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Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a
given matrix A to a more convenient form. One of the most useful types of such reduction is the
orthogonal reduction to (upper) Hessenberg form. This reduction can be computed by the Arnoldi
algorithm. When A is Hermitian, the resulting upper Hessenberg matrix is tridiagonal, which is a
significant computational advantage. In this paper we study necessary and sufficient conditions on A

so that the orthogonal Hessenberg reduction yields a Hessenberg matrix with small bandwidth. This
includes the orthogonal reduction to tridiagonal form as a special case. Orthogonality here is meant
with respect to some given but unspecified inner product. While the main result is already implied
by the Faber-Manteuffel theorem on short recurrences for orthogonalizing Krylov sequences (see [J.
Liesen and Z. Strakoš, SIAM Rev., 50 (2008), pp. 485–503]), we consider it useful to present a new,
less technical proof. Our proof utilizes the idea of a “minimal counterexample”, which is standard
in combinatorial optimization, but rarely used in the context of linear algebra.
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1. Introduction. Many applications in engineering and science lead to linear
algebraic problems involving a very large matrix A ∈ CN×N . A common approach to
solve such problems is to reduce A to a matrix that requires significantly less storage,
or that is well suited for further processing. Algebraically, such reduction amounts to
finding a more convenient basis for representing A.

One of the most useful types of such reduction is the orthogonal reduction to
(upper) Hessenberg form, which is used, for example, in modern implementations
of the QR method for solving eigenvalue problems (see [10] for a recent survey),
and in the GMRES method for solving linear algebraic systems [9]. A standard
method for computing this reduction is the Arnoldi algorithm [1]. Given a matrix A,
a hermitian positive definite (HPD) matrix B ∈ CN×N defining the B-inner product
〈x, y〉B ≡ y∗Bx, and an initial vector v1 ∈ C

N , the Arnoldi algorithm generates a
B-orthogonal basis for the (maximal) Krylov subspace of A and v1.

More precisely, let d be the grade of v1 with respect to A, i.e., the smallest possible
degree of a polynomial p that satisfies p(A)v1 = 0. Then the Arnoldi algorithm
sequentially generates vectors v1, . . . , vd, such that

span {v1, . . . , vn} = span {v1, . . . , A
n−1v1} ≡ Kn(A, v1), n = 1, . . . , d,(1.1)

〈vi, vj〉B = 0, i 6= j, i, j = 1, . . . , d.(1.2)

This is achieved by the following steps: For n = 1, 2, . . . ,
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věž́ı 2, 18207 Prague, Czech Republic, email: tichy@cs.cas.cz. The work of this author was supported
by the Emmy Noether Program of the Deutsche Forschungsgemeinschaft and by the GAAS grant
IAA100300802.

1



2 V. FABER, J. LIESEN AND P. TICHÝ

vn+1 = Avn −
∑n

m=1
hm,nvm, where

hm,n = 〈Avn,vm〉B

〈vm,vm〉B

, for m = 1, . . . , n.

If vn+1 = 0 then stop.
Here we have stated the classical Gram-Schmidt variant of the Arnoldi algorithm.

For notational convenience, the basis vectors are not normalized. Other implementa-
tions are often preferable from a numerical point of view. In this paper, however, we
assume exact arithmetic only, and do not consider differences in the finite precision
behavior of different implementations.

Collecting the basis vectors in a matrix Vn, and the recurrence coefficients hi,j in
a matrix Hn, the Arnoldi algorithm can be written in the following matrix form,

(1.3) AVn = VnHn + vn+1e
T
n , n = 1, . . . , d.

Here en is the n-th column of the identity matrix In and Hn is an n × n unreduced
upper Hessenberg matrix given by

(1.4) Hn =




h11 · · · h1,n−1 h1,n

1
. . .

...
...

. . . hn−1,n−1 hn−1,n

1 hn,n




.

The B-orthogonality of the basis vectors means that V ∗
n BVn is an invertible n × n

diagonal matrix, n = 1, . . . , d.
If d is the grade of v1 with respect to A, then Kd(A, v1) is A-invariant, and vd+1

must be the zero vector, so that the Arnoldi algorithm terminates at step n = d.
Hence, at the d-th iteration step the relation (1.3) becomes

(1.5) AVd = VdHd .

Here Hd can be interpreted as the matrix representation of the linear operator A
restricted to the A-invariant subspace Kd(A, v1). Or, Hd can be interpreted as a
reduction of A to upper Hessenberg form. For more about the theory and different
implementations of the Arnoldi algorithm, we refer to [8, Chapter 6.3].

Now suppose that A is self-adjoint with respect to the B-inner product, i.e. that
〈Ax, y〉B = 〈x, Ay〉B for all vectors x, y ∈ C

N . This holds if and only if A∗B = BA,
or, equivalently, the B-adjoint A+ ≡ B−1A∗B satisfies A+ = A. Denote D ≡ V ∗

d BVd.
Since A+ = A we obtain, cf. (1.5),

H∗
dD = H∗

dV ∗
d BVd = V ∗

d A∗BVd = V ∗
d BA+Vd = V ∗

d BAVd = DHd .

Since D is diagonal, the upper Hessenberg matrix Hd must be tridiagonal. In other
words, when A is self-adjoint with respect to the B-inner product, the Arnoldi algo-
rithm B-orthogonally reduces A to tridiagonal form. In the special case B = I and
thus A+ = A∗, the algorithm for computing this reduction is known as the Hermitian
Lanczos algorithm [5].

Obviously, a reduction to tridiagonal form is very convenient from a numerical
point of view. It is therefore of great interest to study necessary and sufficient con-
ditions on A so that there exists an HPD matrix B for which A can be orthogonally
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reduced to tridiagonal form or, more generally, to banded upper Hessenberg form with
small bandwidth. Apart from trivial cases, the main necessary and sufficient condition
on A is that there exists an HPD matrix B for which the B-adjoint A+ is a low degree
polynomial in A. As described in [7], this result is implied by the Faber-Manteuffel
theorem on the existence of short recurrences for generating orthogonal Krylov sub-
space bases (in particular, see [7, Fig. 2.2]). Therefore, the question whether a given
matrix is orthogonally reducible to banded Hessenberg form with low bandwidth has
been completely answered. A separate proof of this result has been attempted in [6],
but, as described in [7], that proof is based on less rigorous definitions and applies to
nonderogatory matrices A only.

The purpose of this paper is to give a new proof of the necessary and sufficient con-
ditions for orthogonal reducibility to upper Hessenberg form with small bandwidth.
After recalling the sufficiency result from [7, Theorem 2.13], we first prove the ne-
cessity result for nonderogatory matrices (similarly as in [6], but starting from more
rigorous definitions). We then show the general case inductively using a “minimal
counterexample” argument. This is a standard argument in combinatorial optimiza-
tion, but we have rarely seen this idea applied in linear algebra. Here we show that the
smallest matrix giving a counterexample for the general case must be nonderogatory.
Since we know from the first step of the proof that the result holds for nonderogatory
matrices, no counterexample can possibly exist.

Reducibility to banded Hessenberg form with small bandwidth, particularly tridi-
agonal form, is a key property in many applications. Nevertheless, we are not aware
that any complete proof of the necessary and sufficient conditions, that is independent
of the technically more complicated result of Faber and Manteuffel, has appeared in
the literature before. We point out that unlike the proofs of the Faber-Manteuffel
theorem in [3, 2] (also cf. [11] for a related proof), our proof here is entirely based on
linear algebra arguments. Furthermore, we believe that the general idea of our proof
is of interest in its own right, which is a main reason for writing this paper.

2. Main definitions and sufficient conditions. Suppose that A ∈ CN×N is a
given matrix, B ∈ CN×N is a given HPD matrix, and v1 ∈ CN is a given initial vector.
(When A is real, we only consider real HPD matrices B and real initial vectors v1.)
We denote the degree of the minimal polynomial of A by dmin(A).

Consider the corresponding Hessenberg reduction of A as in (1.5). The Krylov
subspace basis vectors v1, . . . , vd in this reduction are defined uniquely up to scal-
ing by the conditions (1.1)–(1.2). This means that any other set of basis vectors
v̂1, . . . , v̂d that also satisfies (1.1)–(1.2) is given by v̂n = σnvn for some (nonzero)

scalars σ1, . . . , σn. In matrix form, this can be written as V̂d = VdSd, where Sd =
diag(σ1, . . . , σd). Hence for this other basis, A satisfies the identity

AV̂d = V̂dĤd,

where Ĥd = S−1

d HdSd. Clearly, the nonzero patterns of Hd and Ĥd coincide. In
particular, the upper bandwidth of Hd is independent of the algorithm that is used
to compute the orthogonal reduction to Hessenberg form.

In this paper we are mostly interested in this upper bandwidth. We say that Hd

is (s + 2)-band Hessenberg, when the s-th superdiagonal of Hd contains at least one
nonzero entry, and all entries above the s-th superdiagonal are zero. (Here the diag-
onal of Hd is considered the 0-th superdiagonal.) We can now rigorously define the
concept of reducibility to banded upper Hessenberg form. We use the same definition
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as in [7, Definition 2.11], with the exception that here we do not require A to be
nonsingular.

Definition 2.1. Let A ∈ C
N×N , let B ∈ C

N×N be an HPD matrix, and let s be
a nonnegative integer, s + 2 ≤ dmin(A).

(1) If for an initial vector v1 the matrix Hd in (1.5) is (s + 2)-band Hessen-
berg, then we say that A is reducible for the given B and v1 to (s + 2)-band
Hessenberg form.

(2) If A is reducible for the given B and any initial vector v1 to at most (s + 2)-
band Hessenberg form, while it is reducible for the given B and at least one v1

to (s+2)-band Hessenberg form, then we say that A is reducible for the given B
to (s + 2)-band Hessenberg form.

Let us briefly explain why we assume s+2 ≤ dmin(A) in this definition. First, by
this assumption we exclude the trivial case dmin(A) ≤ 1, in which each initial vector v1

is an eigenvector of A. Second, the grade d of any initial vector v1 is at most dmin(A),
and hence the corresponding Hessenberg matrix Hd in (1.5) has at most dmin(A) + 1
nonzero bands. Consequently, for all nonnegative intergers s with s + 2 > dmin(A),
the question whether Hd is (s+2)-band Hessenberg is uninteresting, since in this case
the upper triangle of Hd is allowed to be completely full.

Note that by this definition the integer s is uniquely determined. This means that
when A is reducible for the given B to (s + 2)-band Hessenberg form, then A is not
reducible for this B to (t + 2)-band Hessenberg form for any t 6= s.

Definition 2.2. Let A ∈ CN×N , and let B ∈ CN×N be HPD. Suppose that

(2.1) A+ ≡ B−1A∗B = ps(A) ,

where ps is a polynomial of the smallest possible degree s having this property. Then A
is called normal of degree s with respect to B, or, shortly, B-normal(s).

Using this definition, it is possible to prove the following sufficiency result for
reducibility to (s+2)-band Hessenberg form; see [7, Theorem 2.13] (also cf. [4] for an
analysis of the sufficient conditions in case B = I).

Theorem 2.3. Let A ∈ CN×N , let B ∈ CN×N be an HPD matrix, and let s be
a nonnegative integer, s + 2 ≤ dmin(A). If A is B-normal(s), then A is reducible for
the given B to (s + 2)-band Hessenberg form.

Our statement of the sufficiency result is a little bit different from the one in [7,
Theorem 2.13]. Here we assume that s + 2 ≤ dmin(A), while [7, Theorem 2.13]
assumes s + 2 < dmin(A). The assumption in [7] is made for notational consistency
in that paper; extending the result to the case s + 2 = dmin(A) is straightforward.
Furthermore, we have formulated the result for general matrices A, while in [7] it is
assumed that A is nonsingular. The extension to the singular case is easy.

3. Necessary conditions. In this section we prove the reverse direction of The-
orem 2.3, i.e., we show that if A is reducible for the given B to (s+2)-band Hessenberg
form, where s + 2 ≤ dmin(A), then A is B-normal(s). Our proof is based on three
technical lemmas.

In the first lemma, we adopt [2, Lemma 4.3] to the notation used in this paper,
and we generalize the assertion to include the case of singular A.
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Lemma 3.1. Let A ∈ CN×N , let B ∈ CN×N be an HPD matrix, and let s be a
nonnegative integer, s + 2 ≤ dmin(A). The matrix A is B-normal(s) if and only if,

(3.1) A+v ∈ Ks+1(A, v) for all vectors v of grade dmin(A),

and there exists a vector v such that A+v /∈ Ks(A, v).
Proof. Let A be B-normal(s). Then for each v, A+v = ps(A)v ∈ Ks+1(A, v).

Moreover, since s is the smallest degree of a polynomial for which A+ = ps(A), there
must exist a vector v such that A+v /∈ Ks(A, v).

In the proof of the other direction we first suppose that A is nonsingular. Then
by [2, Lemma 4.3], (3.1) implies that A is B-normal(t) for some t ≤ s. Since there
exists a vector v such that A+v /∈ Ks(A, v), we must have t ≥ s, and thus t = s.

Now suppose that A is singular. Then there exists a scalar µ ∈ C such that
C ≡ A + µI is nonsingular. Clearly, dmin(A) = dmin(C). Furthermore, note that for
any vector v of grade dmin(A), we have Ks+1(A, v) = Ks+1(C, v). Moreover, since

A+ = B−1A∗B = B−1C∗B − µI = C+ − µI ,

A+v ∈ Ks+1(A, v) holds if and only if C+v ∈ Ks+1(C, v). Hence, if the singular
matrix A satisfies the assertion, then the nonsingular matrix C = A + µI satisfies
the assertion as well, so that C must be B-normal(s). But C+ = ps(C) implies that
A+ = qs(A), where qs is a polynomial of (smallest possible) degree s. Hence A is
B-normal(s) as well, which finishes the proof.

In the next lemma we prove the necessity result for nonderogatory matrices A
(see also [6, pp. 2156–2157] for a similar argument).

Lemma 3.2. Let A ∈ CN×N be a nonderogatory matrix, i.e., dmin(A) = N . Let
B ∈ CN×N be an HPD matrix, and let s be a nonnegative integer, s + 2 ≤ dmin(A).
If A is reducible for the given B to (s + 2)-band Hessenberg form, then A is B-
normal(s).

Proof. We prove the assertion by contradiction. Suppose that A is reducible for
the given B to (s + 2)-band Hessenberg form, but that A is not B-normal(s). By
Lemma 3.1, there either exists an integer t < s such that A+v1 ∈ Kt+1(A, v1) for
all vectors v1, or there exists a vector v1 of grade dmin(A) = N such that A+v1 /∈
Ks+1(A, v1).

In the first case, one can easily show that the matrix A is reducible to (at most)
(t + 2)-band Hessenberg form, which is a contradiction since t < s.

In the second case, consider a vector v1 of grade N such that A+v1 /∈ Ks+1(A, v1).
Since v1 is of full grade, we know that there exist scalars β1, . . . , βN ∈ C, such that

A+v1 =
N∑

j=1

βjvj ,

where v1, . . . , vN is the B-orthogonal basis of KN (A, v1) generated by the Arnoldi
algorithm. By assumption, at least one βj , s + 2 ≤ j ≤ N , is nonzero. If this nonzero
scalar is βk, then the entry h1,k of HN satisfies

h1,k =
〈Avk, v1〉B
〈v1, v1〉B

=
〈vk, A+v1〉B
〈v1, v1〉B

= βk

〈vk, vk〉B
〈v1, v1〉B

6= 0 .

But since k ≥ s + 2, this means that Hd is not (s + 2)-band Hessenberg, which
contradicts our assumption that A is reducible to (s + 2)-band Hessenberg form.
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We next show that the “minimal counterexample” of a matrix A that is reducible
for the given B to (s+2)-band Hessenberg form but that is not B-normal(s) must be
nonderogatory.

Lemma 3.3. Suppose that s is a given nonnegative integer. Let A be a square
matrix of smallest possible dimension N and with dmin(A) ≥ s + 2 such that the
following holds: There exists HPD matrix B ∈ CN×N such that

1. A is reducible for the given B to (s + 2)-band Hessenberg form,
2. A is not B-normal(s).

Then A is nonderogatory (i.e. dmin(A) = N).
Proof. Suppose that A is a matrix that satisfies the assumptions, and that B is the

corresponding HPD matrix for which A is reducible to (s+2)-band Hessenberg form,
but with respect to which A is not normal of degree s. Let the Jordan normal form
of A be given by A = WJW−1, where J = J1 ⊕ · · · ⊕ Jk with eigenvalues λ1, . . . , λk,
and corresponding invariant subspaces of dimensions s1, . . . , sk, respectively. If k = 1,
then A is nonderogatory and we are done. Hence we may assume that k > 1.

Suppose that v1 is any initial vector of grade d with respect to A and consider
the corresponding Hessenberg reduction (1.5) using the B-inner product. Using the
Jordan normal form of A, it is easy to see that this Hessenberg reduction is equivalent
with

(3.2) JV̂d = V̂dHd , V̂ ∗
d B̂V̂d diagonal ,

where V̂d ≡ W−1Vd and B̂ ≡ W ∗BW , which is HPD. Note that the Hessenberg
matrices in the Hessenberg reduction of A and in (3.2) coincide. Since A is reducible

for the given B to (s + 2)-band Hessenberg form, J is reducible for the given B̂ to
(s + 2)-band Hessenberg form (and vice versa).

It suffices to show that J is nonderogatory. Suppose not. Then there are two
Jordan blocks, say J1 and J2 with s1 ≤ s2, that correspond to the same eigenvalue
(i.e. λ1 = λ2). Define the (N −s1)× (N −s1) matrix J̃ ≡ J2⊕· · ·⊕Jk, which satisfies

dmin(J̃) = dmin(J) ≥ s + 2. Now define an inner product [·, ·] on C
N−s1 × C

N−s1 by

(3.3) [x, y] ≡ 〈0s1
⊕ x, 0s1

⊕ y〉 bB
.

Here 0s1
denotes the zero vector of length s1. This inner product is generated by an

HPD matrix B̃, [x, y] = y∗B̃x for all vectors x and y. Using the standard basis vectors

and the definition of [·, ·] it is easy to show that B̃ is the (N − s1)× (N − s1) trailing

principal submatrix of B̂ (using MATLAB notation, B̃ = B̂(1 + s1 : N, 1 + s1 : N)).

If y1 is any initial vector of grade d with respect to J̃ , then v1 = 0s1
⊕ y1 is of

grade d with respect to J . By construction, the corresponding Hessenberg reductions
of J̃ and J using the B̃- and B̂-inner products, respectively, lead to the same unreduced
upper Hessenberg matrix Hd. Consequently, the matrix J̃ is reducible for B̃ to (s+2)-
band Hessenberg form.

Since N−s1 < N , our initial assumption implies that the matrix J̃ is B̃-normal(s).

Then [7, Theorem 3.1] shows: First, J̃ is diagonalizable and hence diagonal, in partic-

ular s2 = 1. Second, assuming that the eigenvalues of J̃ are ordered so that the same
eigenvalues form a single block, the HPD matrix B̃ is block diagonal with block sizes
corresponding to those of J̃ . Third, there exists a polynomial ps of smallest possible
degree s such that ps(J̃) = J̃∗ (i.e., ps(λj) = λj for all eigenvalues λj of A).

Consequently, J is diagonal with the first two eigenvalues equal, and ps(J) = J∗,

where ps is a polynomial of smallest possible degree with this property. Moreover, B̂
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is HPD and block diagonal with block sizes corresponding to those of J , except for
possibly its first row and column. For simplicity of the presentation, we assume that B̂
is diagonal except for its first row and column; the argument for the block diagonal case
is more technical but mathematically analogous. Then B̂ has the nonzero structure

B̂ =




⋆ ⋆ · · · ⋆
⋆ ⋆
...

. . .

⋆ ⋆


 .

Now we reverse the roles of J1 and J2 and repeat the whole construction. More specif-
ically, we denote the columns of the matrix W (from the Jordan decomposition of A)
by w1, . . . , wN . Then A = WJW−1 = W1JW−1

1 , where W1 ≡ [w2, w1, w3, . . . , wN ].
Here we have used that J1 = J2 and that J is diagonal. Repeating the above con-
struction yields a matrix B1 = W ∗

1 BW1, which is of the same form as B̂, i.e.

B1 = W ∗
1 BW1 =




⋆ ⋆ · · · ⋆
⋆ ⋆
...

. . .

⋆ ⋆


 .

In particular, by comparing the second row on both sides of this equation, we see that

w∗
1B[w2, w1, w3, . . . , wN ] = [⋆, ⋆, 0, · · · , 0] .

Then the first row of B̂ is given by w∗
1BW = [⋆, ⋆, 0, · · · , 0], which shows that

indeed B̂ is block diagonal with block sizes corresponding to those of J . Hence the
N ×N matrix J is B̂-normal(s), which contradicts our assumption and completes the
proof.

In the following theorem we state the main result of this paper. The sufficiency
part has already been stated in Theorem 2.3 above and is repeated here for complete-
ness.

Theorem 3.4. Let A ∈ C
N×N , let B ∈ C

N×N be an HPD matrix, and let s be a
nonnegative integer, s + 2 ≤ dmin(A). The matrix A is B-normal(s) if and only if A
is reducible for the given B to (s + 2)-band Hessenberg form.

Proof. We only have to show that if A is reducible for the given B to (s+2)-band
Hessenberg form, then A is B-normal(s). By Lemma 3.2, this statement is true for
nonderogatory matrices A. However, by Lemma 3.3, the minimal counterexample is
nonderogatory. Hence there is no minimal counterexample, so that the assertion must
hold.
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