

Example values derived from the SUPG discretized convection-diffusion model operator.

j |τj | |ζj | ‖R−1
j Pj‖ |ζj | ‖R−1

j Pj‖
1 1.0052 0.0010 13.0002 0.0134
2 1.0209 0.0042 13.0040 0.0544
3 1.0481 0.0096 13.0211 0.1252
4 1.0881 0.0176 13.0708 0.2303
5 1.1431 0.0286 13.1874 0.3774
6 1.2162 0.0432 13.4295 0.5808
7 1.3116 0.0623 13.8989 0.8663
8 1.4348 0.0870 14.7740 1.2847
9 1.5925 0.1185 16.3739 1.9402
10 1.7923 0.1585 19.2798 3.0551
11 2.0409 0.2082 24.5496 5.1108
12 2.3392 0.2678 34.0035 9.1077
13 2.6735 0.3347 50.1498 16.7855
14 3.0033 0.4007 74.1263 29.6989
15 3.2564 0.4513 99.9102 45.0870

Figure 4.4 shows the GMRES residual norm curves for the matrices Tj , j =
1, . . . , 15, and r0 = e1. For small j we have |τj | ≈ 1, which leads to very slow
convergence of GMRES for the corresponding scaled Jordan blocks and r0 = e1.
Simultaneously there holds |ζj | � 1, so that the convergence for the respective tridi-
agonal Toeplitz matrices Tj with the same r0 is comparably slow. With increasing j,
both |τj | and |ζj | increase, and the speed of convergence of GMRES for Tj (as well
as for the corresponding Jordan blocks) and r0 = e1 increases significantly. The slow
convergence of GMRES for the matrices Tj with small indices j translates into an ini-
tial phase of slow convergence of GMRES for the SUPG discretized model operator.
The detailed exposition is beyond the scope of this paper, and we refer an interested
reader to [7].
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Fig. 4.4. Residual norms ‖rn‖/‖r0‖ of GMRES applied to 15 by 15 matrices Tj , j = 1, . . . , 15,
representing the tridiagonal Toeplitz blocks on the diagonal of a SUPG discretized convection-
diffusion model operator (see [7]) with the initial residuals r0 = e1.

5. Conclusions and outlook. Consider GMRES convergence for a matrix A
and a given initial residual r0. Let B be a small perturbation of A. Does the as-
sumption that B is sufficiently close to A guarantee that the GMRES residuals for A
and r0 are at every iteration step close to the GMRES residuals for B and r0? A
related question, although in a different context and without the dependence on the
initial residual, which we consider vital, was recently also considered by Huhtanen and
Nevanlinna [4]. Motivated by applications in convection-diffusion problems [7], our
paper studies this question for A ≡ J = γS + λI and B ≡ T = J + µST , and for this
particular matrix A and its particular perturbation B it gives an affirmative answer.
In general, however, the answer is complicated, which is documented by a nonsym-
metric perturbation of a symmetric tridiagonal Toeplitz matrix. To what extent our
results can be applied to GMRES convergence analysis of more general problems, e.g.,
when there exists a well-conditioned transformation of the system matrix into a block
diagonal form with tridiagonal blocks, remains the subject of further work.

Acknowledgments. We thank Michael Eiermann and Oliver Ernst for sharing
their unpublished notes [2] and for very stimulating discussions and advice about
the subject matter of this paper. We also thank the anonymous referee for several
suggestions that helped to improve the presentation of the paper. All numerical
experiments in this paper were performed using Matlab [13].

REFERENCES

[1] M. Eiermann, Semiiterative Verfahren für nichtsymmetrische lineare Gleichungssysteme,
Habilitationsschrift, Universität Karlsruhe, Karlsruhe, 1989.

[2] M. Eiermann and O. Ernst, GMRES and Jordan blocks, private communication, 2002.
[3] H. C. Elman, Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations,

Ph.D. thesis, Yale University, New Haven, CT, 1982.



CONVERGENCE OF GMRES FOR TRIDIAGONAL TOEPLITZ MATRICES 251

[4] M. Huhtanen and O. Nevanlinna, Minimal decompositions and iterative methods, Numer.
Math., 86 (2000), pp. 257–281.

[5] I. C. F. Ipsen, Expressions and bounds for the GMRES residual, BIT, 40 (2000), pp. 524–535.
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