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Stéphane Gaubert



1 Main results
Long and winding central paths

2 What Is Tropical Geometry?
The tropical semi-ring
Puiseux series

3 Interior Points and Central Paths
Our setup
Description as an algebraic curve

4 The Tropical Central Path
Maslov Dequantization
Lower bound on number of iterations

5 Details on the Counter-Examples



Main Results

Theorem (ABGJ 2017+)

There is a family, LWr (t), of linear programs in 2r variables with 3r + 1
constraints, depending on t > 1, such the number of iterations of any
primal-dual path-following interior point algorithm with a log-barrier
function which iterates in the wide neighborhood of the central path is
exponential in r for t � 0.

Theorem (ABGJ 2014+)

On the same family of LPs the total curvature of the central path is in
Ω(2r ) for t � 0.



Ridiculously Abbreviated History

Algorithms

• Karmarkar 1984: polynomial time interior point algorithm

• Renegar 1988: O(
√
m + n L)

• where L = total bit size of input

• wide neighborhood methods:
• short/long step: Kojima, Mizuno & Yoshise 1989,

Monteiro & Adler 1989
• predictor-corrector: Mizuno, Todd & Ye 1993, Vavasis & Ye 1996

Geometry

• Bayer & Lagarias 1989; Dedieu & Shub 2005;
Dedieu, Malajovich and Shub 2005: curvature of central path

• Deza, Terlaky & Zinchenko 2009: redundant Klee–Minty cube
• continuous Hirsch conjecture



The Linear Programs LWr(t)LWε
r(t) . . .

minimize x1

subject to x1 ≤ t2

x2 ≤ t

x2j+1 ≤ t x2j−1 , x2j+1 ≤ t x2j

x2j+2 ≤ t1−1/2
j
(x2j−1 + x2j)

x2r−1 ≥ 0 , x2r ≥ 0ε

1 ≤ j < r

for r ≥ 1 and t � 0
and 1� ε ≥ 0

. . . have long and winding central paths.



“Piecewise linear shadows of classical varieties”

t8(x4 + y4 + z4) + t4(x3y + xz3 + y3z) + t2(x3z + xy3 + yz3)

+t(x2y2 + x2z2 + y2z2) + (x2yz + xy2z + xyz2)

where t � 0



Tropical Arithmetic
tropical semi-ring: T = T(R) = (R ∪ {−∞},⊕,�) where

x ⊕ y := max(x , y) and x � y := x + y

• absolutely convergent (generalized) Puiseux series with real
coefficients

Rconv{{t}} =
{
cα1t

α1 + cα2t
α2 + · · ·︸ ︷︷ ︸

γ(t)

}
∪ {0}

such that α1 > α2 > · · · strictly descending sequence of reals (finite
or unbounded), cαi ∈ R− {0}, absolutely convergent for t � 0
 real closed Dries & Speissegger 1998

• valuation map ord(γ(t)) = α1 and ord(0) = −∞

ord(γ(t) + δ(t)) ≤ = max(ord(γ(t)), ord(δ(t))) ord(γ(t))⊕ ord(δ(t)) for γ(t), δ(t) ≥ 0

ord(γ(t) · δ(t)) = ord(γ(t)) + ord(δ(t)) ord(γ(t))� ord(δ(t))



Tropicalization

The polynomial

f = γ(t)xu11 xu22 . . . xudd + δ(t)xv11 xv22 . . . xvdd + . . .

gives rise to the tropicalization

F = trop(f ) := ord(γ(t))� x�u11 � x�u22 � · · · � x�udd

⊕ ord(δ(t))� x�v11 � x�v22 � · · · � x�vdd ⊕ . . . ,

where ord(γ(t)) = highest t-exponent

Example

f = x3 − (t3 + 2t + 1)x2 + (2t4 + t3 + 2t)x − 2t4

F = x�3 ⊕ 3� x�2 ⊕ 4� x ⊕ 4
= max( 3x , 3 + 2x , 4 + x , 4 )



Main Theorem of Tropical Geometry

Theorem (Kapranov 2002)

For f ∈ C{{t}}[x1, x2, . . . , xd ] the tropical
hypersurface T (F ) coincides with ord(V (f )).

Definition

F vanishes if maximum attained at least twice

Example
f = x3 − (t3 + 2t + 1)x2 + (2t4 + t3 + 2t)x − 2t4 vanishes at x = 2t
F = max(3x , 3+2x , 4+x , 4) vanishes at x = 1 = ord(2t)



Example: The Linear Assignment Problem

Problem

Given 4 football players and
4 positions, what is the
best formation?

A =


2 0 1 0
0 2 0 0
2 3 2 0
0 0 0 2



• assignment = choice of coefficients, one per column/row

best = max
ω∈Sym(4)

a1,ω(1) + a2,ω(2) + a3,ω(3) + a4,ω(4)

=
⊕

ω∈Sym(4)

a1,ω(1) � a2,ω(2) � a3,ω(3) � a4,ω(4)

Definition (tropical determinant)

tdet = trop(det)



Linear Programming via Interior Point Method
Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, µ > 0.

primal linear program: assume bounded w/ non-empty interior

minimize c>x

subject to Ax ≤ b, x ≥ 0, x ∈ Rn LP(A, b, c)

dual linear program:

maximize − b>y

subject to − A>y ≤ c , y ≥ 0, y ∈ Rm

associated logarithmic barrier problem:

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi )

subject to Ax + w = b, x > 0,w > 0



A System of Polynomial Equations
logarithmic barrier problem

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi )

subject to Ax + w = b, x > 0,w > 0

for µ > 0 has unique optimal solution (xµ,wµ) chacterized by

Ax + w = b

−A>y + s = c

wiyi = µ for all i ∈ [m]

xjsj = µ for all j ∈ [n]

x ,w , y , s > 0

That is, there uniquely exist yµ and sµ such that (xµ,wµ, yµ, sµ) is a
solution . . .



The Central Path and the Central Curve

Definition

The central path is the image of the map

CA,b,c : R>0 → R2m+2n , µ 7→ (xµ,wµ, yµ, sµ) .

• primal central path = projection onto x-coordinates

• dual central path = projection onto y -coordinates

Observation

The equality constraints in the log-barrier problem define a real algebraic
curve, the central curve, which is the Zariski closure of the central path.



The Wide Neighborhood

Let z = (x ,w , s, y) ∈ R2n+2m.
For duality measure µ̄(z) := 1

n+m (〈x , s〉+ 〈w , y〉) we have

z = C(µ) ⇐⇒
(
xs
wy

)
= µ̄(z)e

Yields a first neighborhood (e.g., for `2-norm)

Nθ :=
{
z ∈ F◦ :

∥∥∥( xs
wy

)
− µ̄(z)e

∥∥∥ ≤ θµ̄(z)
}

for some real precision parameter θ ∈ (0, 1).
This is replaced by the wide neigborhood

N−∞θ (µ) :=
{
z ∈ F◦ :

(
xs
wy

)
≥ (1− θ)µ̄(z)e

}
for the one-sided `∞-norm max(0,maxk(−vk)).



Maslov Dequantization of Central Paths
For A ∈ Km×n, b ∈ Km and c ∈ Kn assume

P = {x ∈ Kn | Ax ≤ b, x ≥ 0}

bounded with non-empty interior. Not necessarily compact!

• K = Rconv{{t}} absolutely convergent generalized Puiseux series

• for t � 0 real linear programs LP(A(t),b(t), c(t)) well defined

• C(t, λ) = CA(t),b(t),c(t)(t
λ) real central path

Definition

Ctrop : λ 7→ limt→+∞ logt C(t, λ) tropical central path

Proposition (ABGJ 2017+)

The family of maps (logt C(t, ·))t converges uniformly on any closed
interval [a, b] ⊂ R to the tropical central path Ctrop.



Tropicalizing a System of Linear Inequalities

Consider the Puiseux polyhedron P ⊂ K2 defined by:

x1 + x2 ≤ 2

tx1 ≤ 1 + t2x2
tx2 ≤ 1 + t3x1
x1 ≤ t2x2

x1, x2 ≥ 0 .

(1)

Then the set ord(P) is described by the tropical linear inequalities:

max(x1, x2) ≤ 0

1 + x1 ≤ max(0, 2 + x2)

1 + x2 ≤ max(0, 3 + x1)

x1 ≤ 2 + x2 .

(2)



. . . and Two of Its Primal Tropical Central Paths

• tropical central path = ord(Puiseux central path)

−4 −3 −2 −1 0
−4

−3

−2

−1

0

x1

x2

−4 −3 −2 −1 0
−4

−3
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0

x1

x2

min x1 min tx1 + x2



Maslov Dequantization of Central Paths

Recall the claim:

Proposition (ABGJ 2017+)

The family of maps (logt C(t, ·))t converges uniformly on any closed
interval [a, b] ⊂ R to the tropical central path Ctrop.



Proof of Dequantization Theorem

zt := function λ 7→ logt C(t, λ) ∈ R2n+2m z := limt→∞ zt pointwise

Proof.

Fix ε > 0 and choose partition a = a1 < a2 < · · · < ak < ak+1 = b such
that ai+1 − ai ≤ ε for all i . Pick λ ∈ [ai , ai+1]. Then

|zt(λ)− z(λ)| ≤ ?|zt(λ)− zt(ai )|2ε+ |zt(ai )− z(ai )|+ |z(ai )− z(λ)|ε .

Can show:

|zt(λ)− zt(ai )| ≤ logt(2n + 2m) + λ− ai ≤ logt(2n + 2m) + ε

Thus, there exists tε with |zt(λ)− zt(ai )| ≤ 2ε for all t ≥ tε.
Can also show:

|z(λ)− z(ai )| ≤ λ− ai ≤ ε

Pointwise convergence takes care of final term.



Tubular Neighborhood Controls Iteration Complexity

• number of tropical segments required to approximate tropical central
path bounded from below

z6

z5z4

z3

z2

z1

z0

Ctrop(λ)

Ctrop(λ)



Recall: LWr(t)LWε
r(t)

minimize x1

subject to x1 ≤ t2

x2 ≤ t

x2j+1 ≤ t x2j−1 , x2j+1 ≤ t x2j

x2j+2 ≤ t1−1/2
j
(x2j−1 + x2j)

x2r−1 ≥ 0 , x2r ≥ 0ε

1 ≤ j < r

for r ≥ 1 and t � 0
and 1� ε ≥ 0



An Explicit Bound for t

Theorem (ABGJ 2017+)

Let 0 < θ < 1, and suppose that

t >

((
(10r − 1)!

)8
1− θ

)2r+2

.

Then, every polygonal curve [z0, z1]∪ [z1, z2]∪ · · · ∪ [zp−1, zp] contained
in the neighborhood N−∞θ,t of the primal-dual central path of LW=

r (t),

with µ̄(z0) ≤ 1 and µ̄(zp) ≥ t2, contains at least 2r−1 segments.

duality measure

µ̄(z) :=
1

n + m

(
〈x , s〉+ 〈w , y〉

)



The Tropical Central Paths of the Counter-Examples

• the x-components of the
primal tropical central path of
LWr for r ≥ 5 and 0 ≤ λ ≤ 2

• lifting a construction by
Bezem, Nieuwenhuis and
Rodŕıguez-Carbonell 2008
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xλ10



Schlegel Diagram of LW2(2), perturbed to simplicity
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Conclusion

• tropical geometry is useful for getting insight about
intricate details in (linear) optimization

• sheds new light on the interior point method
as well as on the simplex method

Allamigeon, Benchimol, Gaubert & J.:

1 Tropicalizing the simplex algorithm,
SIAM J. Discrete Math. 29 (2015)

2 Combinatorial simplex algorithms can solve mean payoff games,
SIAM J. Opt. 24 (2014)

3 Long and winding central paths, arXiv:1405.4161

4 Log-barrier interior point methods are not strongly polynomial,
to appear in SIAM J. Appl. Alg. Geo., arXiv:1708.01544



Uniform Convergence

δF(x , y) := max(0,maxk(yk − xk)) Funk metric

d∞(x , y) := max(δF(x , y), δF(y , x)) symmetrized Funk

dH(x , y) := δF(x , y) + δF(y , x) Hilbert’s projective metric

δ(t) := 2dH(logt F(t),F) deviation of feasible regions

Theorem (ABGJ 2017+)

For all t > t0 and µ > 0 we have

d∞
(
logt N−∞θ,t (µ), Ctrop(logt µ)

)
≤ logt

( N

1− θ

)
+ δ(t) .



Metric Estimate For Maslov Dequantization of Polyhedra

Theorem (ABGJ 2017+)

Let P ⊂ Kd
+ be a polyhedron of the form {x ∈ Kd : Ax ≤ b} where A

and b are monomial. Let η0 be the minimum of the quantities η(M)

where M is a square submatrix of

(
A b 0
e> 0 1

)
of order d.

Then, for all t ≥ (d!)1/η0 , we have:

dH(logt P(t), ord(P)) ≤ logt
(
(d + 1)2(d!)4

)
.

η(M) := min
{
η : σ, τ ∈ Sym(d), η =

d∑
i=1

αiσ(i) −
d∑

i=1

αiτ(i) > 0
}



Tubular Neighborhood

Theorem (ABGJ 2017+)

For 0 < θ < 1 suppose that t > t0 satisfies

logt

( 2N

1− θ

)
+ δ(t) < ε0

(
[λ, λ]

)
.

Then, every polygonal curve [z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zp−1, zp]

contained in the neighborhood N−∞θ,t , with µ̄(z0) ≤ tλ and µ̄(zp) ≥ tλ,

contains at least γ
(
[λ, λ]

)
segments.



Geometric Characterization of Tropical Central Path

Fix µ ∈ K positive.

(xµ,wµ) = corresponding point on primal central path of LP(A,b, c)
ν = that LP’s optimal value
Pµ = {(x ,w) ∈ Kn+m

+ | Ax + w = b, cx ≤ ν + (n + m)µ}

Theorem (ABGJ 2014+)

Then ord(xµ,wµ) equals tropical barycenter of ord(Pµ).
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