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Faber Polynomials Corresponding to
Rational Exterior Mapping Functions

J. Liesen

Abstract. Faber polynomials corresponding to rational exterior mapping functions
of degree(m, m — 1) are studied. It is shown that these polynomials always satisfy
an (m + 1)-term recurrence. For the special case= 2, it is shown that the Faber
polynomials can be expressed in terms of the classical Chebyshev polynomials of the
first kind. In this case, explicit formulas for the Faber polynomials are derived.

1. Introduction

Suppose tha® c C is a compact set containing more than one point. Further, suppose
that its complemen®® := C\Q is simply connected in the extended complex plane
C = CU/{oc}. LetE := {z: |z|] < 1} denote the closed unit disk. Then the Riemann
mapping theorem guarantees the existence of a conformal map

(1) z=V(w), v EC - QF,
which is made unique by the normalization
2 W (00) = 00 and W'(c0) =it > 0.

We call & theexterior mapping function a®.
In a neighborhood of infinitpl can be expanded as

3 ‘I’(w):t(w+a0+%+a_22+...>.
woow

ForR > 1, we define
(4) Lr:={¥(w):|w| =R}

Then thenth Faber polynomial F(z) for 2 is defined by the following expansion:

Ww) i Fa(2)

© Yy -z

lw| > R, zeint(LR),
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where infLgr) denotes the interior of the Jordan curdg. It is easy to show

that F,(2) is of exact degrea with leading term(z/t)". Using (3), the following well-

known recurrence relation can be derived by comparing equal powers of
in (5):

n-2

®) Fo@=1  Fa@= fFM(z) - ;“i Foi (@ —nNans  n=>L1

Faber introduced these polynomials in 1903 in the context of polynomial approxi-
mation of analytic functions in the complex plane [6]. Since then his work has found
applications in many areas of mathematics and a large number of papers on Faber poly-
nomials have been published. Examples of applications and further properties can be
found in [3], [15], [16]. Suetin’s recent book [16] additionally contains a comprehensive
bibliography of the literature on Faber polynomials (188 references).

Recently, Faber polynomials for particular regions in the complex plane have been the
subject of much research. For example, He studied Faber polynomials for circular arcs
[8] and circular lunes [9]. Coleman and Smith [2], as well as Gatermann, Hoffmann, and
Opfer [7], considered circular sectors, while Coleman and Myers [1] worked on annular
sectors. Eiermann and Varga [5], as well as He [10] and He and Saff [11], considered
hypocycloidal domains.

Here we study Faber polynomials for sets that hatmnal exterior mapping func-
tions Examples for such sets include some convex sets (circles, ellipses), some non-
convex but starlike sets (hypocycloids), and non-starlike sets (circular arcs, and the
“bratwurst” shape sets we introduced in [12]). Because of this generality such sets have
many applications, in particular in numerical linear algebra, where they are used as
inclusion sets for the eigenvalues of a given matrix (see, e.g., [13], and the references
therein for more details).

In Section 2, we show that the Faber polynomials for acsetith rational exterior
mapping functionl always satisfy a short recurrence, even if the Laurent expansion (3)
of ¥ has infinitely many terms and thus (6) does not yield a short recurrence relation. In
Section 3, we show that i has degre€2, 1), the Faber polynomials can be expressed
in terms of the classical Chebyshev polynomials of the first kind. In this case, we also
give explicit formulas for the Faber polynomials.

2. General Results

Inthis paper we consider Faber polynomials for Sktisat have rational exterior mapping
functions, i.e., we assume that the conformal ndagatisfies (1), (2), and

Pw) — w™+pmaw™ + -+ o

- ’ Vm-1 > 09
Qw)  vm—1w™ ™t + v w™ 24 4w

7 Y=

for some positive integem. The polynomialsP(w) and Q(w) are assumed to have
no common zeros. We point out that becauses bijective in EC, the zerosw; of
Q(w) satisfy|wj| < 1. Similarly, forz € int(Lr), the zeroswj (2) of the polynomial
P(w) — zQ(w) satisfy|w;(2)| < R.
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Lemma 2.1. Suppose tha® has an exterior mapping function of the folf@). Fur-
thermore suppose that we have the factorizations

| |
(8) Qw) =vma][w—wp™, meN, Y m=m-1,
Il 2

17
and forz € C:

1(2) 1@
@ Pw)-zQw)=[]w-w@™?, m@eN, Y m@=m
=1 j=1

i
Then the nth Faber polynomial f@t is given by

1(2) I
(10) Fn(2) = Z m; (2)w;j(2)" — Z mjwf, n>1
=1 =1

Proof. LetLg be asin (4). Suppose that| > R andz € int(Lg). Using the factor-
izations (8) and (9), we get
v (w)

_— = d Log(W¥ 2)] = d L
o~ togv 2] = o [Log

Q(w)
d d

= 4w [Log(P(w) — zQ(w))] — d—[Log(Q(w)/vm_1>]
w w

d 1(2) . d | "
= 4 [; Log(w — w;(2)) r J; Log(w — wj)
& mi2 L om;
_ j _ j
_Zw—wj(z) Zw—wj

j=1 j=1

£ D N L

w | = 1-wj(@/w = 1-wj/w

As noted abovelw;| < 1 and, since we assunzec int(LR), |lwj(z)| < R. Thus, for
lw| > R> 1:

vw [ &( Ew@") . &
\If(w)—z_E[j;:(m’(z)g wn _J; mjg_“

o0 1(2) |
> [(Z m; (2wj(2)" = " m; wj”> /w”+1:| )
j=1 j=1

n=0

P(w) — zQ(w)>]

A comparison with (5) shows that (10) holds for alE int(Lg). But sinceR > 1 can
be chosen arbitrarily, (10) holds for alle C. [ ]

Remark. Considering Faber polynomials fon-cusped hypocycloids, He and Saff
[11, Prop. 2.3] derive a special case of (10) for exterior mapping functions of the form
Y(w) =w+wM/m-1),m> 2.
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For F,(2) as in (10), we introduce the correspondstufted Faber polynomial

1(2)
m; (2)wj (2)", n>1
=1

|
(11) 'fn(z) =F2+ Z m; wjn =
— J

J

We also defind(z) := m. This separate definition is necessary, because (1h)$o0
potentially requires forming®
Note that

[
IFa@ - Fa@| < > Imuw)| <m—1  forall n>1 and zeC.
j=1
In particular, the difference betweéi (z) and Fn(2) approaches zero asapproaches
infinity. We next show that the shifted Faber polynomials satisfy a short recurrence
relation.

Theorem 2.1. Suppose tha® has an exterior mapping function of the fo(i). Then
the nth shifted Faber polynomi&i, (z) for @ as defined ir{11) satisfies

m—1
(12) Fao@ =) (nz—pn)Fom-n@, n=m
h=0

Proof. First note thatP(w) — zQ(w) = w™ + ZH:ol(,th — vh2)w". Hence, ifw; (2)
is a zero ofP(w) — zQ(w), then

m-1
wi @™ =) oz~ un)w;@".
h=0

Thus, forn > m:

1(2) 1(2) m—1
Fo@ = Y _m@uwj@" =Y m@ > (hz— pun)w;@" ™"

j=1 j=1 h=0
m—1 1(2)

= ) (hz—pn) Y M @uw; ("""
h=0 j=1
m—-1 .

= (VvhZ — un) I:n—(m—h) (2). u
h=0

Remark. For0< n < m — 1, the shifted Faber polynomials can be efficiently com-
puted using the recurrence (6).

If Q(w) = vn_1w™ %, then forn > 1, the Faber polynomials and the corresponding
shifted Faber polynomials coincide. In this case, (12) reduces to the familiar recurrence
(6). However, ifQ(w) # vm_1w™ 1, then the Laurent series (3) &f generally has
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infinitely many nonzero coefficiendg. Thus, the direct approach for computifg(z) by
(6) inthese cases requires storing all previous vafyés . The key point of Theorem 2.1
is that the shifted Faber polynomials—and hence the Faber polynomials—corresponding
to an(m, m— 1)-degree rational exterior mapping functiorgeneralsatisfy anim-+1)-
term recurrence.
If the factorization (8) is not known explicitlys,(z) can be computed fromin(2) by
using the well-known Newton identities for the power suss= 25:1 m; wj”. With
Pj i=Vm-1-j/Vm-1, 1< j <m—-1

n-1
—np,— Y psj  for 1<n=m-1,
j=1
S = m—1 :
N ES for n>m-1
=1

The recurrence (6) has been frequently used in the construction of iterative methods
based on Faber polynomials. To make such methods feasible, Eiermann [4] as well as
Manteuffel, Starke, and Varga [14] consider only finite Laurent series kvitrms,

i.e., (k, k — 1)-degree exterior mapping functions wi@(w) = w*1. The resulting
methods are called non-station&rgtep methods. However, when computing the Faber
polynomials corresponding to a rational exterior mapping funcioas suggested by
Theorem 2.1, iterative methods with short recurrences can be constalittedghthe
Laurent series o has infinitely many nonzero terms. Based on a familggofl)-degree
rational exterior mapping functions, we proposed such a method in [13]. We will study
this iterative method in more detail in a forthcoming paper.

We finally point out that a nonrational exterior mapping function for a givertset
might be approximated by a rational functiénfor example, by using the Caratbrory—

Fejér method [17]. Using Theorem 2.1, the Faber polynomials for thels@®))C, the
approximation of2, can then be generated by a short-term recurrence.

3. The Special Casen =2

We now consider the special case of etwith (2, 1)-degree rational exterior mapping
functions. Our goal is to relate the Faber polynomials for such sets to the classical
Chebyshev polynomials of the first kind, which are given by

n -n _1
(13) Cn(2) = % z= % n> 1

It is well known that the Chebyshev polynomials satisfy a three-term recurrence of the
form

Co(2) =1, Ci(2) =z, and  Cn(2) =22G1(2) — Ch2(2), n>2
Suppose tha® has an exterior mapping function of the form

_ Pw) w4 paw + o

(14) Y = Qw)  viw+vg




272 J. Liesen

In this case, the Faber polynomials and the corresponding shifted Faber polynomials for
Q are related by

n
Fr(2 — Fn(2) = <—:—:> , n>0; Fo(z2) — Fo(z) =1 incasey = 0.

From Lemma 2.1 and the definition of the shifted Faber polynomials (11), it follows
that forz € C andn > 1:

(15) Fr(2 = w1(2)" + wa(2)",

wherew;(z) and wy(2) are the zeros of the polynomi&(w) — zQ(w). These are
implicitly defined by

(16) (W = wi@)(w — w2(2) = w? + (U1 — V12w + (ko — 102).

We define

(7) 2W(2) = w1(2) +w2(2) = 11Z — 1,

and

(18) V(2) := wi(2Qw(2) = up — vozZ.

Suppose thaV (z) # 0, and definej(z) = V(2)"Y?wj(2), | = 1,2. This yields

01(2(2) =1, 1.e.,0(2) = ¢1(2)71, and thus
Fa(2 = V@"2(01(2" + 02(2)").

We use (13) and get, for> 1:
2 . n/2 é‘l(z) + é'l(z)l>
Fn(2) = 2V(2)V°Cy (—2

= 2V (2"2Cn(V (2 Y2W(2)).

We next determine the value cﬁ‘n(zo) for the zerozy of V(z). First suppose that
vo = 0. ThenV(2) = 0 if, and only if, uo = 0. But this implies thaw is only of
degree(l, 0), i.e., m = 1. Thus, in the casen = 2, we either have/(z) # 0 for
all z € C, orvg # 0, and the unique zero &f(z) is zg = wo/vo. In the latter case,
Fn(20) = (rov1 — m1vo)/vo can be easily computed from (16)—(18).

We summarize our results in the following theorem:

Theorem 3.1. Suppose tha® has an exterior mapping function of the fo(i®). Let
Cn(2) denote the nth Chebyshev polynon{ie3) and let W(z) and V(z) be defined as
in (17) and(18), respectively

If vo = 0, the shifted Faber polynomia({d1) for Q2 are given by

(19) Fr(2 = 2V(2"2Ca(V(2 Y2W(2)), n>1
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If vo # 0, (19)holds for all ze C\{uo/vo} and

Hov1 — KH1Vo
Vo '

Furthermore the following three-term recurrence holds

(20) Fn(io/vo) =

(21) Fo =2 Fi(2 =2W(2),
and
(22) Fr(2 =2W@F, 1(2) —=V@Fr 22, n>2

A special case of (19) is the well-known relation between Faber polynomials for
ellipses and the Chebyshev polynomials (13): Suppose&ihisan ellipse with foci-1
and semiaxes + r ~* for somer > 1. Then the exterior mapping function gfis the
Joukowsky map) (w) = (rw + (rw)~1)/2. HenceV(2) = 1/r%, W(2) = z/r, and
(19) yields

A 2
Fn(@ = Fn(2) = r_nCn(Z)’ n>1,

(see, e.g., [16, p. 37]).

More generally, suppose that the exterior mapping functiot @ a composition
of the Joukowsky map with Moebius transformatiodsw) = (¥, o J o ¥r1)(w),
Vi(w) = (@w +by)/(w +d)), ad; — bjc; # 0, j = 1, 2. Then¥ will have degree
(2, 1) and (19) holds.

A geometric interpretation of (19) therefore Whenevetz is Moebius-equivalent to
an ellipseits Faber polynomials can be expressed in terms of the Chebyshev polynomials
of the first kind In particular, wheng is an ellipse its Faber polynomials are scaled
Chebyshev polynomials of the first kind

We next use (19) to derive axplicitformula for the Faber polynomials corresponding
to (2, 1)-degree exterior mapping functions. It is well known (see, e.g., [3, p. 583]), that
the Chebyshev polynomials (13) satisfy

/2 ' .

Ch(2 = Z <2J > "2 -1,
j=0

where™n/27 denotes the largest integer less than or equaj 2o An application of this

formula to (19) yields the following corollary:

Corollary 3.1. In the notation of Theorer8.1, the shifted Faber polynomid,(z) is
given by
/27

(23) Fa@=2)" <2nj ) W@ P (W@2-V(@), n>1
j=0

We point out that (23) gives explicit formulas for the Faber polynomials for a large
class of sets, some of them with complicated, e.g., nonconvex or non-starlike, geometries.
An important special case of (23) are the Faber polynomials for circular arcs, previously
studied by He [8].
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