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Preface

This book is split in four parts. Part I is concerned was basic material

about certain ordinary differential equations, paths of Hölder and variation

regularity and the rudiments of Riemann—Stieltjes - and Young integration.

Nothing here will be new to the specialists but the material seems to be

rather spread out in the literature and we hope it will prove useful to have

it collected in one place.

Part II is about the deterministic core of rough path theory, à la T.

J. Lyons, but actually inspired by the direct approach of A. M. Davie.

Although the theory can be formulated in a Banach setting, we have chosen

to remain in a finite-dimensional setting; our motivation for this decision

comes from the fact that the bulk of classic texts on Brownian motion and

stochastic analysis take place in a similar setting, and these are the grounds

on which we sought applications.

In essence, with rough paths one attempts to take out probability from

the theory of stochastic differential equations - to the extent possible. Prob-

ability still matters, but the problems are shifted from the analysis of the

actual SDEs to the analysis of elementary stochastic integrals, known as

Lévy’s stochastic area. In Part III we start a with detailed discussion

how multi-dimensional Brownian motion can be turned into a (random)

rough path; followed by a similar study for (continuous) semimartingales

and large classes of multi-dimensional Gaussian - and Markovian processes.

In Part IV we apply the theory of rough differential equations (RDEs),

path-by-path, with the (rough) sample paths constructed in Part III. In

the setting of Brownian motion or semimartingales, the resulting (random)

RDE solutions are identified as solutions to classical stochastic differential

equations. We then give a selection of applications to stochastic analysis in

which rough path techniques have proved useful.

The prerequisites for parts I and II are essentially a good command of

undergraduate analysis. Some knowledge of ordinary differential equations

(existence, uniqueness results) and basic geometry (vector fields, geodes-

ics) would be helpful, although everything we need is discussed. In part

III, we assume a general background on measure theoretic probability the-

ory and basics of stochastic processes such as Brownian motion. Stochastic

area (for Brownian motion) is introduced via stochastic integration, with

alternatives described in the text. In the respective chapters on semimartin-

gales, Gaussian - and Markovian processes, the reader is assumed to have

the appropriate background; most of which we have tried to collect in the

appendices. Part IV deals with applications to stochastic analysis, stochas-
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tic (partial) differential equations in particular. For a full appreciation of

the results herein, the reader should be familiar with the relevant back-

ground; textbook references are thus given whenever possible at the end of

chapters. Exercises are included throughout the text, often with complete

(or sketched) solutions.
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Introduction

One of the remarkable properties of Brownian motion is that we can use it

to construct (stochastic) integrals of the typeZ
   

The reason this is remarkable is that almost every Brownian sample path

( () :  ∈ [0  ]) has infinite variation and there is no help from the clas-
sical Stieltjes integration theory. Instead, Itô’s theory of stochastic inte-

gration relies crucially on the fact that  is a martingale and stochastic

integrals themselves are constructed as martingales. If one recalls the ele-

mentary interpretation of martingales as fair games one sees that Itô in-

tegration is some sort of martingale transform in which the integrand has

the meaning of a gambling strategy. Clearly then, the integrand must not

anticipate the random movements of the driving Brownian motion and one

is led to the class of so-called previsible processes which can be integrated

against Brownian motion. When such integration is possible, it allows for

a theory of stochastic differential equations (SDEs) of the form2

 =

X
=1

 ( ) 
 + 0 ( )    (0) = 0. (∗)

Without going into too much detail, it is hard to overstate the importance

of Itô’s theory: it has a profound impact on modern mathematics, both

pure and applied, not to speak of applications in fields such as physics,

engineering, biology and finance.

It is a natural question to ask whether the meaning of (∗) can be ex-
tended to processes other than Brownian motion. For instance, there is

motivation from mathematical finance to generalize the driving process to

general (semi)martingales and luckily Itô’s approach can be carried out

naturally in this context.

We can also ask for a Gaussian generalization, for instance by considering

a differential equations of form (∗) in which the driving signal may be taken
from a reasonably general class of Gaussian processes. Such equations have

been proposed, often in the setting of fractional Brownian motion of Hurst

parameter   12 where  is the Hurst parameter3, as toy models to

2Here  =

1     


is a -dimensional Brownian motion.

3Hurst parameter  = 12 corresponds to Brownian motion. For   12, one has

enough sample path regularity to use Young integration.
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study the ergodic behavior of non-Markovian systems or to provide new

examples of arbitrage-free markets under transactions costs.

Or we can ask for a Markovian generalization. Indeed, it is not hard to

think of motivating physical examples (such as heat flow in rough media)

in which Brownian motion  may be replaced by a Markov process 

with uniformly elliptic generator in divergence form, say 1
2

P
 

¡
 ·

¢
,

without any regularity assumptions on the symmetric matrix
¡

¢
.

The Gaussian and Markovian examples have in common that the sample

path behavior can be arbitrarily close to Brownian motion (e.g. by taking

 = 12 ±  resp.  uniformly -close to the identity matrix ). And yet,

Itô’s theory has a complete breakdown!

It has emerged over the last years, starting with the pioneering works of

T. Lyons [109], that differential equations driven by such non-semimartingales

can be solved in the rough path sense. Moreover, the so-obtained solutions

are not abstract non-sense but have firm probabilistic justification. For

instance, if the driving signal converges to Brownian motion (in some rea-

sonable sense which covers  → 0 in the aforementioned examples) the

corresponding rough path solutions converge to the classical Stratonovich

solution of (∗), as one would hope.
While this alone seems to allow for flexible and robust stochastic mod-

elling, it is not all about dealing with new types of driving signals. Even

in the classical case of Brownian motion, we get some remarkable insights.

Namely, the (Stratonovich) solution to (∗) can be represented as a deter-
ministic and continuous image of Brownian motion and Lévy’s stochastic

area



 () =

1

2

µZ 

0

 −
Z 

0



¶
alone. In fact, there is a "nice" deterministic map, the Itô—Lyons map,

(0;x) 7→  (0 0;x)

which yields, upon setting x =
¡
  :    ∈ {1     }¢ a very pleas-

ant version to the solution of (∗). Indeed, subject to sufficient regularity of
the coefficients, we see that (∗) can be solved simultaneously for all starting
points 0, and even all coefficients! Clearly then, one can allow the starting

point and coefficients to be random (even dependent on the entire future of

the Brownian driving signals) without problems; in stark contrast to Itô’s

theory which struggles with the integration of non-previsible integrands.

Also, construction of stochastic flows becomes a trivial corollary of purely

deterministic regularity properties of the Itô—Lyons map.

This brings us to the (deterministic) main result of the theory: continuity

of the Itô—Lyons map

x 7→  (0 0;x)

in "rough path"-topology. When applied in a standard SDE context, it

quickly gives an entire catalogue of limit theorems. It also allows to reduce
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(highly non-trivial) results, such as the Stroock—Varadhan support theorem

or the Freidlin—Wentzell estimates, to relatively simple statements about

Brownian motion and Lévy’s area. Moreover, and at no extra price, all

these results come at the level of stochastic flows. The Itô—Lyons map is

also seen to be regular in certain perturbations of x which include (but are

not restricted to) the usual Cameron—Martin space and so there is a natural

interplay with Malliavin calculus. At last, there is increasing evidence that

rough path techniques will play an important rôle in the theory of stochastic

partial differential equations and we have included some first results in this

direction.

All that said, let us emphasize that the rough path approach to (stochas-

tic) differential equation is not set out to replace Itô’s point of view. Rather,

it complements Itô’s theory in precisely those areas where the former runs

into difficulties.

We hope that the topics discussed in this book will prove useful to

anyone who seeks new tools for robust and flexible stochastic modelling.
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The Story in a Nutshell

0.1 From ordinary to rough differential equations

Rough path analysis can be viewed as a collection of smart estimates for

differential equations of type

 =  () ⇐⇒ ̇ =

X
=1

 () ̇


Although a Banach formulation of the theory is possible, we shall remain

in finite dimensions here. For the sake of simplicity, let us assume that

the driving signal  ∈ ∞
¡
[0  ] R

¢
and that the coefficients 1   ∈

∞ (RR), that is bounded with bounded derivatives of all orders. We
are dealing with a simple time-inhomogenous ODE and there is no question

about existence and uniqueness of an R-valued solution from every starting
point 0 ∈ R. The usual first order Euler approximation, from a fixed time-
 starting point , is obviously

 −  ≈  ()

Z 





(We now adopt the summation convention over repeated up-down indices.)

A simple Taylor expansion leads to the following step-2 Euler approxima-

tion,

 −  ≈  ()

Z 



 +  
  ()

Z 



Z 



| {z }
=E(x)

with

x =

µZ 





Z 



Z 



⊗ 

¶
∈ R ⊕R× (1)

Let use now make the following Hölder-type assumption: there exists 1
and  ∈ (0 1] such that, for all    in [0  ] and all   ∈ {1     },

() :

¯̄̄̄Z 




¯̄̄̄
∨
¯̄̄̄Z 



Z 




¯̄̄̄12

≤ 1 |− | . (2)

Remark that
R 


R 

 is readily estimated by 2 |− |2, where  =

|̇|∞;[0 ] is the Lipschitz norm of the driving signal, and so () holds,
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somewhat trivially for now, with 1 =  and  = 1. [We shall see later

that () also holds for -dimensional Brownian motion for any   12

and a random variable 1 ()  ∞ a.s. provided the double integral is

understood in the sense of stochastic integration. Nonetheless, let us keep

 deterministic and smooth for now.]

It is natural to ask how good exactly these approximation are. The an-

swer is given by Davie’s lemma which says that, assuming () for some

 ∈ (13 12], one has the "step-2 Euler estimate"
| −  − E (x)| ≤ 2 |− |

where  = 3  1. The catch here is uniformity : 2 = 2 (1) depends on

the  only through the Hölder bound 1 but not on its Lipschitz norm.

Since it is easy to see that () implies

E (x) ≤ 3 |− |  3 = 3 (1) 

the triangle inequality leads to

| − | ≤ 4 |− |  4 = 4 (1)  (3)

As always in analysis, uniform bounds allow for passage to the limit. We

therefore take  ∈ ∞
¡
[0  ] R

¢
with uniform bounds

sup


¯̄̄̄Z 





¯̄̄̄
∨
¯̄̄̄Z 



Z 







¯̄̄̄12
≤ 1 |− |

such that, uniformly in  ∈ [0  ],µZ 

0



Z 

0

Z 

0





¶
→ x ≡

³
x
(1)
 x

(2)


´
∈ R ⊕R×

The limiting object x is a path with values in R ⊕ R× and the class of¡
R ⊕R×¢-valued paths obtained in this way is precisely what we call
-Hölder rough paths4.

Two important remarks are in order.

(i) The condition  ∈ (13 12] in Davie’s estimate is intimately tied
to the fact that the condition () involves the first two iterated

integrals.

(ii) The space R⊕R× is not quite the correct state space for x. Indeed,
the calculus product rule 

¡


¢
=  +  implies that5

Sym

µZ 

0

Z 

0

⊗ 

¶
=
1

2

µZ 

0



¶
⊗
µZ 

0



¶


4To be completely honest: we call this a weak geometric -Hölder rough path.
5 Sym() := 1

2


+


 Anti () := 1

2


−


for  ∈ R×
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FIGURE 1. We plot  7→ ( 

) and the chord which connects (


0 


0), on the

lower left side, say, with ( 

) on the right side. The (signed) enclosed area

(here positive) is precisely Anti(x
(2)
 ) .

This remains valid in the limit so that x () must take values in½
x =

³
x(1)x(2)

´
∈ R ⊕R× : Sym

³
x(2)

´
=
1

2
x(1) ⊗ x(1)

¾


We can get rid of this algebraic redundancy by switching from x to6³
x(1) Anti(x(2))

´
∈ R ⊕  () 

At least for a smooth path  (·)  this has an appealing geometric
interpretation. Let (·  


· ) denote the projection to two distinct co-

ordinates ( ); basic multi-variable calculus then tells us that

Anti(x
(2)
 ) =

1

2

µZ 

0

¡
 − 0

¢
 −

Z 

0

³
 − 


0

´


¶
is the area (with multiplicity and orientation taken into account)

between the curve {( ) :  ∈ [0 ]} and the chord from ( 

)

to (0 

0).

Example 0.1 Consider  = 2 and  () =
¡
1

cos
¡
22

¢
 1

sin
¡
22

¢¢ ∈
R2. Then () holds with  = 12; as may be seen by considering separately

the cases where 1 is less resp. greater than (− )
12
. Moreover, the

limiting rough path is

x ≡
µµ

0

0

¶


µ
0 

− 0

¶¶
 (4)

since we run around the origin essentially 2 times, sweeping out area

2 at each round.

6As will be discussed in chapter 7, this is precisely switching from the step-2 free

nilpotent Lie group (with  generators) to its Lie algebra.
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We are now ready for the passage to the limit on the level of ODEs. To

this end, consider () ⊂  ([0  ] R), obtained by solving, for each ,

the ODE

 =  ()   (0) = 0

By Davie’s lemma the sequence () has a uniform -Hölder bound 4
and by Arzela-Ascoli we see that () has at least one limit point in

 ([0  ] R). Each such limit point is called solution to the rough dif-
ferential equation (RDE) which we write as

 =  ()x  (0) = 0 (5)

The present arguments apply immediately for  ∈ 2, that is bounded

with two bounded derivatives, and more precisely for  ∈Lip−1,  1,

in the sense of Stein7. As in classical ODE theory, one additional degree

of regularity (e.g.  ∈Lip    1) then gives uniqueness8 and we will

write

 = ( ) (0 0;x)

for such this unique RDE solution. At last, it should not be surprising from

our construction that the RDE solution map (a.k.a. Itô-Lyons map)

x 7→ ( ) (0 0;x)

is continuous in x (e.g. under uniform convergence with uniform Hölder

bounds).

Example 0.2 Assume x =
³R 

0


R 
0

R 
0


´
∈{1}

with smooth

. Then

 = ( ) (0 0;x)

is the classical ODE solution to  =  ()   (0) = 0.

Example 0.3 Assume x is given by (4) and  = (1 2). Then

 = ( ) (0 0;x)

can be identified as the classical ODE solution to

 = [1 2] () 

where [1 2] =  
12 −  

21 is the Lie bracket of 1 and 2.

7Writing  = bc+{} with integer bc and {} ∈ (0 1] this means that  is bounded

and has up to bc bounded derivatives, the last of which is Hölder with exponent {}.
8With more effort, uniqueness can be shown under Lip1-regularity.
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Example 0.4 Assume  =
¡
1     

¢
is a -dimensional Brownian

motion. Define enhanced Brownian motion by

B =

µZ 

0



Z 

0

 ◦ 

¶
∈{1}

(where ◦ indicates stochastic integration in Stratonovich sense). We shall
see that B is a -Hölder rough path for  ∈ (13 12) and identify

 () := ( ) (0 0;B)

as solution to the Stratonovich stochastic differential equation9

 =

X
=1

 ( ) ◦ 

0.2 Carnot—Caratheodory geometry

We now try to gain a better understanding of the results discussed in the

last section. To this end, it helps to understand the more general case of

Hölder-type regularity with exponent  = 1 ∈ (0 1]. As indicated in
remark (i), this will require consideration of more iterated integrals and we

need suitable notation: given  ∈ ∞
¡
[0  ] R

¢
we generalize (1) to10

x :=  ()0 :=

Ã
1

Z 

0



Z
∆2
[0]

⊗  

Z
∆
[0]

⊗ · · ·⊗ 

!


(6)

called step- signature of  over the interval [0 ]  with values in


¡
R
¢
:= R⊕R ⊕ ¡R¢⊗2 ⊕ · · ·⊕ ¡R¢⊗ 

Observe that we added a 0 scalar component in our definition of x which

is always set to 1. This is pure convention but has some algebraic advan-

tages. To go further, we note that 
¡
R
¢
has the structure of a (trun-

cated) tensor-algebra with tensor-multiplication ⊗. (Elements with scalar
component equal to 1 are always invertible with respect to ⊗.) Computa-
tions are simply carried out by considering the standard basis () of R as
non-commutative indeterminants; for instance,¡


¢⊗ ¡¢ = ( ⊗ ) 6= ( ⊗ )

9A drift term 0 ()  can be trivially included by consider the time-space process

( ).
10∆

[0]
denotes the -dimensional simplex over [0 ]
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The reason we are interested in this sort of algebra is that the trivial

 ≡ (−) +  =

Z 



 =: 

generalizes to

x ≡ x−1 ⊗ x =
Ã
1

Z 





Z
∆2
[]

⊗  

Z
∆
[]

⊗ · · ·⊗ 

!
As a consequence, we have Chen’s relation x = x ⊗ x which

tells us precisely how to "patch together" iterated integrals over adjacent

intervals [ ] and [ ].

Let us now take on remark (ii) of the previous section. One can see that

the step- lift of a smooth path , as given in (6), takes values in in the

free step- nilpotent (Lie) group with  generators, realized as restriction

of 
¡
R
¢
to


¡
R
¢
= exp

¡
R ⊕ £RR¤⊕ £R £RR¤⊕ 

¤¢ ≡ exp ¡g ¡R¢¢
where g

¡
R
¢
is the free step- nilpotent Lie algebra and exp is defined

by the usual power-series based on ⊗.
Example 0.5 ( = 2) Note that

£
RR

¤
=  (). Then

exp
¡
R ⊕ £RR¤¢

=

½µ
1 

1

2
 ⊗  +

¶
:  ∈ R  ∈  ()

¾
which is precisely the algebraic relation we pointed out in remark (ii) of the

previous section.

If the discussion above tells us that 
¡
R
¢
is too big a state space for

lifted smooth paths, Chow’s theorem tells us that 
¡
R
¢
is the correct

state space. It asserts that for all  ∈ 
¡
R
¢
there exists  : [0 1]→ R,

which may be taken to be piecewise linear such that  ()01 = . One

can then define the Carnot—Caratheodory norm

kk = inf
n
length

¡
|[01]

¢
:  ()01 = 

o


where the infimum is achieved for some Lipschitz continuous path ∗ :

[0 1] → R, some sort of geodesic path associated to . The Carnot—

Caratheodory distance is then simply defined by  ( ) :=
°°−1 ⊗ 

°°.
Example 0.6 Take  =

µµ
0

0

¶


µ
0 

− 0

¶¶
∈ 2

¡
R2
¢
. Then ∗ is

the shortest path which returns to its starting point and sweeps out area .

From basic isoperimetry, ∗ must be a circle and kk = 2√12
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FIGURE 2. After identifying 2

R

with the 3-dimensional Heisenberg group,

ie.










0 

− 0


≡ (  ), we plot the (apple-shaped) unit-ball with

respect to the Carnont-Caratheodory distance. It contains (and is contained in)

a Euclidean ball.

FIGURE 3. We plot the circle ∗. The -axis represents the wiped-out area and
runs from 0 to .
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In practise, we rarely need to compute precisely the CC norm of an

element  =
¡
1 1     

¢ ∈ 
¡
R
¢
. Instead we rely on the so-called

equivalence of homogenous norms which asserts that

∃  0 :
1


|||||| ≤

°°¡1 1     ¢°° ≤  ||||||

where

|||||| := max
=1

¯̄

¯̄1
(R)⊗

Here, both "norms" k·k and |||·||| are homogenous with respect to dilation
on 

¡
R
¢


 :
¡
1 1     

¢ 7→ ³
1 11     

´
  ∈ R

It is time to make the link to our previous discussion. Recall condition

() from equation (2), which expressed a Hölder-type assumption of formZ 



 ∨
¯̄̄̄Z 



Z 



⊗ 

¯̄̄̄12
≤ 1 |− | 

But this says exactly that, for all 0 ≤    ≤  , the corresponding "group"

increment x = 2 () ∈ 2
¡
R
¢
satisfies

kxk =  (xx) . 1 |− | 

where  is the Carnot-Caratheodory metric on 2
¡
R
¢
, which is equivalent

to

kxk-Höl;[0 ] ≡ sup
∈[0 ]

 (xx)

|− | . 1

This regularity persists under passage to the limit and hence any (weak,

geometric) -Hölder rough path is a genuine -Hölder path with values in

2
¡
R
¢
 Conversely, given an abstract -Hölder path in 2

¡
R
¢
equipped

with Carnot—Caratheodory distance, we can construct a path  by con-

catenating geodesics paths associated to the increments
©
x+1 :  = 0     2


ª


() = (2− ); the resulting sequence () then satisifes condition ()

uniformly and converges uniformly, together with its iterated integrals, to

the path x (·) with which we started.
Nothing of all this is restricted to  ∈ (13 12] ←→  = 2: for any

 = 1 ∈ (0 1] a weak, geometric 1-Hölder rough path x is

precisely a 1-Hölder path in the metric space
¡
[]

¡
R
¢
 
¢
where

 denotes the Carnot—Caratheodory distance. Davie’s lemma extends

to the step-[] setting and we are led to a theory of (rough path) differential

equations (RDE), formally written as

 =  () x
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where x is a (weak, geometric) 1-Hölder rough path. For  ∈ Lip−1 one
has existence and  ∈ Lip with    uniqueness11. Once in possession

of a unique solution  = ( ) (0 0;x) one may ask for regularity of the

Itô—Lyons map

x 7→ 

In fact, one can construct the RDE solution as (weak, geometric) 1-

Hölder rough path in its own right, say y = π( ) (0 0;x) with values in

[] (R) and ask for regularity of the full Itô—Lyons map

(0 x) 7→ y

It turns out that this solution map is Lipschitz continuous on bounded sets,

provided we measure the distance between two driving signals x x̃ with a

(non-homogenous12) 1-Hölder distance given by

1-Höl (x x̃) := max
=1[]

sup
∈[0 ]

¯̄
x − x̃

¯̄
|− |



For most applications it is enough to have (uniform) continuity (on bounded

sets) in which case one can work with the (homogenous13) 1-Hölder dis-

tance given by

1-Höl (x x̃) := sup
∈[0 ]

 (x x̃)

|− |


The latter often makes computations more transparent and can become

indispensible in a probabilistic context (e.g. when studying "exponentially

good" approximations in a large deviation context).

But no matter which distance is more practical in a given context, both

induce the same "1-Hölder rough path" topology on the rough path space

1-Höl
¡
[0  ]  []

¡
R
¢¢
.

11With more effort, uniqueness can be shown under Lip-regularity.
12 ... with respect to dilation since, in general,

1-Höl (x x̃) 6= || 1-Höl (x x̃) 

13 ... again with respect to dilation,

1-Höl (x x̃) = || 1-Höl (x x̃) 
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FIGURE 4. A typical 2-dimensional Brownian sample path. The (signed) area

between the straight cord and the sample path corresponds to a typical Lévy

area increment.

0.3 Brownian motion and stochastic analysis

Let  be a -dimensional Brownian motion. Almost every realization of

enhanced Brownian motion (EBM)

 7→ B () =

µ
1 

Z 

0

 ⊗ ◦

¶
= exp ( +0)

with  ()-valued Lévy area  () =
1
2

R 

( ⊗  −  ⊗) is

a (weak) geometric rough path, namely

B· () ∈ -Höl
¡
[0  ] 

¡
2
¡
R
¢
 
¢¢
  ∈ (13 12)

Granted the usual -Hölder regularity of Brownian motion, this statement

is equivalent to the question

"Is it true that for   12 : sup
∈[01]

||
|− |2

∞ a.s. ?"

The reader is encouraged to think about this before reading on!

Perhaps the most elegant way to establish this "rough path regularity"

of Lévy area, relies on scaling properties of enhanced Brownian motion.

Namely,

B
D
= B0−

D
= (−)12B01
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so that

E
³
 (BB)

2
´
= E

³
kBk2

´
≤ (const)× |− |

for any  ∞. Kolmogorov’s criterion applies without any trouble and so
B is indeed a.s. -Hölder,   12, with respect to . QED.

Let us also mention a convergence result: we have

-Höl;[0 ] (B 2 (
))→ 0

in probability where  denotes a piecewise linear approximation to 

based on dissections  = { : } with mesh of  tending to 0

We then have two important conclusions:

(i) Thanks to -Hölder regularity ofB, the (random) RDE  =  ( ) B

can be solved for a.e. fixed  and yields a continuous stochastic

process

· () = ( ) (0 0;B ()) (7)

(ii) By continuity of the Itô-Lyons map with respect to the rough path

metric -Höl;[0 ] it follows that

( ) (0 0;
)→ ( ) (0 0;B ())

with respect to -Hölder topology and in probability. Clearly,

 ≡ ( ) (0 0;
)

is a solution to the (random) ODE

 =  ()   (0) = 0

and the classical Wong-Zakai theorem14 allows us to identify (7) as

classical Stratonovich solution to

 =  ( ) ◦  =

X
=1

 ( ) ◦ 

But why is all this useful? The following list should give some idea ...

• ( ) (0 0;B ()) is simultaneously defined for all starting points 0
and coefficient vector fields  of suitable regularity. In particular, the

construction of stochastic flows is a triviality and this itself can be the

starting point for the robust treatment of certain stochastic partial

differential equations.

14E.g. the books of Ikeda—Watanabe [83] or Stroock [155].
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• Every approximation in rough path topology implies a limit theorem
(even on the level of flows). This includes classical piecewise-linear ap-

proximations and non-standard variations à la McShane, Sussmann.

It also includes a variety of weak limit theorems such as a Donsker-

type invariance principle.

• Various stochastic Taylor-expansion (à la Azencott, Platen, ...) can
be obtained via deterministic rough path estimates.

• Support descriptions à la Stroock—Varadhan and large deviation esti-
mates à la Freidlin—Wentzell are reduced to the respective (relatively

simple) statements about B in the rough path topology.

• The Young integral allows us to perturbe B simultaneously in all

-var
¡
[0 1] R

¢
-directions with   2. Since

Cameron-Martin ⊂ 1-var ⊂ -var

this implies in particular path space regularity of SDE solution be-

yond Malliavin and there is a natural interplay with Malliavin calcu-

lus.

• Starting points and vector fields can be fully anticipating.
• At last, for the bulk of these results we can replace Brownian motion
at little extra price by martingales, Gaussian processes or Markov

processes provided we can construct a suitable stochastic area and

establish the correct rough path regularity!



Part I

Basics
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1

Continuous Paths of Bounded
Variation

We discuss continuous paths, defined on a fixed time horizon, with values in

a metric space . Emphasis is on paths with nice regularity properties and

in particular on continuous paths of bounded variation1. We then specialize

to the case when  = R. Finally, we discuss simple Sobolev type regularity
of paths.

1.1 Continuous paths on metric spaces

We start by defining the supremum or infinity distance.

Definition 1.1 Let ( ) be a metric space and [0  ] ⊂ R. Then  ([0  ]  )
denotes the set of all continous paths  : [0  ] → . The supremum- or

infinity distance of   ∈  ([0  ]  ) is defined by

∞;[0 ] ( ) := sup
∈[0 ]

 ( ) 

For a single path  ∈  ([0  ]  )  we set

||0;[0 ] := sup
∈[0 ]

 ( ) 

and, given a fixed element  ∈ , identified with the constant path ≡ ,

||∞;[0 ] := ∞;[0 ] ( ) = sup
∈[0 ]

 ( ) 

If no confusion is possible we shall omit [0  ] and simply write ∞ |·|0
and |·|∞ . If  has a group structure such as

¡
R+

¢
the neutral element

is the usual choice for . In the present generality, however, the definition

of |·|∞ depends on the choice of .

Notation 1.2 Of course, [0  ] can be replaced by any other interval [ ]

in which case one considers  : [ ]→ . All notations adapt by replacing

[0  ] by [ ]. Let us also agree that  ([ ]  ) denotes those paths in

 ([ ]  ) which start at , i.e.

 ([ ]  ) = { ∈  ([ ]  ) :  () = } 

1Also known as rectifiable paths.
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Many familiar properties of real-valued functions carry over. For instance,

any continuous mapping from [0  ] into  is uniformly continuous2. It is

also fairly easy to see that  ([0  ]  ) is a metric space under ∞ (the

induced topology will be called the uniform or supremum topology). Also,

if ( ) is complete then ( ([0  ]  )  ∞) is complete.

Definition 1.3 A set  ⊂  ([0  ]  ) is said to be equicontinuous if, for

all   0 there exists  such that |− |   implies  ( )   for all

 ∈ . It is said to be bounded if sup∈ ||∞ ∞.

Theorem 1.4 (Arzela—Ascoli) Let ( ) be a complete metric space in

which bounded sets have compact closure. Then a set  ⊂  ([0  ]  ) has

compact closure if and only if  is bounded and equicontinuous.

As a consequence, a bounded, equicontinuous sequence in  ([0  ]  ) has a

convergent subsequence and, conversely, any convergent sequence in  ([0  ]  )

is bounded and equicontinuous.

Proof. Let us recall that a subset of a complete metric space has compact

closure if and only if it is totally bounded, i.e. for all   0, it can be

covered by finitely many -balls.

”⇐= ” :We show that the assumption " bounded and equicontinuous"

implies total boundedness. We fix   0 and then   0 such that for every

 ∈ ,

|− |   =⇒  ( )  4 (1.1)

Cover [0  ] with a finite number of neighbourhoods
¡
 − 

2
  +


2

¢
,  =

1    , and define  = {   ∈ }; as  ⊂  is bounded, its closure

is compact, and so is its union
S
1≤≤ ; let 1      ∈

S
1≤≤

be such that
S
1≤≤ is covered by the union of the 4-balls centered

around some  

Then, consider Φ, the set of functions from {1    } into {1     }. For
each  ∈ Φ, denote by  the set of all functions  ∈  ([0  ]  ) such

that max 
¡
  ()

¢ ≤ 
4
. Observe that from the definition of  it follows

that  is covered by the union of the ()∈Φ.
To end the proof, we need only show that the diameter of each  is ≤ .

2E.g. Dieudonné, [39, (3.6.15)].
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If   are both in , then

∞ ( ) = sup
∈[0 ]

 ( )

≤ max
1≤≤

⎛⎝ (  ) + sup
∈(− 

2
+


2)
 ( ) +  ( )

⎞⎠
≤ max

1≤≤
 (  ) +



2
from (1.1)

≤ max



¡
  ()

¢
+max



¡
  ()

¢
+



2
≤  by definition of 

” =⇒ ” : Since compact sets are bounded, only equicontinuity needs

proof. By assumption has compact closure and therefore is totally bounded.

Fix   0 and pick 1      such that  ⊂ S
1≤≤

¡
 3

¢
where

 ( ) denotes the open -ball centered at . By continuity of each  (·),
there exists  =  () such that

|− |   =⇒ max
=1


¡
 




¢
 3.

But then, for every  ∈ ,  ( ) ≤ 3+max=1 
¡
 




¢
+3 ≤ 

provided |− |   and so  is equicontinuous.

The consequences for sequences are straight-forward and left to the reader.

1.2 Continuous paths of bounded variation on
metric spaces

1.2.1 Bounded variation paths and controls

Let us write D ([ ]) for the set of all dissections of some interval [ ] ⊂ R,
thus a typical element in D ([ ]) is written as

 = { = 0  1  · · ·   = }
and consists of # =  adjacent intervals [−1 ]. The mesh of  is

defined as || := max=1 | − −1| and we shall write D ([ ]) the set

of all dissectiona of [ ] with mesh less or equal to 

Definition 1.5 Let ( ) be a metric space and  : [0  ] → . For 0 ≤
 ≤  ≤  , the 1-variation of  on [ ] is defined as3

||1-var;[] = sup
()∈D([])

X



¡
  +1

¢


3Let us agree that ||1-var;[] = 0 for 0 ≤  ≤  .
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If ||1-var;[]  ∞ we say that  is of bounded variation or of finite 1-

variation on [ ]. The space of continuous paths of finite 1-variation on

[0  ] is denoted by 1-var ([0  ]  ), its subset of paths started at  ∈  is

denoted by 1-var ([0  ]  ).

In the discussion of 1-variation regularity (and later -variation regularity

for  ≥ 1), the notion of control or control function, defined on the simplex

∆ := ∆ = {( ) : 0 ≤  ≤  ≤ }

turns out to be extremely useful.

Definition 1.6 A map  : ∆ → [0∞) is called super-additive if for all
 ≤  ≤  in [0  ],

( ) + ( ) ≤ ( )

If in addition,  is continuous and zero on the diagonal, i.e.  ( ) = 0

for 0 ≤  ≤  we call  a control or, more precisely, a control function on

[0  ] .

Definition 1.7 We say that the 1-variation of a map  : [0  ] →  is

dominated by the control , or controlled by  if there exists a constant

 ∞ such that for all    in [0  ],

 ( ) ≤  ( )

Simple examples of controls are given by ( ) 7→ |− | for  ≥ 1 or

the integral of a non-negative function in 1 ([0  ]) over the interval [ ].

Trivially, a positive linear combination of controls yields another control. If

 is a control and  : [0  ]→  a map controlled by  then  is continuous.

Exercise 1.8 Let  ∈  ([0∞) [0∞)) be increasing, convex with  (0) =
0. Assuming that  is a control show that  ◦ : ( ) 7→  ( ( )) is also

control.

Solution 1.9 Fix 0     and observe that by convexity

 (+ )−  ()


≥  ()−  (0)



so that  (+ ) ≥  () +  (). Interchanging   if needed, this holds for

all   ≥ 0 and we conclude that

 [ ( )] +  [( )] ≤  [( ) + ( )] ≤  [( )] 

Exercise 1.10 Assume  ̃ are controls.

(i) Show that ̃ is a control.

(ii) Show that max ( ̃) need not be a control.

(iii) Given    0 with +  ≥ 1 show that ̃ is a control.
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Solution 1.11 (iii) By exercise 1.8, it is enough to consider the case +

 = 1. But this follows from Hölder’s inequality,

∀ ̃  ̃ ≥ 0 : ̃+ ̃ ≤
³

1
 + 

1


´ ³
̃
1
 + ̃

1


´


Exercise 1.12 Let  be a control on [0  ] and consider    in [0  ].

Show that there exists  ∈ [ ] such that

max { ( )   ( )} ≤  ( ) 2

Solution 1.13 By continuity and monotonicity of controls, there exists 

such that  ( ) =  ( ). By super-additivity,

2 ( ) = 2 ( ) =  ( ) +  ( ) ≤  ( )

and the proof is finished.

Proposition 1.14 Consider  : [0  ]→  and  =  ( ) superadditive,

with    in [0  ]. If  ( ) ≤  ( ) for all    in [0  ], then

||1-var;[] ≤  ( ).

Proof. Let  = () be a dissection of [ ]  Then, by assumption,

#−1X
=0


¡
+1

¢ ≤
#−1X
=0

 ( +1)

≤  ( ) by super-additivity of 

Taking the supremum over all such dissections finishes the proof.

Proposition 1.15 Let  ∈ 1-var ([0  ]  ). Then

( ) 7→  ( ) := ||1-var;[]
defines a control on [0  ] such that for all 0 ≤    ≤ 

( ) ≤ ||1-var;[]  (1.2)

This control is additive: for all 0 ≤  ≤  ≤  ≤ 

||1-var;[] = ||1-var;[] + ||1-var;[] 

In particular,

 ∈ [0  ] 7→  () := ||1-var;[0] ∈ R
is continuous, increasing and hence of finite 1-variation.
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Proof. Trivially, ||1-var;[] = 0 for all  ∈ [0  ]  To see super-additivity
it suffices to take a dissections 12 of [ ] and [ ] respectively; noting

that the union of 1 and 2 is a dissection of [ ] we haveX
∈1


¡
  +1

¢
+
X
∈2


¡
  +1

¢ ≤ ||1−[]
and  ( ) +  ( ) ≤  ( ) follows from taking the supremum over

all dissections 1 and 2. For additivity of  we establish the reverse

inequality. Let  = () a dissection of [ ] so that  ∈ [  +1] for some
. We then have

#−1X
=0


¡
+1

¢
=

−1X
=0


¡
  +1

¢
+ 

¡
  +1

¢| {z }
≤ ( )+(+1)

+

#−1X
=+1


¡
  +1

¢


But, as

−1X
=0


¡
  +1

¢
+ 

¡
  

¢ ≤ ||1-var;[] 


¡
 +1

¢
+

#−1X
=+1


¡
  +1

¢ ≤ ||1-var[] 

we have
#−1X
=0


¡
+1

¢ ≤ ||1-var;[] + ||1-var;[] 
Taking the supremum over all dissection shows additivity of . It only

remains to prove its continuity.

To this end, fix    in [0  ]. From monotonocity of , we see that the

limits

||1-var;[+−] := lim
12&0

||1-var;[+1−2]  ||1-var;[−+] := lim
12&0

||1-var;[−1+2]
exist and that

||1-var;[+−] ≤ ||1-var;[] ≤ ||1-var;[−+]  (1.3)

We aim to show the inequalities in (1.3) are actually equalities. To es-

tablish "continuity from inside" i.e. ||1-var;[+−] = ||1-var;[] we define
 ( ) = ||1-var;[+−]  and pick      in [0  ]  and 1 2 3 4 four

(small) positive numbers. If () is a dissection of [+ 1 − 2]  and ()

a dissection of [+ 3 − 4]  then by definition of the 1-variation of X



¡
  +1

¢
+
X



¡
  +1

¢ ≤ ||1−[+1−4] 
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Taking the supremum over all possible dissections () and ()  we obtain

||1-var;[+1−2] + ||1-var;[+3−4] ≤ ||1-var;[+1−4] 

Letting 1 2 3 4 go to 0 and using the continuity of  we obtain that

( ) 7→ ||1-var;[+−] is super-additive. We also easily see that for all   ∈
[0  ]   ( ) ≤ ||1-var;[+−]  Hence, using proposition 1.14, we obtain

||1-var;[+−] ≥ ||1-var;[] 

and hence we proved that ||1-var;[+−] = ||1-var;[] for all    in

[0  ]. The remaing part of the proof is "continuity from outside" i.e.

||1-var[−+] = ||1-var;[] Using additivity of ||1-var;[] it is easy to see
that

||1-var[−+] = ||1-var;[0 ] − ||1-var;[0−] − ||1-var;[+ ]
= ||1-var;[0 ] − ||1-var;[0] − ||1-var;[ ] = ||1-var;[]

and this finishes the proof.

Exercise 1.16 Assume  is a control on [0  ]. Assume  ∈  (∆ [0∞))
where ∆ = {( ) : 0 ≤  ≤  ≤ }  non-decreasing in the sense that [ ] ⊂
[ ] implies  ( ) ≤  ( )  Show that

( ) 7→  ( ) ( )

is a control. As application, given  ∈ 1-var ([0  ]  ) and  ∈  ([0  ]  ),

show that

( ) 7→ ||∞;[] ||1-var;[]
is a control where |·|∞;[] is defined with respect to some fixed  ∈ .

Proposition 1.17 Let  ∈  ([0  ]  ). Then for all   0 and 0 ≤  ≤
 ≤  ,

||1-var;[] = sup
()∈D([])

X



¡
  +1

¢ ∈ [0∞] 
Proof. Clearly,

 ( ) := sup
()∈D([])

X



¡
  +1

¢ ≤  ( ) = ||1-var;[] .

Super-addivitity of  follows from the same argument as for . Take

any  = () ∈ D ([ ]) so that  = 0  1       =  with

+1 −   . It follows that

 ( ) ≤  ( 1) + · · ·+ 
¡
−1  

¢
≤  ( ) .



26 1. Continuous Paths of Bounded Variation

From proposition 1.14, we conclude that ||1-var;[] ≤  ( )  which

concludes the proof.

We now observe lower semi-continuity of the function  7→ ||1-var in the
following sense.

Lemma 1.18 Assume () is a sequence of paths from [0  ] →  of

finite 1-variation. Assume  →  pointwise on [0  ]. Then, for all   

in [0  ],

||1-var;[0 ] ≤ lim inf→∞
||1-var;[0 ] 

Proof. Let  = {0 = 0  1  · · ·   = } be a dissection of [0  ]  By
assumption,  →  pointwise and so

−1X
=0


¡
  +1

¢
= lim inf

→∞

X



³
  


+1

´
≤ lim inf

→∞
||1-var;[0 ] 

Taking the supremum over all the dissections of [ ] finishes the 1-variation

estimate.

In general, the inequality in lemma 1.18 can be strict. The reader is

invited to construct an example in the following exercise.

Exercise 1.19 Construct () ∈ 1-var ([0 1] R) such that ||∞;[01] ≤
1 but so that ||1-var = 1 for all . Conclude that the inequality in

lemma 1.18 can be strict.

1.2.2 Absolute continuity

Definition 1.20 Let ( ) be a metric space. A path  : [0  ] →  is

absolutely continuous if for all   0, there exists   0, such that for all

1  1 ≤ 2  2 ≤ · · ·     in [0  ] with
P

 | − |  , we haveP
  (  )  

Proposition 1.21 Any absolutely continuous path is a continuous path of

bounded variation.

Proof. If  : [0  ] →  is absolutely continuous it is obviously con-

tinuous. Furthermore, by definition there exists   0 such that for all

1  1 ≤ 2  2 ≤ · · ·     ∈ [0  ] with
P

 | − | ≤ , we haveP
  (  ) ≤ 1 Pick  = ()1≤≤ a dissection of [0  ]. Then, define

0 = 1 and  = max
©
  − −1 ≤ 

ª
 and observe that []+1 =  for

all  ≥ [] + 1
−1X
=1


¡
  +1

¢ ≤ []+1X
=0

+1−1X
=


¡
  +1

¢
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By definition of the s,
P+1−1

=
|+1 − | =

¯̄
+1 − 

¯̄
≤  henceP+1−1

=

¡
  +1

¢ ≤ 1 which implies thatP−1
=1 

¡
  +1

¢ ≤ []+
1 Taking the supremum over all dissections finishes the proof.

In general, the converse of the above is not true as seen in the following

Example 1.22 (Cantor function) Each  ∈ [0 1] has a base-3 decimal
expansion  =

P
≥1 3

− where  ∈ {0 1 2}. This expansion is unique
unless  is of the form 3− for some   ∈ N (we may assume  is not
divisible by 3) and in this case  has two expansions: one with  = 0 for

   and one with  = 2 for   . One of them has  = 1, the other

will have  ∈ {0 2}. If we agree always to use the latter, we see that
1 = 1 iff  ∈ (13 23)
1 6= 1 2 = 1 iff  ∈ (19 29) ∪ (79 89)

and so forth. The Cantor set C is then defined as the set of all  ∈ [0 1]
that have a base-3 expansion  =

P
3
− with  6= 1 for all . Thus C

is obtained from 01 = [0 1] by removing the open middle third leaving us

with the union of 11 = [0 13] 12 = [23 1]; followed by removing all

open middle thirds leaving us with the union of

21 = [0 19] 21 = [29 39] 21 = [69 79] 21 = [89 1]

and so forth, so that in the end C = ∩∞=1∪2


=1. Let us know define the

Cantor function  on C by

 () =
X
≥1

³
2

´
2−   ∈ C

This series is the base-2 expansion of a number in [0 1] and since any

number in [0 1] can be obtained this way we see that  (C) = [0 1]. One

readily sees that if   ∈ C and   , then  ()   () unless  and 

are the endpoints of one of the open intervals removed from [0 1] to obtain

C. In this case,  () = 2− for some   ∈ N and  () =  (), given

by the two base-2 expansions of this number. We can therefore extend  to

a map from [0 1] to itself by declaring it to be constant on the intervals

missing from C. This extended  is still increasing, and since its range is

all of [0 1] it cannot have any jump discontinuities, hence it is continuous.

Being increasing,  is obviously of bounded variation on [0 1]. We now

show that  is not absolutely continuous. Given any   0 we can take  
as the boundary points of the intervals ()=12 with  chosen large

enough so that
P2

=1 ( − )  . Then, since  is constant on [ +1]

for  = 1    2 − 1, we have
2X
=1

| ()−  ()| =  (1)−  (0) = 1
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1.2.3 Lipschitz or 1-Hölder continuity

Definition 1.23 Let ( ) be a metric space. A path  : [0  ] →  is

Lipschitz - or 1-Hölder continuous4 if

||1-Höl;[0 ] := sup
∈[0 ]

 ( )

|− | ∞.

The space of all such paths is denoted by 1-Höl ([0  ]  ), the subset of

paths started at  ∈  is denoted by 1-Höl ([0  ]  ).

We observe that every Lipschitz path is absolutely continuous. In par-

ticular, it is of bounded variation and we note

||1-var;[] ≤ ||1-Höl;[] × |− | 
Furthermore,  ∈ 1-var ([0  ]  ) is 1-Hölder if and only if it is con-

trolled by ( ) 7→ |− |. It is easy to construct examples which are of
bounded variation but not Lipschitz (e.g.  7→ 12). On the other hand,

every continuous bounded variation path is a continuous time-change (or

reparametrization) of a Lipschitz path.

Proposition 1.24 A path  ∈  ([0  ] ) is of finite 1-variation if and

only if there exists a continuous non-decreasing function  from [0  ] onto

[0 1] and a path  ∈ 1-Höl ([0 1]  ) such that  =  ◦ 
Proof. We may assume ||1-var;[0 ] 6= 0 (otherwise, |[0 ] is constant and
there is nothing to show). By propostion 1.15,

() =
||1-var;[0]
||1-var;[0 ]

defines a continuous increasing function from [0  ] onto [0 1]  Then, there

exists a function  such that ( ◦ ) () =  ()  as  (1) =  (2) =⇒
 (1) =  (2)  Now,

sup
0≤≤1

 ( ()   ())

|− | = sup
0≤≤

 ( ( ())   ( ()))

| ()−  ()|

≤ ||1-var;[0 ]
||1-var;[]¯̄̄

||1-var;[0] − ||1-var;[0]
¯̄̄

= ||1-var;[0 ] 
This shows that  is in 1-Höl ([0 1]  ). The converse direction is an obvi-

ous consequence of the invariance of variation norms under reparametriza-

tion.

4 ... in view of the later definition of Hölder continuity and in order to avoid redundant

notation ...
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Remark 1.25 The 1-variation (i.e. length) of a path is obviously invariant

under reparametrization and so it is clear that

||1-var;[01] = ||1-var;[0 ] 

On the other hand, for the particular parametrisation  (·) used in the previ-
ous proof (essentially the arc-length parametrization) we saw that ||1-Höl;[01] ≤
||1-var;[0 ]. With the trivial ||1-var;[01] ≤ ||1-Höl;[01] we then see that

||1-Höl;[01] = ||1-var;[0 ] 

Lemma 1.26 Assume () is a sequence of paths from [0  ] →  of

finite 1-variation. Assume  →  pointwise on [0  ]. Then, for all   

in [0  ],

||1-Höl; [] ≤ lim inf→∞
||1-Höl;[] 

Proof. The Hölder statement is a genuine corollary of lemma 1.18: it suf-

fices to note that for any   ∈ [ ] 
 ( ) ≤ ||1-var;[]

≤ lim inf
→∞

||1-var:[] 
≤ | − | lim inf

→∞
||1-Höl;[] 

1.3 Continuous paths of bounded variation on R

Unless otherwise stated, R shall be equipped with Euclidean structure. In
particular, if  ∈ R has coordinates ¡1     ¢ its norm is given by

|| =
q
|1|2 +    ||2

Given a map  : [0  ]→ R the group structure of
¡
R+

¢
allows to speak

of the increments of  (·) and we write5

 :=  − 

1.3.1 Continuously differentiable paths

We define inductively the set 
¡
[0  ] R

¢
of -times continuously differ-

entiable paths by first defining 0
¡
[0  ] R

¢
to be 

¡
[0  ] R

¢
, and then

5Later on, when shall replace R by a Lie group.( ·) and increments will be defined
as ()

−1 · .



30 1. Continuous Paths of Bounded Variation

+1
¡
[0  ] R

¢
to be the set of paths with a derivative in 

¡
[0  ] R

¢


Finally, we define the set of smooth paths ∞
¡
[0  ] R

¢
to be the inter-

section of all 
¡
[0  ] R

¢
 for  ≥ 0

For continuously differentiable paths, the computation of 1-variation is

a simple matter.

Proposition 1.27 Let  ∈ 1
¡
[0  ] R

¢
. Then

 ∈ [0  ] 7→  () := ||1-var;[0] ∈ R

is continuously differentiable and ̇ () = |̇ ()| for  ∈ (0  ). In particular,

||1-var;[] =
Z 



|̇| 

for all    in [0  ].

Proof.We first note that | − | ≤
R 

|̇| ; using proposition 1.14, we

obtain that

 ()−  () = ||1-var;[] ≤
Z 



|̇| .

Equality in the above estimate will follow immediately from ̇ () = |̇ ()|
and this is what we now show. Take  ∈ [0  ) and  small enough (so that
+  ≤  ). Clearly,

|+|


≤ | (+ )−  ()|


≤ 1



Z +



|̇| 

and upon sending  ↓ 0 we see that  is differentiable at  from the right

with derivative equal to |̇|. The same argument applies "from the left"

and so  is indeed differentiable with derivative |̇|. By assumption on ,

this derivative is continuous and the proof is finished.

1.3.2 Bounded variation

The results of the section 1.2 applied to R equipped with Euclidean dis-
tance allow us in particular to consider the space 1-var

¡
[0  ] R

¢
.

Theorem 1.28 1-var
¡
[0  ] R

¢
is Banach with norm  7→ | (0)| +

||1-var;[0 ]. The closed subspace of paths in 1-var
¡
[0  ] R

¢
started at

0, denoted by 1-var0

¡
[0  ] R

¢
, is also Banach under  7→ ||1-var;[0 ].

These Banach spaces are not separable.

Proof. It is easy to see that 1-var
¡
[0  ] R

¢
 1-var0

¡
[0  ] R

¢
are normed

linear spaces under the given norms. We thus focus on completeness. Noting

that

sup
∈[0 ]

| ()| ≤ | (0)|+ ||1-var;[0 ] 
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a Cauchy-sequence () with respect to  7→ | (0)| + ||1-var;[0 ] is also
Cauchy in uniform topology and thus (uniformly) convergent to some con-

tinuous path  (·). By lemma 1.18 it is clear that  has finite 1-variation
and it only remains to see that  →  in 1-variation norm. To this end, let

 = {0 = 0  · · ·   = } be an arbitrary dissection of [0  ]. For every
  0 there exists  =  () large enough so that for all  ≥  ()

sup


−1X
=0


³
+1  


+1

´
 2

On the other hand, we can fix and find large enough so that
P−1

=0 
³
+1  +1

´


2 which implies that for  ≥  () large enough

−1X
=0


³
+1  +1

´
≤ 

uniformly over all . But this precisely says that  →  in 1-variation.

Non-separability follows from the example below.

Example 1.29 (Non-separability) We give an example of an uncount-

able family of functions () in 
1-var ([0 1] R) for which | − 0 |1-var ≥

1 if  6= 0. To this end, take  = ()≥1 to be a {0 1}-sequence,and
write [0 1) as the union of the disjoint interval ,  ≥ 1, where  ≡£
1− 1

2−1  1− 1
2

¢
. If  = 0 then define  to be zero on . Otherwise,

define  on  by

 ( + ) =
1

2

¯̄̄
sin
³




2−

´¯̄̄
so that, using proposition 1.27, ||1-var; = 1. By construction  () = 0
for all  and hence  is continuous on [0 1). (Left-) continuity at 1 is also

clear: thanks to the decay factor 1 we see that that  ()→ 0 as % 1.

A simple approximation of a path  on R is given by its piecewise linear
approximation6.

Definition 1.30 Let  : [0  ]→ R and  = () a dissection of [0  ] 

We define the piecewise linear approximation to  by

 =  +
− 

+1 − 
+1 if  ≤  ≤ +1

Proposition 1.31 Let  ∈ 1-var
¡
[0  ] R

¢
 Then, for any dissection 

of [0  ] and any    in [0  ] ¯̄

¯̄
1-var;[]

≤ ||1-var;[]  (1.4)

6A powerful generalization of this will be discussed in section 5.2.
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If () is an arbitrary sequence of dissection with mesh ||→ 0 then 

converges uniformly to  (We can write this more concisely as  → 

uniformly on [0  ] as ||→ 0)

Proof. The estimate (1.4) boils down to the fact that the shortest way

to connect two points in R is via a straight line. The convergence result
requires the remark that  (·) is uniformly continuous on [0  ]. The easy
details are left to the reader.

The question arises if (or when)  →  in 1-variation as ||→ 0. Since

piecewise linear approximations are absolutely continuous, the following

result tells us that there is no hope unless  is absolutely continuous. (We

shall see later that  →  in 1-variation as || → 0 holds indeed true

provided  is absolutely continuous.)

Proposition 1.32 The set of absolutely continuous functions from [0  ]→
R is closed in 1-variation and a Banach space under 1-variation norm.

Proof. We prove that if  is absolutely continuous and converges to  in

1-variation norm, then  is absolutely continuous. Fix   0 and  ∈ N
such that

|− |1-var + |0 − 0 | 


2


Then, as  is absolutely continuous,there exists   0, such that for all

1  1 ≤ 2  2 ≤ · · ·     in [0  ] with
P

 | − |  , we haveP


¯̄


¯̄
 

2
 This implies thatX



| | ≤
X


¯̄


¯̄
+ sup

=() of [0 ]

X


¯̄
 − 

¯̄
≤

X


¯̄


¯̄
+ |− |1-var ≤ 

and the proof is finished.

Exercise 1.33 By proposition 1.32 it is clear that piecewise linear approxi-

mations cannot converge (in 1-variation) to the Cantor function  : [0 1]→
[0 1] given in example 1.22. (By proposition 1.32 any 1-variation limit point

is absolutely continuous; but the Cantor function is not absolutely contin-

uous as was seen in exercise 1.22). Verify this by an explicit computation.

More precisely, set  = {3−;  = 0  3} and show that¯̄
 − 

¯̄
1-var;[01]

= | − |1-var;[01]
where  () =  and conclude that  9  in 1-variation as ||→ 0.

Solution 1.34  is self-similar, in the sense that for all  ≥ 1  ∈ {0  3} 

¡
3− + 3

¢− 
¡
3−

¢
= 2 () 
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Using self-similarity, we see that, if  denotes the identity function on [0 1],¯̄
 − 

¯̄
1-var;[ 3 

+1
3 ]

= 2 | − |1-var;[01] 

Hence,

¯̄
 − 

¯̄
1-var;[01]

=

2−1X
=0

¯̄
 − 

¯̄
1-var;[ 3 

+1
3 ]

= | − |1-var;[01]  0

1.3.3 Closure of smooth paths in variation norm

Let us define 01-var
¡
[0  ] R

¢
as the closure of smooth paths from

[0  ] → R in 1-variation norm. Obviously, 01-var is a closed, linear
subspace of 1-var

¡
[0  ] R

¢
and thus a Banach space. Restricting to

paths with  (0) = 0 yields a further subspace (also Banach) denoted by


01-var
0

¡
[0  ] R

¢
. By proposition 1.32 any element of 01-var must be

absolutely continuous (a.c.) and so

01-var
¡
[0  ] R

¢ ⊂ © : [0  ]→ R a.c.
ª
( 1-var

¡
[0  ] R

¢


We shall show that the first inclusion is in fact an equality.

Proposition 1.35 The map  7→ R ·
0
 is Banach space isomorph from

1
¡
[0  ] R

¢→ 
01-var
0

¡
[0  ] R

¢
.

As a consequence,  ∈ 01-var
¡
[0  ] R

¢
if and only if there exists a

(uniquely determined) ̇ ∈ 1
¡
[0  ] R

¢
, see Remark 1.37, such that

 ≡ 0 +

Z ·

0

̇

and in this case the Banach isometry ||1-var = |̇|1 holds.

Proof.Without loss of generality we consider paths started at 0 = 0. For

any smooth  ∈ ∞
¡
[0  ] R

¢
we have  =

R ·
0
 ∈ ∞

¡
[0  ] R

¢
and

so, by proposition 1.27,

||1-var = ||1 
Obviously, this allows to extend the map

 :  ∈ ∞
¡
[0  ] R

¢ 7→  =

Z ·

0

 ∈ ∞
¡
[0  ] R

¢
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to the respective closures. From the very definition of the space 
01-var
0 and

by density of smooth paths in 1 it follows that  extends to a (Banach

space isomorphism)

̂ : 1
¡
[0  ] R

¢→ 
01-var
0

¡
[0  ] R

¢


To see that ̂ still has the simple representation as indefinite integral, let

 ∈ 1
¡
[0  ] R

¢
, take smooth approximations  in 1 and pass to the

limit in

 () =

Z 

0

  =

Z 

0

 1[0] () ,

using the simple fact that  →  in 1 implies 1[0] → 1[0] in 1 for

every fixed  ∈ [0  ]. At last, given  ∈ ̂(1
¡
[0  ] R

¢
we write ̇ rather

than  for the uniquely determined ̂−1 () ∈ 1
¡
[0  ] R

¢


The next proposition requires some background in basic measure theory

(Lebesgues-Stieltjes measures, Radon-Nikodym theorem, ...).7

Proposition 1.36 Let  : [0  ] → R be absolutely continuous. Then it
can be written in form 0 +

R
0
̇ with ̇ ∈ 1

¡
[0  ] R

¢
. As a conse-

quence,

01-var
¡
[0  ] R

¢
=
©
 : [0  ]→ R absolutely continuous

ª


Proof. It suffices to consider  = 1. The function  determines a signed

Borel measure on R via

 ((−∞ ]) = 0 ≡  − 0 for  ∈ [0  ]

and putting zero mass on R\ [0  ]. The assumption of absolute continuity
of  implies that  is absolutely continuous (in the sense of measures) with

respect to Lebesgue measure . By the Radon-Nikodym theorem, there

exists an integrable density function  = , an integrable function

from [0  ] to R, uniquely defined up to Lebesgue null sets, such that

 =  ((0 ]) =

Z 

0



Hence, using proposition 1.35,  ∈ 01-var
¡
[0  ] R

¢
. The converse inclu-

sion follows directly from proposition 1.32.

Remark 1.37 Our notation for ̇ for the unique 1-function with the

property

 = 0 +

Z 

0

̇

7 See Folland’s book [51] for instance.
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for absolutely continuous  is consistent with the fundamental theorem

of calculus for Lebesgue Integrals (e.g. [51, p. 106]). It states that a

real-valued function  on [0  ] is absolutely continuous if and only if its

derivative

lim
→0

+ − 



exists for almost every  ∈ [0  ] and gives an 1-function whose indefinite

integral is −0. We have not shown (and will not use) the fact that ̇ is

the almost-sure limit of the above difference quotient.

Corollary 1.38 Let  ∈ 1-var
¡
[0  ] R

¢
. Then piecewise linear approx-

imations converge in 1-variation,¯̄
− 

¯̄
1-var;[0 ]

→ 0 as ||→ 0

if and only if  ∈ 01-var
¡
[0  ] R

¢
.

Proof. "=⇒": Any 1-variation limit of piecewise linear approximation is
absolutely continuous and hence in 01-var.

"⇐= ": Fix   0, and  ∈ 01-var
¡
[0  ] R

¢
. From the very definition

of this space there exists a smooth path  such that

|− |1-var;[0 ] ≤


3


We claim that for all dissections  with small enough mesh (depending on

 and ),

| − |1-var;[0 ] 


3


Indeed, this follows from proposition 1.27 and the computation¯̄
̇ − ̇

¯̄
1[01]

=
X


Z +1



¯̄̄̄
̇ −

+1
+1 − 

¯̄̄̄
 for  = {} ⊂ [0  ]

=
X


Z +1



|̇ ()− ̇ ()|  with  ∈ ( +1)

≤ |̈|∞
X


Z +1



|− |  ≤ |̈|∞ ||

By the triangle inequality and the contraction property of (·) as linear

map from 1-var
¡
[0  ] R

¢
into itself, see (1.4), we have¯̄

− 
¯̄
1-var[0 ]

≤ |− |1-var[0 ] +
¯̄
 − 

¯̄
1-var[0 ]

+
¯̄
 − 

¯̄
1-var[0 ]

≤ 2 |− |1-var[0 ] +
¯̄
 − 

¯̄
1-var[0 ]

≤ 

and this finishes the proof.
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Corollary 1.39 The space 01-var
¡
[0  ] R

¢
is a separable Banach space

(and hence Polish).

Proof. Let  be the dyadic dissection {2 :  =      2} and de-
fine Ω to be the set of paths from [0  ] to R, linear on the dyadic
intervals of  with values at dyadic times in Q Then, Ω :=

S
Ω

is a countable set. If  ∈ 01-var
¡
[0  ] R

¢
and   0 there exists 

such that
¯̄
− 

¯̄
1-var

 2 It is then easy to find  ∈ Ω such that¯̄
 − 

¯̄
1-var

 2 which proves that Ω is dense in 01-var
¡
[0  ] R

¢
.

This shows that 01-var
¡
[0  ] R

¢
is separable.

1.3.4 Lipschitz continuity

We now turn to 1-Höl
¡
[0  ] R

¢
, the set of Lipschitz or 1-Hölder paths.

It includes, for instance, 1
¡
[0  ] R

¢
and elementary examples (e.g.  7→

||) show that this inclusion is strict.

Proposition 1.40 1-Höl
¡
[0  ] R

¢
is Banach with norm  7→ | (0)|+

||1-Höl;[0 ]. The closed subspace of paths in 1-Höl
¡
[0  ] R

¢
started at

0, is also Banach under  7→ ||1-Höl;[0 ]. These Banach spaces are not
separable.

Proof.Non-separability follows from example 1.29 together with ||1-var;[0 ] ≤
||1-Höl;[0 ] or using the (well-known) non-separability of ∞

¡
[0  ] R

¢
in conjunction with proposition 1.41 below. All other parts of the proof are

straight-forward and left to the reader.

Proposition 1.41 The map  7→ R ·
0
 is Banach space isomorph from

∞
¡
[0  ] R

¢→ 1-Höl0

¡
[0  ] R

¢
.

As a consequence,  ∈ 1-Höl
¡
[0  ] R

¢
if and only if there exists a

(uniquely determined) ̇ ∈ ∞
¡
[0  ] R

¢
such that

 ≡ 0 +

Z ·

0

̇

and in this case the Banach isometry ||1-Höl = |̇|∞ holds.

Proof. Similar to proposition 1.35 and left to the reader.

From general principles, any continuous path of finite 1-variation can

be reparametrized to a 1-Hölder path. In the present context of R-valued
paths this can be done so that the reparametrized path has constant speed.

We have
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Proposition 1.42 Let  ∈ 1-var
¡
[0  ] R

¢
, not constant. Define  (·)

by  ◦  =  where

() = ||1-var;[0]  ||1-var;[0 ] 

Then  ∈ 1-Höl
¡
[0 1] R

¢
has constant speed. More precisely,  is the

indefinite integral of some ̇ ∈ ∞
¡
[0 1] R

¢
and

|̇ ()| ≡ ||1-var;[0 ] = ||1-Höl;[01]
for a.e.  ∈ [0 1] .
Proof. By the precise argument of the proof of proposition 1.24,  is well-

defined and in 1-Höl
¡
[0 1] R

¢
. From the very definition of  and invari-

ance of 1-variation under reparametrization we have

||1-var;[0()] = ||1-var;[0] = ()

where  = ||1-var;[0 ]. On the other hand, by propositions 1.41 and 1.35,
 is the indefinite integral of some ̇ ∈ ∞

¡
[0 1] R

¢
and

||1-var;[0()] =
Z ()

0

|̇ ()| 

It follows that |̇| ≡  almost surely. At last, the equality  = ||1-Höl;[01]
was noted in remark 1.25.

Remark 1.43 More generally, the proof shows that  can be reparame-

trized to  ∈ 1-Höl
¡
[0 ] R

¢
with unit speed, i.e. |̇| ≡ 1 almost surely.

The reader will notice that the continuous embedding

1-Höl
¡
[0  ] R

¢
→ 1-var

¡
[0  ] R

¢
is a consequence of the trivial estimate

||1-var;[0 ] ≤ ||1-Höl;[0 ] 

As in the previous section it is natural to consider 01-Höl
¡
[0  ] R

¢
,

defined as the closure of smooth paths in 1-Höl
¡
[0  ] R

¢
. The resulting

closure is a space we have already encountered.

Proposition 1.44 The closure of smooth paths in 1-Höl
¡
[0  ] R

¢
equals

1
¡
[0  ] R

¢
.

Proof. Let us first observe that the norm  7→ |0| + sup∈[0 ] |̇| on
1
¡
[0  ] R

¢
makes 1

¡
[0  ] R

¢
a Banach space. To avoid trivialities

(norms versus semi-norms), let us assume that all paths are null at 0. Using

1
¡
[0  ] R

¢ ∼= ⊕=11 ([0  ] R)
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and similar for 1-Höl it suffices to consider  = 1. Given a smooth path

 : [0  ]→ R with  (0) = 0 we first show that

||1-Höl ≡ sup
∈[0 ]

| ()−  ()|
|− | equals sup

∈[0 ]
|̇| 

Indeed, from | (+ )−  ()| ≤ ||1-Höl  we see that |̇| ≤ ||1-Höl for all
 ∈ [0  ] while the converse estimate follows from the intermediate value

theorem,

| ()−  ()|
− 

= |̇ ()| for  ∈ ( )
≤ |̇|∞;[0 ] 

Any sequence () of smooth paths which converges (in 1-Hölder norm)

to some path  is also Cauchy in 1-Hölder. By the previous argument, it is

also Cauchy in 1 ([0  ] R) and so converges to some ̃ ∈ 1 ([0  ] R).
Since both 1-Hölder and 1-norm imply pointwise convergence we must

have  = ̃ ∈ 1 ([0  ] R) and the proof is finished.

1.4 Sobolev spaces of continuous paths of bounded
variation

1.4.1 Paths of Sobolev regularity on R

We saw in proposition 1.35 that a path  is in 01-var
¡
[0  ] R

¢
if and

only if

0 +

Z ·

0

̇

with ̇ ∈ 1
¡
[0  ] R

¢
and in this case ||1-var = |̇|1 . We then saw,

proposition 1.41 that a path  is Lipschitz, in symbols  ∈ 1-Höl ¡[0  ] R¢,
if and only if

0 +

Z ·

0

̇

with ̇ ∈ ∞
¡
[0  ] R

¢
and in this case ||1-Höl = |̇|∞  This suggests

to consider the following pathspaces.

Definition 1.45 For  ∈ [1∞]  we define 1
¡
[0  ] R

¢
to be the space

of R-valued functions on [0  ] of form

 (·) = 0 +

Z ·

0

 (1.5)
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with  ∈ 
¡
[0  ] R

¢
. Writing ̇ instead of  we further define

||1;[0 ] := |̇|;[0 ] =
ÃZ 

0

|̇| 
!1



The set of such paths with 0 =  ∈ R is denoted by  1


¡
[0  ] R

¢
. As

always, [0  ] may be replaced by any other interval [ ] ⊂ R.
It is clear from the definition that  11 = 01-var and hence (proposi-

tion 1.36) precisely the set of absolutely continuous paths, while  1∞ is

precisely the set of Lipschitz or 1-Hölder paths. It is also clear from the

usual inclusions of -spaces that  1∞ ⊂  1 ⊂  11 In particular,

any path in  1 is absolutely continuous (and then of course of bounded

variation).

Proposition 1.46 The space  1
¡
[0  ] R

¢
is a Banach space under

the norm

 7→ |0|+ || 1;[0 ] 

The closed subspace of paths in 1
¡
[0  ] R

¢
started at 0, is also Banach

under  7→ || 1;[0 ]. These Banach spaces are separable if and only if

 ∈ [1∞).
Proof. Since  ⊂ 1, we can use proposition 1.35 to see that the map

 7→ ̇ is well-defined, as is its norm  7→ |0| + |̇|[0 ]. The closed
subspace of paths in 1

¡
[0  ] R

¢
started at 0 is isomorphic (as normed

space) to 
¡
[0  ] R

¢
and hence Banach. The separability statement

nows follows from well-known facts of -spaces.

Exercise 1.47 Let  ∈ [1∞] and recall that we equipped  1
¡
[0  ] R

¢
with Banach norm

| (0)|+ |̇|;[0 ] 
Show that an equivalent norm is given by ||;[0 ] + |̇|;[0 ], for all
 ∈ [1∞]
Solution 1.48 -control of ̇ gives a modulus for  and in particular

|0| ≤ || 1;[0 ] 
1−1 where 1 = 0 for  =∞Using || ≤ |0|+|0|

one controls the supremum of  over  ∈ [0  ] and then any -norm.
Every path in  1 ⊂  11 is continuous and of finite 1-variation. For

 =∞, such paths are Lipschitz or 1-Hölder continuous; more precisely
|| ≤ ||1∞;[] |− | .

Observe that the right hand side is a control so that || in the above
estimate can be replaced by ||1-var;[]. In the following theorem we see

that a similar statement holds true for all   1.
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Theorem 1.49 Let  ∈ (1∞). Given  ∈ 1
¡
[0  ] R

¢
,

 ( ) = || 1;[] (− )
1−1

defines a control function on [0  ] and we have ||1-var;[] ≤  ( )

for all    in [0  ]. In particular, we have the continuous embedding

 1
¡
[0  ] R

¢
→ 1-var

¡
[0  ] R

¢


Proof. Without loss of generality 0 = 0. By proposition 1.35,  is the

indefinite integral of some ̇ ∈ 1. Define  = 1 − 1. Using Hölder’s
inequality with conjugate exponents  and 1

|| ≤
Z 



|̇|  ≤ (− )


µZ 



|̇| 
¶1

= || 1;[] (− )


=  ( ) 

We show that  is a control. Continuity of  is obvious from the fact that

||1;[] is the integral of an integrable function, namely |̇|, over [ ].
Only super-additivity,  ( ) +  ( ) ≤  ( ) with  ≤  ≤ , remains

to be shown. From Hölder’s inequality with conjugate exponents  and

 (− 1) = 1 we obtain

||1;[] (− )

+ || 1;[] (− )



≤
³
|| 1;[] + || 1;[]

´1 h
(− )




−1 + (− )



−1
i(−1)

= ||1;[] (− )



By proposition 1.14, we conclude that ||1-var;[] ≤  ( ). In particular,

||1-var;[0 ] ≤  (0  ) = || 1;[0 ] 
1−1

which gives the continuous embedding.

Proposition 1.50 Let  ∈ (1∞). A function  : [0  ] → R is in
 1

¡
[0  ] R

¢
if and only if  () ∞ where

 () : = sup
()∈D([0 ])

X


¯̄
+1

¯̄
|+1 − |−1

= lim
→0

sup
()∈D([0 ])

X


¯̄
+1

¯̄
|+1 − |−1

and in this case

||1;[0 ] = () 
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Proof. Without loss of generality 0 = 0 and we assume  ∈  1 is the

indefinite integral of some ̇ ∈ . Then, Hölder’s inequality gives

¯̄
+1

¯̄
≤ |+1 − |1

0
µZ +1



|̇| 
¶1

where 10 + 1 = 1. It immediately follows that

 () ≤
Z 

0

|̇|  = || 1;[0 ]  (1.6)

Conversely, suppose that  ()  ∞; given 1  1 ≤ 2  2 ≤ · · · 
   in [0  ]  Hölder’s inequality yields

X
=1

| −  | =

X
=1

| −  |
|+1 − |1

0 |+1 − |1
0

≤ ( ())
1

ÃX


|+1 − |
!10

which shows that  is absolutely continuous, hence precisely in 
01-var
0 ,

and (proposition 1.36) the indefinite integral of some ̇ ∈ 1 [0  ]. We

show that ̇ ∈ [0  ], with
R 
0
|̇|  bounded by  (). Let  =©



 :  = 0     

ª
. By corollary 1.38,  →  in 1-variation norm, and

therefore we have the convergence

̇ =




X
=1

 (−1)


 


1[ (−1)
 
 )
→ ̇ ∈ 1 [0  ] 

By passing to a subsequence
³
̃

´
= ()we can achieve that ̇

̃

 →→∞
̇ for almost every  ∈ [0  ] with respect to Lebesgue measure. By Fatou’s
lemma we then see thatZ 

0

|̇|  ≤ lim inf
→∞

Z 

0

¯̄̄
̇̃



¯̄̄


= lim inf
→∞

X
:∈̃

¯̄
+1

¯̄
|+1 − |−1

≤ lim
→0

sup
||≤

X
:∈

¯̄
+1

¯̄
|+1 − |−1

=: ̃ () 

Recalling (1.6) we get  () ≤ || 1;[0 ] ≤ ̃ () and with the trivial

̃ () ≤ () we must have equality throughout. This finishes the proof.
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1.4.2 Paths of Sobolev regularity on metric spaces

We already remarked that  11 (resp.  1∞ ) coincides with the set of
absolutely continuous (resp. 1-Hölder) paths and this kind of regularity only

required paths with values in an abstract metric space ( ). Proposition

1.50 suggests how to define  1-regularity in metric setting. Although we

shall only need  = 2 in later chapters (in particular, in our discussions of

large deviations) the case  ∈ (1∞) is covered without extra effort and
has applications in large deviation type result for diffusions on fractals (see

comments below.)

Definition 1.51 For  ∈ (1∞)) we define  1 ([0  ]  ) as those paths

 : [0  ]→ ( ) for which

|| 1;[0 ] :=

Ã
sup

()∈D([0 ])

X


¯̄

¡
  +1

¢¯̄
|+1 − |−1

!1
∞

The subset of paths started at  ∈  is denoted by  1
 ([0  ]  ). As

always, [0  ] may be replaced by any other interval [ ].

We now give a generalization of Theorem 1.49.

Theorem 1.52 For any  ∈ 1 ([0  ]  ) we have for all   ∈ [0  ] 
 ( ) ≤ ||1-var;[] ≤ ||1;[] (− )

1−1
 (1.7)

In particular,  1 ([0  ]  ) ⊂ 1-var ([0  ]  ) 

Proof. From the very definition of || 1;[0 ] we have

 ( )
 ≤ || 1;[] |− |−1 

and the estimate on  ( ) follows. We then show, exactly as in the proof

of Theorem 1.49, that the map

( ) 7→ || 1;[] (− )
1−1

(1.8)

is super-additive and the estimate on ||1-var;[] follows by Proposition
1.14.

Remark 1.53 To see that (1.8) is actually a control function, one would

have to undergo similar continuity consideration as in Proposition 1.15.

As in the case of 1-variation (cf. proposition 1.17) it is enough in the

definition of || 1;[0 ] to look at dissections with small mesh.

Proposition 1.54 For every  ∈  ([0  ]  ),

|| 1;[0 ] = lim
→0

sup
()∈D([0 ])

X
:∈

¯̄

¡
  +1

¢¯̄
|+1 − |−1

∈ [0∞] 
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Proof. We assume ||1;[0 ]  ∞ leaving the case || 1;[0 ] = ∞ to

the reader. It suffices to show that, for any      in [0  ],

| ( )|
|− |−1

≤ | ( )|


|− |−1
+
| ( )|
|− |−1

(1.9)

as this will allow us to replace a given dissection with a refinement ̃ with¯̄̄
̃
¯̄̄
 . (We used a similar argument in the proof of proposition 1.17). To

this end, recall the elementary inequality (+ (1− ) )
 ≤ +(1− ) 

for    0 and  ∈ (0 1). Replacing  by  and (1− )  by  gives

(+ )
 ≤ 

−1
+



(1− )
−1

and this implies (1.9) with  = (− )  (− ) and

 ( ) ≤  ( ) +  ( ) ≡ + 

Exercise 1.55 As usual, let  ([0  ]  ) be equipped with the uniform

topology. Let  ∈ (1∞).
(i) Show that

 ∈  ([0  ]  ) 7→ () := ||1;[0 ] ∈ [0∞]
is lower semi-continuous.

(ii) Assume that  has the Heine-Borel property, i.e. bounded sets have

compact closure. Show that the level-sets

{ ∈  ([0  ]  ) : () ≤ Λ} with Λ ∈ [0∞) and  ∈ 

are compact. (Hint: Arzela-Ascoli).

Solution 1.56 (i) Assume  →  uniformly (or even pointwise) on [0  ]

and fix a dissection  ⊂ [0  ]. Then

X
:∈

¯̄

¡
  +1

¢¯̄
|+1 − |−1

= lim inf
→∞

X
:∈

¯̄̄

³
  


+1

´¯̄̄
|+1 − |−1

≤ lim inf
→∞

 (
)

and taking the sup over all dissections finished the proof.

(ii) By (i) it is clear that level-sets are closed. Thanks to theorem 1.52 we

know that  () ≤ Λ implies

 ( ) ≤ Λ1 (− )
1−1

which equicontinuity and boundedness of { ∈  ([0  ]  ) : () ≤ Λ}.
Conclude with Arzela-Ascoli.
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1.5 Comments

Continuous paths of finite variation, also known as rectifiable paths, arise

in many areas of analysis and geometry. Ultimately the focus of this book

is on non-rectifiable paths and so we avoid the notion of rectifiability al-

together. Topics such as absolute continuity of real-valued function on R,
the fundamental theorem of calculus for Lebesgue integrals or the Radon-

Nikodym theorem are found in many textbooks on real anaysis such as

[144], [51] or [41].

The interplay between variation, Hölder and  1-spaces was studied in

[126]; in particular they proposition 1.50 to Riesz. A nice martingale proof

of this can be found in [138]. The extension of  1-regularity to paths in

metric spaces is not for the sake of generality but arises, for instance, in the

context of sample path large deviation (type) estimates for symmetric dif-

fusions; see [6] and more specifically our later discussion of large deviation

for Markov processes lifted to rough path, section 16.7.
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Riemann—Stieltjes Integration

In this chapter we give a brief exposition of the Riemann—Stieltjes integral

and its basic properties.

2.1 Basic Riemann—Stieltjes integration

We will use the notation 
¡
RR

¢
for the space of linear maps from R

into R We will always equip this space with its operator norm, that is if
 ∈ 

¡
RR

¢
 then

| | = sup
∈R
||R=1

||R 

Definition 2.1 Let  and  be two functions from [0  ] into R and

¡
RR

¢
. Let  = ( : ) be a sequence of dissections of [0  ] with

||→ 0 and  some points in
£
  


+1

¤
 Assume

P#−1
=0  ( ) 


+1

converges when  tends to ∞ to a limit  independent of the choice of 
and the sequence (). Then we say that the Riemann—Stieltjes integral of

 again  (on [0  ]) exists and writeZ 

0

 :=

Z 

0

 := 

We call  the integrand and  the integrator. Of course, [0  ] may be

replaced by any other interval [ ].

Proposition 2.2 Let  ∈ 1-var
¡
[0  ] R

¢
and  : [0  ] → 

¡
RR

¢
piecewise continuous1 . Then the Riemann—Stieltjes integral

R 
0
 exists,

is linear in  and , and we have the estimate¯̄̄̄
¯
Z 

0



¯̄̄̄
¯ ≤ ||∞;[0 ]||1-var;[0 ]

Moreover2 ,Z 

0

 −
Z 

0

 =

Z 



 for all 0 ≤    ≤  . (2.1)

1This will cover all our applications.
2All integrals in (2.1) are understood in the sense of definition 2.1 with [0  ] replaced

by the intervals [0 ]  [0 ]  [ ] respectively.
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Proof. Let us say that a real-valued function  is -integrable (on the

fixed time interval [0  ] if the Riemann—Stieltjes integral
R 
0
 exists.

Step 1: Step-functions, i.e. functions of form

 () = 01[01] +

−1X
=1

1(+1] () 

with 0  1  · · ·   =  and  ∈ 
¡
RR

¢
, are -integrable andZ 

0

 =

−1X
=0

+1 

Step 2: The set of -integrable functions is a linear space, i.e. if  and 

are -integrable, then so is  + , with   ∈ R which readily implies
that Z 

0

( + )  = 

Z 

0

+ 

Z 

0



Step 3: If  is -integrable then¯̄̄̄
¯
Z 

0



¯̄̄̄
¯ ≤ ||∞;[0 ]||1-var;[0 ]

Step 4: The space of -integrable function is closed in supremum topol-

ogy on [0  ]. Indeed, assume () is a sequence of -integrable functions

such that

| − |∞;[0 ] → 0 as →∞

By step 2 and 3,¯̄̄̄
¯
Z 

0

−
Z 

0



¯̄̄̄
¯ ≤ | − |∞;[0 ]||1-var;[0 ]

and so  =
R 
0
 defines a Cauchy-sequence whose limit we denote by

. Let  = (

 ) be a sequence of dissections of [0  ] with mesh ||→ 0

and  an arbitrary point in
£
  


+1

¤
for all  . Then,¯̄̄̄

¯ −
#−1X
=0

 ( )+1

¯̄̄̄
¯ ≤ | − |+

¯̄̄̄
¯
#−1X
=0

( ( )−  ( ))+1

¯̄̄̄
¯

+

¯̄̄̄
¯ −

#−1X
=0

 ( )+1

¯̄̄̄
¯

≤ | − |+ | − |∞;[0 ]||1-var;[0 ]

+

¯̄̄̄
¯ −

#−1X
=0

 ( )+1

¯̄̄̄
¯ (2.2)
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Fixing   0 we can pick  large enough so that that

| − |+ | − |∞;[0 ]||1-var;[0 ]  2

Then, since  is -integrable, there exists   0 such that   

implies that (2.2)  2 and hence¯̄̄̄
¯ −

#−1X
=0

 ( )+1

¯̄̄̄
¯  

But this shows precisely that the Riemann—Stieltjes integral
R 
0
 exists

and so  is -integrable.

Step 5: Any  ∈ 
¡
[0  ]  

¡
RR

¢¢
is -integrable. Indeed, take  ∈¡

  

+1

¢
where  = (


 ) is as in the previous step and set

 () :=  (0 ) 1[01] () +

(#)−1X
=1

 ( ) 1(+1] () 

It then suffices to observe that lim→∞ | − |∞;[0 ] = 0 because  is

uniformly continuous on [0  ] and we conclude with step 4. If  is only

piecewise continuous (i.e. bounded with finitely many points of discontinu-

ity) it suffices to choose  such that it contains all points of discontinuity.

Step 6: Given  ̃ ∈ 1-var
¡
[0  ] R

¢
, the last step shows that any

 ∈ 
¡
[0  ]  

¡
RR

¢¢
is  (+ ̃)-integrable, for any   ∈ R. This

easily implies linearity of

 ∈ 1-var
¡
[0  ] R

¢ 7→ Z 

0



and in conjunction with step 2 we obtain bilinearity of ( ) 7→ R 
0
.

Step 7: Fix   with 0 ≤    ≤  . If  is piecewise continuous then so

is 1[0] and Z 

0

1[0] ()  =

Z 

0



Relation (2.1) then follows from 1[0] = 1[0] ()  + 1(] () . The

details are left to the reader.

Exercise 2.3 Assume  ∈ 1
¡
[0  ] R

¢
and  ∈ 

¡
[0  ]  

¡
RR

¢¢
.

Show that Z 

0

 =

Z 

0

̇

We then have the classical integration-by-parts formula. It can be ob-

tained by a simple passage to the limit in an elementary partial summation

formula for finite sums. The details are left to the reader.
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Proposition 2.4 (Integration by Parts) Let  ∈ 1-var
¡
[0  ] R

¢
and

 ∈ 1-var
¡
[0  ]  

¡
RR

¢¢
. ThenZ 

0

 +

Z 

0

()  =  − 00

Exercise 2.5 Take ( ) ∈ 1-var
¡
[0 1] R

¢ × 
¡
[0 1]  

¡
RR

¢¢
and assume  a continuous non-decreasing function  from [0 2] onto

[0 1]. Show thatZ 

0

(·) ( ◦ ) =
Z ()

0

 for all  ∈ [0 2] 

Exercise 2.6 Let  ∈ 1-var
¡
[0  ] R

¢
  a ∞ function from R into

R+, compactly supported on [−1 1] with R∞−∞  ()  = 1 Define Φ =R 
−∞  ()  and extend  to a continuous function from R into R by
setting  ≡ 0 on (−∞ 0) and  ≡  on [∞). Define for all   0 the
mollifier approximation to  by

 :  ∈ [0  ] 7→ 0 +

Z
R
Φ(−)

Show that

(i) for all   0  is infinitely differentiable;

(ii) for all   0 ||1-var;[0 ] ≤ ||1-var;[0 ]  and also ||1-Höl;[0 ] ≤
||1-Höl;[0 ];
(iii)  converges to  in supremum topology when  tends to 0

Solution 2.7 (i) One can easily see that, for  ≥ 1 the  derivative of
 is  → R

R 
−Φ()

¡
−


¢
 where Φ

() is the  derivative of Φ (ii)

the 1-variation of  is given by

||1− =

Z 

0

¯̄̄̄Z
R

1


Φ
(1)

µ
− 



¶


¯̄̄̄


≤
Z
R

µZ
R

1



¯̄̄̄
Φ
(1)

µ
− 



¶¯̄̄̄
 ||

¶


≤
Z
R

µZ
R

1


Φ
(1)

µ
− 



¶


¶
 ||

≤
Z
R
|| = ||1−[0 ]

The 1-Hölder bound follows from integration by parts,

 =

Z
R

1




µ
− 



¶
 =

Z 1

−1
+ (−)  (2.3)
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(iii) As  is continuous (and hence uniformly continuous),

lim
→0

sup
∈[01]×[0 ]

|+ − | = 0

and (2.3) implies that lim→0 sup∈[0 ] | − | = 0.

2.2 Continuity properties

Proposition 2.2 obviously implies that ( ) 7→ R
, viewed as map from,

1-var
¡
[0  ] R

¢× 
¡
[0  ]  

¡
RR

¢¢→ 1-var ([0  ] R)

is a bounded, bilinear map and hence continuous (and even Fréchet smooth)

in the respective norms3. In particular,

| − |∞;[0 ] → 0 | − |1-var;[0 ] → 0

implies that Z ·

0

 →
Z ·

0



in 1-variation. However, this is not the last word on continuity. For instance,

the seemingly harmless assumption that all  are piecewise smooth would

already force us to restrict attention to  absolutely continuous (cf proposi-

tion 1.32). We thus formulate continuity statements that are applicable un-

der the weaker assumption of uniform convergence with uniform 1-variation

bounds.

Proposition 2.8 Let   : [0  ] → 
¡
RR

¢
be continuous functions

and assume  →  uniformly. Assume   ∈ 1-var
¡
[0  ] R

¢
and

 →  uniformly with

sup

||1-var;[0 ] ∞

Then Z 

0

 →
Z 

0

 uniformly for  ∈ [0  ] 

3Observe that what we call |·|1-var is a only a semi-norm on 1- var

[0  ] R


but

a genuine norm on 1- var0


[0  ] R


and we can obviously assume  (0) = 0 as only

 is of interest. Alternatively, define an equivalence relation on 1- var

[0  ] R


by

setting  ∼  iff  7→  −  is constant; the resulting quotient space, say ̂1- var , is

Banach under |·|1-var and view ( ) 7→

 as map  × ̂1- var → 1-var 
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Proof. Set  = sup ||1-var;[0 ]. Then¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
≤

¯̄̄̄Z 

0

( − ) 
¯̄̄̄
+

¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
≤  | − |∞;[0 ] +

¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
and so it is enough to show¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
→ 0 (2.4)

uniformly in  ∈ [0  ] as →∞. Fix   0 and pick  =  () such that

sup ||1-var;[0 ]


 3

Then, from uniform continuity of  on [0  ], we can find a dissection

 = () such that the step function

 () :=

(#)X
=1

 (−1) 1[−1) ()

satisifies
¯̄
 − 

¯̄
∞ ≤ 1. Now, for fixed   0, pick  such that

sup ||1-var;[0 ] 


 2

and observe that (use lemma 1.18) this implies ||1-var;[0 ]   2. We

estimate the left-hand-side of (2.4) by adding/subtracting the integralsR
 and

R
. This leaves us with three terms of which the first

two are dealt with by

sup


sup
∈[0 ]

¯̄̄̄Z 

0

¡
 − 

¢


¯̄̄̄
+ sup

∈[0 ]

¯̄̄̄Z 

0

¡
 − 

¢


¯̄̄̄
≤ 

On the other hand,  is constant over the (finitely many) intervals [ +1).

Fix  ∈ [0  ] and let  ∈  be the largest point in  for which  ≤ .

ThenZ 

0

 (− ) =

ÃX


−1

³
−1 − −1

´!
+ 

¡
 − 

¢
where the sum

P
 runs over all integers  ≥ 1 for which −1 ≤ . It follows

that

sup
∈[0 ]

¯̄̄̄Z 

0

 (− )

¯̄̄̄
≤ (#)× 2 |− |∞;[0 ]  (2.5)
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where # denotes the number of points in , dependent on  and hence

on . It follows that¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
≤ + (#)× 2 |− |∞;[0 ] 

Using |− |∞;[0 ] → 0 as →∞ it follows that

lim sup
→∞

¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄
≤ 

and we conclude by sending  ↓ 0.
Another useful property of Riemann—Stieltjes integration is uniform con-

tinuity on bounded sets.

Proposition 2.9 Let  0 ∈ 
¡
[0  ]  

¡
RR

¢¢
and  0 ∈ 1-var

¡
[0  ] R

¢


Then, ¯̄̄̄Z ·

0

−
Z ·

0

00
¯̄̄̄
1-var;[0 ]

≤ ||1-var;[0 ]  | − 0|∞;[0 ] + |0|∞;[0 ]  |− 0|1-var;[0 ] 

In particular, the map ( ) ∈ 1-var
¡
[0  ] R

¢× ¡[0  ]   ¡RR¢¢ 7→R ·
0
 ∈ 1-var ([0  ] R) is locally Lipschitz.

Proof. It suffices to insert and subtract
R ·
0
0, followed by the triangle

inequality.

In applications, integrands frequently come in the form  () ∈ 
¡
RR

¢
for  : R → 

¡
RR

¢
or  () for an R-valued path  and  :

R → 
¡
RR

¢
. With focus on the latter, we state the following uniform

continuity property; the simple proof is left to the reader.

Corollary 2.10 Let  0 ∈ 1-var
¡
[0  ] R

¢
,  0 ∈  ([0  ] R) and

 : R → 
¡
RR

¢
continuous. Assume

||1-var;[0 ]  |0|1-var;[0 ]  ||∞;[0 ]  |0|∞;[0 ]  

and let   0. Then there exists  =  (  ) so that

|− 0|1-var;[0 ] + | − 0|∞;[0 ]  

implies ¯̄̄̄Z ·

0

 () −
Z ·

0

 (0) 0
¯̄̄̄
1-var;[0 ]
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2.3 Comments

Riemann—Stieltjes integration is discussed in many elementary analysis

texts e.g. [143] or [134].



3

Ordinary Differential Equations
(ODEs)

We develop the basic theory of ordinary differential equations of the form




=

X
=1

 ()




on a fixed time horizon [0  ]. Here,  and  are paths with values in R,
R respectively and we have coefficients  : R → R, often viewed as
"driving" vector fields on R. When the driving signal  is continuously
differentiable we are dealing with an example of a (time-inhomogenous)

ordinary differential equation. We give a direct existence proof, via Euler

approximations, that applies to continuous, finite-variation driving signals

and continuous vector fields, uniqueness holds for Lipschitz continuous vec-

tor fields.

3.1 Preliminaries

Given a collection of (continuous) vector fields  = (1     ) on R and
continuous, finite variation paths   with values in R, R we set

Z 

0

 ()  :=

X
=1

Z 

0

 () 


From the point of view of vector-valued Riemann-Stieltjes integration, this

amounts precisely to view  as map

 ∈ R 7→ { = ¡1     ¢ 7→ X
=1

 () 
} ∈ 

¡
RR

¢


where 
¡
RR

¢
is equipped with operator norm, so that

| ()| := | ()| := sup
∈R:||=1

¯̄̄̄
¯
X
=1

 () 


¯̄̄̄
¯  (3.1)
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Definition 3.1 A collection of vector fields  = (1     ) on R, viewed
as  : R → 

¡
RR

¢
, is called bounded if

| |∞ := sup
∈R

| ()| ∞;

For any  ⊂ R we define the 1-Lipschitz norm (in the sense of E. M.

Stein) by

| |Lip1() := max
(

sup
∈ : 6=

| ()−  ()|
| − |  sup

∈
| ()|

)


We say that  ∈ Lip1 (R) if | |Lip1 ≡ | |Lip1(R)  ∞ and locally 1-

Lipschitz if | |Lip1() ∞ for all bounded subsets  ⊂ R.

(The concept of Lip1 regularity will later be generalized to Lip in the

sense of E. M. Stein.) Observe that 1-Lipschitz paths are Lipschitz contin-

uous paths that are bounded. We now state a classical analysis lemma.

Lemma 3.2 (Gronwall’s lemma) Let  ∈ 1-var
¡
[0  ]R

¢
, and  :

[0  ]→ R+ a bounded measurable function. Assume that for all  ∈ [0  ]

 () ≤  + 

Z 

0

|| (3.2)

for some  ≥ 0 Then, for all  ∈ [0  ]
 ≤  exp

¡
||1-var;[0]

¢


If  7→  is a non-negative, non-decreasing function,  may be replaced

by .

Proof. After  iterated uses of (3.2)

 () ≤  +

Z 

0

||+ +
Z 

0

Z 1

0



Z −1

0

| ||1 |

++1
Z 

0

Z 1

0



Z −1

0

Z 

0

 (+1) |+1 ||1 |

Since  is continuous,Z 

0

Z 1

0



Z −1

0

| ||1 | =
||

1-var;[0]

!


Then,

 () ≤  exp
¡
||1-var;[0]

¢
+ ||∞[0 ]

£
||1-var;[0]

¤+1
(+ 1)!

and sending  → ∞ gives the required estimate. The last statement, re-

placing  by some non-decreasing , comes from the obvious remark that

the previous estimate can be applied on the interval [0 ] with  = .
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3.2 Existence

Let us first define what we mean by solution of a (controlled, ordinary)

differential equation:

Definition 3.3 Given a collection of continuous vector fields  = (1  )

on R, a driving signal  ∈ 1-var
¡
[0  ] R

¢
and a initial condition

0 ∈ R, we write ( ) (0 0;) for the set of all solutions to the ODE1

 =

X
=1

 () 

 ≡  ()  (3.3)

for  ∈ [0  ] started at 0. The above ODE is understood as Riemann-

Stieltjes integral equation, i.e.

0 :=  − 0 =

Z 

0

 () 

In case of uniqueness  = ( ) (0 0;) denotes the solution. If neces-

sary,  (0 0;) is only considered up to some explosion time. Similarly,

( ) ( ;) stands for solutions of (3.3) started at time  from a point

 ∈ R.
We shall frequently describe ( ) (0 0;) as "ODE solution, driven by

 along the vector fields  and started from 0". Existence of a solution

holds under minimal regularity conditions on the vector fields.

Theorem 3.4 (Existence) Assume that

(i)  = (1  ) is a collection of continuous, bounded vector fields on

R
(ii) 0 ∈ R is an initial condition,
(iii)  is a path in 1-var

¡
[0  ] R

¢


Then there exists a (not necessarily unique) solution to the ODE (3.3).

Moreover, for all 0 ≤    ≤ ¯̄
( ) (0 0;)

¯̄
1-var;[]

≤ | |∞ ||1-var;[]  (3.4)

Remark 3.5 In case of non-uniqueness, we abuse notation in the above

estimate in the sense that ( ) (0 0;) stands for an arbitrary solution to

(3.3) started at 0.

Proof. Let  = () be a dissection of the interval [0  ]  and define the

Euler approximation () : [0  ]→ R by(

()
0 = 0


()
 = 

()


+ 
³

()


´
 for  ∈ [ +1] 

1The ODE (3.3) is time-inhomogeneous unless  is proportional to .
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Then, it is easy to see that for all 0 ≤    ≤ ¯̄̄

()


¯̄̄
≤
¯̄̄
()

¯̄̄
1-var;[]

≤ | |∞ ||1-var;[]  (3.5)

In particular, ¯̄̄
()

¯̄̄
∞[0 ]

≤ |0|+ | |∞ ||1-var;[0 ] 

Moreover, if  denotes the greatest real number in  less than  then


()
0 −

Z 

0


³
()

´
 =

Z 

0

h

³
()

´
− 

³
()

´i
 (3.6)

Now let () be a sequence of dissections, with mesh ||→ 0 as  tends to

∞ Clearly
©
()

ª
is equicontinuous and bounded. From Arzela-Ascoli’s

theorem we see that
©
()

ª
has a least one limit point . After relabeling

our sequence, we can assume that () converges to  uniformly on [0  ] 

Fix  ∈ [0  ]. From (3.5) that lim→∞
¯̄̄

()
 − 

()


¯̄̄
= 0. On the other

hand, 
()
 →  hence 

()
 →  and by continuity of 

lim
→∞

¯̄̄

³
()


´
− 

³
()


´¯̄̄
= 0 (3.7)

By dominated convergence2, we can pass to the limit in (3.6) to see that

0 −
Z 

0

 ()  = 0

Finally, for   ∈ [0  ] for any solution  ∈ ( ) (0 0;) 

|| =

¯̄̄̄Z 



 () 

¯̄̄̄
≤

Z 



| |∞  ||
= | |∞ ||1-var;[] 

The right hand side being a control, we obtain inequality (3.4).

If we only assume continuity of the vector fields (without imposing growth

conditions) existence holds up to an explosion time:

Theorem 3.6 Assume that

(i)  = (1  ) is a collection of continuous vector fields on R

2which requires us to know that Riemann-Stieltjes integrals with continuous inte-

grands coincides with Lebesgues-Stieltjes integrals.
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(ii) 0 ∈ R is an initial condition,
(iii)  is a path in 1-var

¡
[0  ] R

¢


Then either there exists a (global) solution  : [0  ] → R to ODE (3.3)
started at 0 or there exists  ∈ [0  ] and a (local) solution  : [0 )→ R

such that  is a solution on [0 ] for any  ∈ (0 ) and

lim
%

| ()| = +∞

Proof. Without loss of generality take 0 = 0. Replace  by compactly

supported vector fields   which coincide with  on the ball { : || ≤ }.
From the preceding existence theorem, there exists (a not necessarily unique)

ODE solution 1 := ( 1) (0 0;) which we consider only up to time

1 = inf
©
 ∈ [0  ] :

¯̄
1
¯̄
≥ 1ª ∧   0.

If 1 =  then  = 1 is a solution on [0  ] and we are done. Set

0 = 0. We now define   inductively and assume  ∈ [0  ]   ∈
 ([−1 ] R) have been defined. We then define

+1 := ( +1)

¡
 



;
¢

as (again, not necessarily unique) ODE solution started from +1 () =

 driven by  along the vector fields 
+1 up to time

+1 = inf
©
 ∈ [  ] :

¯̄
+1

¯̄
≥ + 1

ª ∧   0

If at any step in this induction,  =  , then (0  ] = ∪=1(−1 ]
and  () =  for  ∈ (−1 ] defines a solution on [0  ] and we find
ourselves in case (i) of the statement of the theorem. Otherwise, we obtain

an increasing sequence () with  = lim →∞ ∈ (0  ]. Any interval
(0 ] ⊂ (0 ) can be covered by intervals (−1 ] and a solution on (0 ]
is constructed as above by setting  () =  for  ∈ (−1 ]. Moreover,
be definition of  we see that | ()| = →∞ as →∞ and the proof

is finished.

Theorem 3.7 Assume that

(i)  = (1  ) is a collection of continuous vector fields on Rof linear
growth, i.e.

∃ ≥ 0 : | ()| ≤  (1 + ||) for all  ∈ R

(ii) 0 ∈ R is an initial condition,
(iii)  is a path in 1-var

¡
[0  ] R

¢
 and  ≥  ||1−[0 ] 

Then explosion cannot happen. Moreover, any solution  to (3.3) satisfies

the estimates

||∞;[0 ] ≤ (|0|+ ) exp ()  (3.8)
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and, for all 0 ≤    ≤  ,

||1-var;[] ≤ (1 + |0|) exp (2)
Z 



|| 

Proof. For  ∈ [0min ( ()   ))

|| ≤ |0|+
¯̄̄̄Z 

0

 () 

¯̄̄̄
≤ |0|+

Z 

0

||+

Z 

0

||  || 

Hence, by Gronwall’s inequality, for all  ∈ [0min ( ()   ))

|| ≤
µ
|0|+

Z 

0

||
¶
exp

µ


Z 

0

||
¶
 (3.9)

This implies in particular that explosion can not happen in finite time, and

that

||∞[0] ≤
µ
|0|+

Z 

0

||
¶
exp

µ


Z 

0

||
¶


Let us now takes   ∈ [0  ]. Clearly, for all   ∈ [ ] 

 =

Z 



 ()  =

Z 



 ( + ) 

so that

|| ≤  (1 + ||)
Z 



||+

Z 



|| || 

By Gronwall inequality, we obtain

|| ≤  (1 + ||)
Z 



|| exp
µ


Z 



||
¶


Now, using inequality (3.9) and
R 
0
||+

R 

|| =

R 
0
||,

(1 + ||) exp
µ


Z 



||
¶
≤

µ
|0|+ 1 +

Z 

0

||
¶
exp

µ


Z 

0

||
¶

≤ |0| exp
µ


Z 

0

||
¶
+ exp

µ
2

Z 

0

||
¶

≤ (1 + |0|) exp
µ
2

Z 

0

||
¶


which gives

|| ≤  (1 + |0|) exp
µ
2

Z 

0

||
¶Z 



|| 



3. Ordinary Differential Equations (ODEs) 59

and hence

||1-var;[] ≤  (1 + |0|) exp
µ
2

Z 

0

||
¶Z 



|| 

3.3 Uniqueness

We now show uniqueness for ODEs driven along Lipschitz vector fields by

establishing Lipschitz continuity of the flow.

Theorem 3.8 Assume that

(i)  = (1  ) is a collection of Lipschitz continuous vector fields on

R such that, for some  ≥ 0,

 ≥ sup
∈R

| ()−  ()|
| − | ;

(ii)  ∈ 1-var
¡
[0  ] R

¢
with, for some  ≥ 0

 ||1-var;[0 ] ≤ 

Then, for every initial conditon there exists a unique ODE solution to  =

 ()  on [0  ]. Moreover, the associated flow is Lipschitz continuous in

the following sense that, for any initial conditions 10 
2
0 ∈ R¯̄

( )
¡
0 10;

¢− ( )
¡
0 20;

¢¯̄
∞[0 ]

≤
¯̄
10 − 20

¯̄
exp ()  (3.10)

Moreover, for all    in [0  ] we have¯̄
( )

¡
0 10 ;

¢− ( )
¡
0 20 ;

¢¯̄
1-var;[]

≤
¯̄
10 − 20

¯̄
exp (2)  ||1-var;[] 

Proof. Lipschitz continuous vector fields are of linear growth and exis-

tence of solutions on [0  ] is guaranteed by theorem 3.7. Let us write

 ∈ ( )
¡
0 0;

¢
  = 1 2 for an arbitrary solution started from 10  

2
0

respectively and set ̄ = 1 − 2. Then

̄ = ̄0 +

Z 

0

¡

¡
1
¢− 

¡
2
¢¢


and hence

|̄| ≤ |̄0|+ 

Z 

0

|̄|  ||
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Gronwall’s inequality then leads to the first stated estimate. Moreover,

taking 10 = 20 shows that 
1 ≡ 2 and there is indeed a unique solution.

For the second estimate, we have

|̄| =

¯̄̄̄Z 



¡

¡
1
¢− 

¡
2
¢¢


¯̄̄̄
≤ 

Z 



|̄| ||

≤ |̄| 
Z 



||+ 

Z 



|̄|  || 

Applying Gronwall gives

|̄| ≤ |̄| 
Z 



||  exp () 

Using the estimate (3.10), we obtain

|̄| ≤ |̄0| 
Z 



||  exp (2) 

Noting that the right hand side is a control, we obtain our estimate.

Since uniqueness is a local property we immediately have

Corollary 3.9 Given  ∈ 1-var
¡
[0  ] R

¢
, there is a unique solution

to  =  ()  started at 0 along locally 1-Lipschitz vector fields  =

(1     ) up to its possible explosion time. If explosion can be ruled out

(e.g. under an additional linear-growth condition, cf. theorem 3.7) then

there exists a unique solution on [0  ].

3.4 A few consequences of uniqueness

We first show that time-change commutes with solving differential equa-

tions.

Proposition 3.10 Let  ∈ 1-var
¡
[0 1] R

¢
and  = (1     ) a

collection of locally Lipschitz continuous vector fields on R of linear growth.
Assume  is a continuous non-decreasing function from [0 2] onto [0 1]

so that

 ◦  ∈ 1-var
¡
[0 2] R

¢


Then

( ) (0 0;)(·) ≡ ( ) (0 0; ◦ ) on [0 2] 
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Proof. Let  = ( ) (0 0;) denote the (unique) ODE solution. For all

 ∈ [0 2]

() = 0 +

X
=1

Z ()

0

 () 



By a change of variable  =  () for Riemann-Stieljes integrals, we obtain

() = 0 +

X
=1

Z 

0


¡
()

¢
()

which says precisely that  7→ () is an ODE solution driven  ◦  along
vector fields 1      started at 0. By uniqueness, we therefore have

( ) (0 0;)(·) = ( ) (0 0; ◦ ) 

Definition 3.11 (concatenation, time-reversal) (i) Given  ∈ 
¡
[0  ] R

¢
and ̃ ∈ 

¡
[ ] R

¢
we define the concatenation  t ̃ as a path in


¡
[0  ] R

¢
defined by3

( t ̃) () =  if  ∈ [0  ]
( t ̃) () = ( − ̃) + ̃ if  ∈ [ ] 

(ii) Next, the time-inverse of a path  ∈ 
¡
[0  ] R

¢
is defined as the

path  run backwards on [0  ], i.e.

←−  :  ∈ [0  ]→ − ∈ R
When [0  ] is fixed and no confusion is possible, we simply write ←− for

the time-inverse of .

As a simple consequence of uniqueness we have the following two propo-

sitions.

Proposition 3.12 Let  ∈ 1-var
¡
[0 ] R

¢
 ̃ ∈ 1-var

¡
[  ] R

¢
and

 = (1     ) a collection of locally Lipschitz continuous vector fields

on R of linear growth. Then

( ) (0 0;) ≡ ( ) (0 0; t ̃) on [0 ]

and

( )
¡
 ( ) (0 0;) ; ̃

¢ ≡ ( ) (0 0; t ̃) on [  ] 

3Of course,  ̃ need not be defined on adjacent intervals but a simple reparametriza-

tion will bring things back to the above definition. Formally speaking, concatenation is

an operation on paths modulo their parametrization.
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Proof. Obvious.

Proposition 3.13 Let  ∈ 1-var
¡
[0  ] R

¢
and  = (1     ) a col-

lection of locally Lipschitz continuous vector fields on R of linear growth
so that there is a (unique) ODE solution  = ( ) (0 0;). Then for all

0 ≤  ≤  ,

( )
¡
0  ;

←− 
¢
− = 

Proof. Same proof as for proposition 3.10, just use  () =  − 

We record a simple corollary. (As a preview to an application discussed

later on: when applied to the left-invariant vector fields 1      on the

step- nilpotent group it implies that the signature of  t←−  over [0  ]

is trivial.)

Corollary 3.14 Let  ∈ 1-var
¡
[0  ] R

¢
and  = (1     ) a collec-

tion of locally Lipschitz continuous vector fields on R of linear growth so
that there is a (unique) ODE solution  = ( ) (0 0;). Reparametrize

←−
as path on [ 2 ], ie. ←− () = 2−. Then,

( )
¡
0 0; t←− 

¢
2
= 0

3.5 Continuity of the solution map

We now investigate continuity properties of the solution map, i.e. the map

(0 ) 7→ , the ODE solution to

 =  ()  =

X
=1

 () 


started at time 0 at 0 ∈ R. In fact, it will not complicate things to
consider the map (0  ) 7→ .

3.5.1 Limit theorem for 1-variation signals

Let us recall their our notion of 1-Lipschitz regularity includes the assump-

tion of boundedness, cf. definition 3.1. We start with our first continuity

statement of solution of ordinary differential equations.

Theorem 3.15 We consider

(i)  1 =
¡
 1
1   

1


¢
and  2 =

¡
 2
1   

2


¢
are two collections of Lip1

vector fields on R with for some  ≥ 0

max
=12

¯̄
 
¯̄
Lip1
≤ 
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(ii) 10 
2
0 ∈ R is an initial condition,

(iii) 1 and 2 two paths in 1-var
¡
[0  ] R

¢
 with, for some  ≥ 0

max
=12

¯̄

¯̄
1-var;[0 ]

≤ 

Then , if  = ( )

¡
0 0;


¢
for  = 1 2 we have¯̄

1 − 2
¯̄
∞;[0 ] ≤

³¯̄
10 − 20

¯̄
+ 

¯̄
1 − 2

¯̄
0;[0 ]

+
¯̄
 1 −  2

¯̄
∞ 
´
exp (2) 

Proof. Without loss of generality, 10 = 20 = 0 so that
1
2

¯̄
1 − 2

¯̄
0[0 ]

≤¯̄
1 − 2

¯̄
∞[0 ]

≤
¯̄
1 − 2

¯̄
0[0 ]

. First note that for  = 1 2 we have¯̄

¯̄
1-var;[0 ]

≤  Now, write for  ∈ [0  ] 

¯̄
1 − 2

¯̄
≤

¯̄
10 − 20

¯̄
+

¯̄̄̄Z 

0

£
 1
¡
1
¢−  1

¡
2
¢¤
1

¯̄̄̄
+

¯̄̄̄Z 

0

 1
¡
2
¢

¡
1 − 2

¢¯̄̄̄
+

¯̄̄̄Z 

0

£
 2
¡
2
¢−  1

¡
2
¢¤
2

¯̄̄̄
≤

¯̄
10 − 20

¯̄
+ 

Z 

0

¯̄
1 − 2

¯̄

¯̄
1

¯̄
(3.11)

+

¯̄̄̄Z 

0

 1
¡
2
¢

¡
1 − 2

¢¯̄̄̄
+
¯̄
 1 −  2

¯̄
∞ 

We deduce from the integration by part formulaZ 

0

 1
¡
2
¢

¡
1 − 2

¢
=

Z 

0

¡
1 − 2

¢
 1

¡
2
¢
+  1

¡
2
¢

¡
1 − 2

¢
the bound¯̄̄̄Z 

0

 1
¡
2
¢

¡
1 − 2

¢¯̄̄̄ ≤ ¯̄
1 − 2

¯̄
∞[0]

¯̄
 1
¡
2·
¢¯̄
1-var;[0]

+
¯̄
 1
¡
2
¢¯̄

¯̄
1 − 2

¯̄
∞[0]

≤ 
¯̄
1 − 2

¯̄
∞[0]

³
1 +

¯̄
2
¯̄
1-var;[0]

´
≤ 

¯̄
1 − 2

¯̄
∞[0]

(1 + )

This last inequality and inequality (3.11) give for  ∈ [0  ] ¯̄
1 − 2

¯̄
≤

¯̄
10 − 20

¯̄
+  (1 + )

¯̄
1 − 2

¯̄
∞[0]

+

Z 

0

¯̄
1 − 2

¯̄

¯̄
1

¯̄
+
¯̄
 1 −  2

¯̄
∞ 
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which implies, using Gronwall lemma that¯̄
1 − 2

¯̄
≤

³¯̄
10 − 20

¯̄
+ 

¯̄
1 − 2

¯̄
∞[0]

(1 + ) +
¯̄
 1 −  2

¯̄
∞ 
´
exp

µ
| |Lip1

Z 

0

¯̄
1

¯̄¶
≤

³¯̄
10 − 20

¯̄
+ 

¯̄
1 − 2

¯̄
∞[0]

+
¯̄
 1 −  2

¯̄
∞ 
´
exp (2) 

From the above theorem we see in particular that the solution map

(0 ) 7→ ( ) (0 0 ) is uniformly continuous in the sense of "uniform

convergence with uniform 1-variation bounds". By a localization argument

we now weaken the boundedness assumption inherent to Lip1 regularity

Corollary 3.16 We consider

(i)  1 =
¡
 1
1   

1


¢
and  2 =

¡
 2
1   

2


¢
are two collections of locally

Lip1 vector fields on R with linear growth,
(ii) 10 

2
0 ∈ R are initial conditions, with

¯̄
0
¯̄
≤  for some  ≥ 0

(iii) 1 and 2 two paths in 1-var
¡
[0  ] R

¢
 withmax=12

¯̄

¯̄
1-var;[0 ]

≤
 for some  ≥ 0
Then, if  = ( )

¡
0 0;


¢
for  = 1 2 there exist constants  de-

pending only on   and the vector fields, such that for all   ∈ [0  ]¯̄
1 − 2

¯̄
∞;[0 ] ≤ 

³¯̄
10 − 20

¯̄
+
¯̄
1 − 2

¯̄
0[0 ]

+
¯̄
 1 −  2

¯̄
∞;(0)

´


Proof. We saw in corollary 3.9 that under locally Lipschitz and linear-

growth assumptions on the vector fields, there is indeed a unique, non-

exploding solution. In fact, thanks to the explicit estimate (3.8) there exists

 = () so that max=12
¯̄

¯̄
∞;[0 ] ≤ . We now modify the vector

fields   outside a ball of radius  such as to make them Lip1-vector fields,

say ̃ , and note that

 = ( )

¡
0 0;


¢
= (̃ )

¡
0 0;


¢
.

This allows to use theorem 3.15 to finish the proof.

Exercise 3.17 (Change-of-variable-formula) Assume  is 1 (R) and  =
( ) (0 0;) the unique solution to

 =  ()   (0) = 0 ∈ R

along locally 1-Lipschitz vector fields  = (1     ) on R, with linear
growth, and  ∈ 1-var

¡
[0  ] R

¢
. Show that

 ( )−  (0) =

Z 

0

( ) () 
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where   = (1    ) and each  is identified with a first order dif-

ferential operator

 =

X
=1

 
 

Solution 3.18 For  ∈ 1
¡
[0  ] R

¢
, this is just the fundamental the-

orem of calculus. For  ∈ 1-var
¡
[0  ] R

¢
we approximate (uniformly,

with uniform 1-variation bounds) and use the limit theorem. One can also

appeal the direct change-of-variable formulae for Riemann-Stieltjes inte-

grals ...

3.5.2 Continuity under 1-variation distance

Given a collection  of Lip1-vector fields we first show that

(0 ) ∈ R × 1-var
¡
[0  ] ;R

¢ 7→ ( ) (0 0 ) ∈ 1-var ([0  ] ;R)

is Lipschitz continuous on bounded sets. Again, it will not complicate things

to include  in the following continuity result.

Theorem 3.19 We consider

(i)  1 =
¡
 1
1   

1


¢
and  2 =

¡
 2
1   

2


¢
 two collections of Lip1-vector

fields on R such that, for some  ≥ 0

max
=12

¯̄
 
¯̄
Lip1
≤ ;

(ii) 10 
2
0 ∈ R, viewed as two time-0 initial conditions,

(iii) 1 and 2, two paths in 1-var
¡
[0  ] R

¢
 such that, for some  ≥ 0

max
=12

¯̄

¯̄
1-var;[0 ]

≤ 

Then , if  = ( )

¡
0 0;


¢
for  = 1 2 we have

¯̄
1 − 2

¯̄
1-var;[0 ]

≤ 2(
¯̄
10 − 20

¯̄
+

¯̄
1 − 2

¯̄
1-var;[0 ]

+
¯̄
 1 −  2

¯̄
∞ )3

(3.12)
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Proof. Take    in [0  ] and observe that

¯̄
1 − 2

¯̄
=

¯̄̄̄Z 



 1
¡
1
¢
1 −

Z 



 2
¡
2
¢
2

¯̄̄̄
≤

¯̄̄̄Z 



¡
 1
¡
1
¢−  1

¡
2
¢¢
2

¯̄̄̄
+

¯̄̄̄Z 



 1
¡
1
¢

¡
1 − 2

¢¯̄̄̄
+

¯̄̄̄Z 



¡
 1
¡
2
¢−  2

¡
2
¢¢
2

¯̄̄̄
≤

³

¯̄
1 − 2

¯̄
∞;[0 ] +

¯̄
 1 −  2

¯̄
∞

´ ¯̄
2
¯̄
1-var;[]

+
¯̄
1 − 2

¯̄
1-var;[]

As the right-hand-side is a control, it follows that¯̄
1 − 2

¯̄
1-var;[]

≤
³

¯̄
1 − 2

¯̄
∞;[0 ] +

¯̄
 1 −  2

¯̄
∞

´ ¯̄
2
¯̄
1-var;[]

+
¯̄
1 − 2

¯̄
1-var;[]

.

Using theorem 3.15, and replacing   by 0  we then obain (3.12), as

claimed.

Remark 3.20 The interval [0  ] in the above theorem is of course arbi-

trary. In particular, that means that we also have for all   ∈ [0  ] ¯̄
1 − 2

¯̄
1-var;[]

≤ 2(
¯̄
1 − 2

¯̄
+

¯̄
1 − 2

¯̄
1-var;[]

+
¯̄
 1 −  2

¯̄
∞ )3

(3.13)

where  is a bound on max
n¯̄
2
¯̄
1-var;[]


¯̄
1
¯̄
1-var;[]

o


As before, we can relax the assumption on the vector fields and still keep

uniform Lipschitz bound on bounded sets.

Corollary 3.21 We consider

(i)  1 =
¡
 1
1   

1


¢
and  2 =

¡
 2
1   

2


¢
are two collections of locally

Lip1 vector fields on R with linear growth,
(ii) 10 

2
0 ∈ R is an initial condition, with

¯̄
0
¯̄
≤  for some  ≥ 0

(iii) 1 and 2 two paths in 1−
¡
[0  ] R

¢
 with max=12

¯̄

¯̄
1-var;[0 ]

≤
 for some  ≥ 0
Then , if  = ( )

¡
0 0;


¢
for  = 1 2 there exists constants 

depending only on   and the vector fields, such that¯̄
1 − 2

¯̄
1-var;[0 ]

≤ 
³¯̄
10 − 20

¯̄
+
¯̄
1 − 2

¯̄
0;[0 ]

+
¯̄
 1 −  2

¯̄
∞(0)

´


The 1-variation estimates implies 1-Hölder estimates:

Exercise 3.22 Under the same assumptions as the one in corollary 3.21,

and assuming 1 and 2 to be 1-Hölder, prove the existence of constants
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 depending on max
¯̄
0
¯̄
and max=12

¯̄

¯̄
1-Höl;[0 ]

and the vector

fields, such that¯̄
1 − 2

¯̄
1-Höl;[0 ]

≤ 
³¯̄
10 − 20

¯̄
+
¯̄
1 − 2

¯̄
1-Höl;[0 ]

+
¯̄
 1 −  2

¯̄
∞(0)

´


Solution 3.23 We will use | |Lip1 ||1-var;[] ≤ | |Lip1 ||1-Höl;[] |− |.
We may take the vector fields to be 1-Lipschitz, as the result then follows

by a localisation argument. Define  = max
¯̄

¯̄
1-Höl;[0 ]

 From (3.13) we

obtain¯̄
1 − 2

¯̄
− 

≤ 2
³¯̄
1 − 2

¯̄
+ 

¯̄
1 − 2

¯̄
1-Höl;[0 ]

+
¯̄
 1 −  2

¯̄
∞ 
´
3 

Replacing
¯̄
1 − 2

¯̄
on the right-hand-side by

¯̄
1 − 2

¯̄
∞, followed by taking

the supremum over all    in [0  ], leads to an estimate of form¯̄
1 − 2

¯̄
1-Höl,[0 ]

≤ 2 ¡¯̄1 − 2
¯̄
∞ + 

¢
exp (3 ) 

We then conclude with theorem 3.15.

3.6 Comments

There are many books an ODE theory such as the authorative [80]; for

a concise treatment see the relevant chapters of [41]. The class of ODEs

studied here, where the time-inhomogeneity factorizes in form of a multi-

dimensional driving signal is particularly important in (nonlinear) control

theory, see the relevant contributions in [1] for instance. Continuity in the

starting point (the "flow") is well-known as its further regularity discussed

in the next section. Continuity in the driving signal is harder to find in the

literature but also well-known, but see [113, 116] and the references therein.
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4

ODEs: Smoothness

We remain in the ODE setting of the previous chapter; that is, we consider

differential equations of the form

 =  ()   (0) = 0

where  =  () is a R-valued continuous path of bounded variation. In
the present chapter we investigate various smoothness properties of the

solution, in particular as a function of 0 and .

4.1 Smoothness of the solution map

We saw in the last section (cf theorem 3.19) that Lip1-regularity of the vec-

tor fields leads to (local Lipschitz) continuity of the solution map ( ) (0 0;)

as function of the initial condition 0, the driving signal  and the vector

fields  = (1     ). Under the slightly stronger regularity assumption

of C1-boundedness we now show that ( ) (0 0;) is differentiable in 0
and . (For simplicity, we do not discuss differentiability in  .) In fact, we

shall see that C-boundedness allows for  derivatives of ( ) (0 0;) in

0 and . As earlier, in the following definition  = (1     ) is regarded

as map from R to 
¡
RR

¢
, equipped with operator norm.

Definition 4.1 We say that  : R → 
¡
RR

¢
is C-bounded if (i) it

is -times Fréchet differentiable and (ii)
¡
    

¢
is a bounded

function on R. We then set

| |C := max
=0

¯̄


¯̄
∞ 

If only (i) holds, we write  ∈ C

4.1.1 Directional derivatives

Lemma 4.2 Let  = (1  ) be a collection of continuously differen-

tiable vector fields, that is  ∈ C1 ¡R  ¡RR¢¢. Then, for all   0 and
for all bounded sets  ⊂ R there exists  such that for all   ∈  ,

|− |   =⇒ | ()−  ()− () · (− )| ≤  |− | 
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Proof. By the fundamental theorem of calculus and the chain-rule,

| ()−  ()− () · (− )|

=

¯̄̄̄µZ 1

0

[ (+  (− ))− ()] 

¶
 (− )

¯̄̄̄
≤ |− |

Z 1

0

| (+  (− ))− ()| 

We conclude using that  is uniformly continuous on bounded sets in

R.

Condition 4.3 (Non-explosion) We say that a collection of vector fields

 = (1  ) on R satisfies the non-explosion condition if for all   0

there exists   0 such that if (0 ) ∈ R × 1-var
¡
[0  ] ;R

¢
with

||1-var + |0| ≤  then ¯̄
( ) (0 0 )

¯̄
∞;[0 ]  

Following our usual convention, we agree that, in the case of non-uniqueness,

( ) (0 0 ) stands for any ODE solutions driven by  along vector fields

 started at 0. For example, a collection of continuous vector fields of

linear growth, satisfies the non-explosion condition.

Theorem 4.4 (Directional derivatives in starting point and driving signal)

We fix a collection of C1-vector fields on R
  = (1  ) satisfying

the non-explosion condition. Then,

(i) the map1

(0 ) ∈ R × 1-var
¡
[0  ] ;R

¢ 7→  ≡  (0 0 ) ∈ 1-var ([0  ] ;R)

has directional derivatives2

() (0 0 ) :=

½



 (0 0 +  + )

¾
=0

∈ 1-var ([0  ] ;R)

in all directions ( ) ∈ R × 1-var
¡
[0  ] ;R

¢
.

(ii) define the bounded variations paths

 7→ :=
0
 :=

X
=1

Z 

0

 () 

 ∈ (R) (4.1)

(where  (R) denotes real (× )-matrices) and also

 7→  := 
0;
 :=

X
=1

Z 

0

 () 

 ∈ R (4.2)

1Since  remains fixed we write  instead of ( ).
2The derivate exists as (strong) limit in the Banach space 1-var ([0  ] ;R).
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then  = () (0 0 ) is the (unique) solution of the linear ODE½
 = 

0
 ·  + 

0;
 

0 = 
(4.3)

Remark 4.5 Observe that ( ) =
¡
( ) (0 0 ) ()( ) (0 0 )

¢
solves the ODE driven by ( ) given by formal differentiation, namely

 =  ()   = ( () ) ·  +  ()  or, in more detail,(
 =

P
=1  () 




 =
P

=1 ( () · )  +
P

=1  () 



started at (0 0) = (0 ). With  ∈ C1,  is continuous and so the

vector fields of the ODE for ( ) are continuous but in general not C1.

Nonetheless, it has a unique solution (thanks to the specific structure: first

solve for , then , then ) which satisfies the non-explosion condition.

Indeed, this is a straight-forward application of the estimates for ODE so-

lutions and Riemann-Stieljes integrals: estimate  in terms of (0 ·), then
 in terms of (· · ·) and finally  in terms of (··).

Proof.We first notice that by a localisation argument, we can assume that

 is compactly supported. With (0 )  ( ) ∈ X ≡ R×1-var
¡
[0  ] ;R

¢
fixed write

 =  (0 0 +  + )   ≡ 0

and also  = ( − )  for   0. Define  ∈ 1-var ([0  ] ;R) as the
(unique) ODE solution to (4.3).

Step 1: We first establish that

lim
→0

 =  in Y∞ (4.4)

with Y∞ := 
¡
[0  ] R

¢
, a Banach space under the ∞-norm. From the

respective ODEs for   and ,

 −  =

X
=1

Z 

0

∙
1


( (


)−  ())− () · 

¸


+

X
=1

Z 

0

( (

)−  ()) 




=

X
=1

¡
∆
1 (0 ) +∆


2 (0 ) +∆


3 (0 )

¢



72 4. ODEs: Smoothness

with

∆
1 ( ) =

Z 



 () · ( − ) 



∆
2 ( ) =

Z 



1


[ (


)−  ()− () · ( − )] 




∆
3 ( ) =

Z 



( (

)−  ()) 




First observe that theorem 3.4 and theorem 3.19 apply (as  ∈ C1 ⊂ Lip1)
we have

 := sup
∈[0 ]
∈[01]

| | ∞

||1-var;[0 ] ≤ 1

³
||+ ||1-var;[0 ]

´
=: 2

Fix   0 From  ∞ and lemma 4.2, we see that there exists   0 such

that

| − |   implies
1


| ()−  ()− () · ( − )| ≤  | | 

Using | − | ≤ 2 that means that there exists 0  0 such that   0
implies that

sup
∈[0 ]

1


| ()−  ()− () · ( − )| ≤  | | ≤ 2

In particular, we obtain that

X
=1

¯̄
∆
2 ( )

¯̄
≤ 3 ||1-var;[] 

Bounding
¯̄
∆
3 ( )

¯̄
is even easier; indeed

X
=1

¯̄
∆
3 ( )

¯̄
≤

X
=1

||Lip1 sup
∈[]

| − |  ||1-var;[]

≤ 4 ||1-var;[] 

Finally, as the vector fields are Lipschitz, we have

X
=1

¯̄
∆
1 ( )

¯̄
= 5

Z 



| − |  ||  (4.5)
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Putting things together, we obtain that for   0

| − | ≤ 5

Z 

0

| − |  ||+
³
4 ||1-var;[0] + 3 ||1-var;[0]

´


By Gronwall’s lemma, we obtain that

sup
∈[0 ]

| − | ≤
³
4 ||1-var;[0 ] + 3 ||1-var;[0 ]

´
exp

³
5 ||1-var;[0 ]

´


(4.6)

so that lim→0 | − |∞;[0 ] ≤ 6 ( + ) and since   0 was arbitrary it

follows that lim→0 | − |∞;[0 ] = 0
Step 2: Define ̂ to be the solution of½

̂ = 
0++
 · ̂ + 

0++;
 

̂0 = 

As there was nothing special about  = 0 in first step, we actually just

showed that

 ∈ [0 1] 7→  (0 0 +  + ) ∈ Y∞ :=  ([0  ] R)

is differentiable with derivative ̂ Now

 7→
³


0++
 

0++;


´
7→ ̂ ∈ Y1 = 1-var ([0  ] R)

is continuous (from continuity properties of the solution map and Riemann—

Stieltjes integration respectively). Therefore, from proposition B.1 in the

appendix,

 ∈ [0 1] 7→  (0 0 +  + ) ∈ Y1

is differentiable; that is the limit when → 0 of

−1 ( (0 0 +  + )−  (0 0 +  + ))

exists in Y1. The proof is now finished.

Proposition 4.6 (Higher order directional derivatives) Let  ∈ {1 2    }.
Assume  = (1  ) is a collection of C


-vector fields on R

 satisfying

the non-explosion condition. Then

(0 ) 7→ ( ) (0 0 )

has (up to) thorder directional derivatives in that sense that, for all ( )1≤≤ ∈¡
R × 1-var

¡
[0  ] ;R

¢¢×
,


()1≤≤

 (0 0 ) :=

⎧⎨⎩ 

1    


⎛⎝0 0 + X
=1

  +

X
=1



⎞⎠⎫⎬⎭
=0
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exists as strong limit in the Banach space 1-var ([0  ] ;R). Furthermore,
the directional derivatives satisfy the control ODEs obtained by formal dif-

ferentiation.

Proof. This follows by simple induction: for  ≥ 1 a solution of an ODE
driven by C


-vector fields satisfying the non-explosion condition, admits

a derivative in any arbitrary direction in its starting point and driving

signal, and the derivative in such directions together with the driving signal

satisfies an ODE driven along C
−1
 vector fields that satisfies the non-

explosion condition.

4.1.2 Fréchet differentiability

We now show that the solution map to  =  ()  is continuously

Fréchet differentiable in the starting point and driving signal.

Theorem 4.7 Let  = (1  ) be a collection of C
1
-vector fields on

R satisfying the non-explosion condition. Then the map

(0 ) ∈ R × 1-var ([0  ] ;R) 7→  ≡  (0 0 ) ∈ 1-var ([0  ] ;R)

is 1 in Fréchet sense.

Proof. From corollary B.5, we only need to show that the map (0 )  ( )→
() (0 0 ) from

¡
R × 1-var

¡
[0  ] ;R

¢¢×2
into 1-var ([0  ] ;R) is

uniformly continuous on bounded sets. This follows from the uniform con-

tinuity on bounded sets of the maps

(0 )  ( )
1→
µ
(0 )  ( )

( ) (0 0 )

¶
2→
⎛⎝ 

0

0

⎞⎠ 3→ () (0 0 ) ;

1 and 3 because of theorem 3.21, and 2 because of corollary 2.9.

We now discuss -Fréchet differentiability of the map (0 ) 7→ ( ) (0 0 ) 

Proposition 4.8 (Higher order Fréchet.) Let  ≥ 1 and  = (1  ) a

collection of C-vector fields on R
 satisfying the non-explosion condition.

Then the map

(0 ) ∈ R × 1-var ([0  ] ;R) 7→  ≡  (0 0 ) ∈ 1-var ([0  ] ;R)

is  in Fréchet sense.

Proof. The map (0 )  ( )1≤≤ 7→ 
()1≤≤

( ) (0 0 ) is uni-

formly continuous on bounded sets because of uniform continuity on bounded

sets of the solution map and the integral. This is enough to conclude to

proof using corollary B.11 in the appendix.
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It can be convenient in applications to view  (0 ·;) as a flow of -

diffeomorphisms, that is, an element in the space of all  : [0  ] × R →
R : ( ) 7→  () such that½ ∀ ∈ [0  ] :  is a -diffeomorphism of R

∀ : || ≤  :  ()  
−1
 () are continuous in ( ) 

Corollary 4.9 Under the assumptions of proposition 4.8, the map ( 0) 7→
 (0 0;) is a flow of 

-diffeomorphisms.

Proof. It is clear from proposition 4.8 that 0 ∈ R 7→  (0 0 ) is in

 (RR). Moreover, it follows from proposition 3.13 that

( ) (0 · )−1 = ( ) (0 ·←− )
where←− (·) =  (− ·) ∈ 1-var

¡
[0 ] R

¢
; we see that  (0 · ) is a bijec-

tion whose inverse is also in  (RR) and conclude that each  (0 ·x) is
indeed a -diffeomorphism of R. At last, each -derivative of  (0 · )
resp.  (0 · )−1 can be represented as (non-explosive) ODE solution which

plainly implies joint continuity in  and 0.

Exercise 4.10 Prove proposition 4.8 with 1-var replaced throughout by

(i) 1-Höl and (ii)  12.

We finish this section with a representation formula for directional deriv-

atives.

Proposition 4.11 (Duhamel’s principle) Consider (0 ) ∈ R×1-var
¡
[0  ] ;R

¢
,

a collection of C1-vector fields on R
,  = (1  ) satisfying the non-

explosion condition and write  ≡ ( ) (0 0 ) ∈ 1-var ([0  ] ;R) for
the unique ODE solution. Define

 =

X
=1

Z 

0

 () 

 ∈ (R)

and · as the  (R)-valued (unique) solution to the linear ODE,

 =  ·   0 =  (4.7)

(where · denotes matrix multiplication and  the identity matrix ). More

generally, given 0 ≤  ≤  ≤  write ← for the solution of this ODE

started at  at time . Then ← is the Jacobian of ( ) ( · ) : R →
R at  and we may write ← =: 


← to indicate this. Moreover, the

following representation formula holds,

()( ) (0 0 ) = () = 
0
←0 ·+

X
=1

Z 

0



← · () . (4.8)
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Proof. By theorem 4.4, for 0 ≤  ≤  , the flow map 0 7→ ( ) (0 0 )
from R → R admits partial derivatives in all directions. These are easily
seen to be continuous (much more will be shown soon) and so  (0 · ) ∈
1 (RR). Its differential (the "Jacobian) at some point 0, viewed as
R×-matrix, is of form ̃ = (1|    |)where  =  () =(b0) (0 0 )
and (b) denotes the canoncial basis of R. From theorem 4.4,  =  () is

the solution of a linear ODE of form  () =  ·  () with  (0) = b.
Equivalently, ̃ is the solution of (4.7) started at  at time 0 and by ODE

uniqueness, ̃ = .

The matrix  remains invertible for all  ∈ [0  ]. Indeed, its inverse
is constructed explictly as (unique) ODE solution to  = − · 

with 0 =  To see this, we just observe that  () = − +

 = 0

Of course, there is nothing special about time 0 and the same reasoning

shows that, for 0 ≤  ≤  ≤  , the flow map  ( · ) is in 1 (RR)
with Jacobian given by (the invertible matrix) ←. The chain-rule in

conjunction with

 (  ) =  (  (  )  )  0 ≤  ≤  ≤  ≤ 

implies3

← = ← · ← 0 ≤  ≤  ≤  ≤ 

and by defining ← := (←)
−1

 0 ≤  ≤ this remains valid for all

   ∈ [0  ]. The validity of (4.8) is nothing more than a variation-of-
constants ODE argument (also known as Duhamel’s principle) which rep-

resents the solution to the inhomogenous equation

 =  ·  +  0 = 

which is precisely () (0 0 ), in terms of the solution of the homoge-

nous equation, i.e. the ODE satisfied by the Jacobian. More precisely, it

suffices to observe that

0← −  =

Z 

0

 (0←) =

Z 

0

0← =

X
=1

Z 

0

0← () 



Using (0←)
−1 ·0← = ← the representation formula (4.8) now follows

from simple algebra.

Remark 4.12 The underlying geometry helps to "read" these equations.

The flow  (  ) maps  7→  (where  is the solution of the ODE

3The notation ← (rather than →) has the advantage of suggesting the right

order of matrix multiplication.
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driven by ) and its matrix-valued Jacobian should be viewed as a linear

map between the respective tangent spaces, ie.

← = 

← ∈  (TR TR)

From the very nature of vector fields  () = | ∈ TR and ← ·
 () ∈ TR. In particular, we should think of (4.8) as equality between
elements in TR rather than just R.

4.2 Comments

Although (or maybe because) the results are unsurprising we are unaware

of good references to the smoothness topics discussed here. In a more gen-

eral Young context, related smoothness properties have been discussed by

[102]. Differential equations driven by 12-paths (a special case of exercise

4.10) was Bismut’s starting point in [15], the resulting Hilbert structure of

the input signal is convenient in discussing non-degeneracy properties of the

solution map. Differential equations driven by  12-paths also arise natu-

rally in support and large deviation statements for stochastic differential

equations which we shall encounter in Part IV.
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5

Variation and Hölder Spaces

We return to the abstract setting of section 1.1 where we introduced  ([0  ]  ),

the space continuous paths defined on [0  ] with values in a metric space

( ), followed by a detailed discussion of continuous paths of finite 1-

variation ("bounded variation"). The purpose of the present chapter is to

carry out a similar discussion for -variation and 1-Hölder regularity,

 ∈ [1∞). In the later applications to rough paths,  will be a Lie-group

whose dimension depends on [], the integer part of .

5.1 Hölder and -variation paths on metric spaces

5.1.1 Definition and first properties

We start by defining -Hölder and -variation distances.

Definition 5.1 Let ( ) be a metric space. A path  : [0  ]→  is said

to be

(i) Hölder continuous with exponent   0, or simply -Hölder, if

||-Höl;[0 ] := sup
0≤≤

 ( )

|− | ∞; (5.1)

(ii) of finite -variation for some   0 if

||-var;[0 ] :=
Ã

sup
()∈D([0 ])

X



¡
  +1

¢!1
∞ (5.2)

We will use the notations -Höl([0  ] ) for the set of -Hölder paths 

and -var([0  ] ) for the set of continuous paths  : [0  ]→  of finite

-variation.

It is obvious from these definitions, that a path  : [0  ]→  is constant,

i.e.  ≡  for some  ∈ , if and only if ||-Höl;[0 ] = 0 and if and only
if ||-var;[0 ] = 0. (In particular, if  = R our quantities (5.1),(5.2) are
only semi-norms.)

Observe that 0-Höl([0  ] ) is nothing but the set of continuous paths

from [0  ] into  and ||0-Höl;[0 ] = ||0;[0 ], where the latter was defined
in section 1.1. Any   0 can be written as  = 1 and it is obvious that

any (1)-Hölder path is a continuous path of finite -variation. Although
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a path of finite -variation need not be continuous (e.g. a step-function)

our focus is on continuous paths. The following simple proposition then

explains why our main interest lies in

 ∈ [0 1] and  ≥ 1
Proposition 5.2 Assume  : [0  ] →  is -Hölder continuous, with

 ∈ (0 1), or continuous of finite -variation with  ∈ (0 1). Then  is

constant, i.e.  (·) ≡ 0.

Proof. Since -Hölder paths have finite -variation with  = 1 it suffices

to consider the case when  is continuous of finite -variation with   1.

Consider a dissection  = () ∈ D ([0  ]) with mesh ||. Then

 (0  ) ≤
X



¡
  +1

¢
≤ max



¡
  +1

¢1−


where  = ||-var;[0 ]  ∞. Using uniform continuity of  on [0  ], we

can make max 
¡
  +1

¢
arbitrarly small by taking a dissection with

small enough mesh || = max |+1 − |.
The case  = 1 resp.  = 1 was already discussed in detail in section

1.2 and heavily used in our discussion of ODEs driven by continuous paths

of bounded variation. We now begin a systematic study of -variation,

generalizing much of the familiar  = 1 case.

Proposition 5.3 Let  ∈  ([0  ]  )  Then, if 1 ≤  ≤ 0 ∞

||0-var;[0 ] ≤ ||-var;[0 ] 

In particular, -var([0  ] ) ⊂ 0-var ([0  ]  ) 

Proof. This follows from the elementary inequality³X
||

0´10 ≤ ³X ||
´1



Exercise 5.4 Formulate and prove the Hölder version of proposition 5.3.

Proposition 5.5 (Interpolation) Let  ∈  ([0  ]  ). (i) For 1 ≤  

0 ∞ we have

||0-var;[0 ] ≤
³
||-var;[0 ]

´0 ³
||0;[0 ]

´1−0


(ii) For 1 ≥   0 ≥ 0, we have

||0-Höl;[0 ] ≤
³
||-Höl;[0 ]

´0 ³
||0;[0 ]

´1−0
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Proof. (i) ObserveX



¡
  +1

¢0
=

X


³

¡
  +1

¢

¡
  +1

¢0−´
≤ ||0−0

X



¡
  +1

¢


then pass to the respective suprema over all dissections ()  and raise to

the power 10.
(ii) Follows from

 ( )

|− |0
≤
µ
 ( )

|− |
¶0

 ( )
1−0 ≤

µ
 ( )

|− |
¶0

||1−00

and passing to the respective suprema.

Proposition 5.6 Let  ≥ 1 and  ∈  ([0  ]  ).

(i)  ∈ -var([0  ] ) is equivalent to

lim→0 sup
()∈D([0 ])

X



¡
  +1

¢
∞ (5.3)

(ii) If 1 ≤    ∞ and  ∈ -var([0  ] ) then

lim→0 sup
()∈D([0 ])

X



¡
  +1

¢
= 0 (5.4)

Remark 5.7 The forthcoming proposition 5.9 implies that one can replace


¡
  +1

¢
by ||-var;[+1] in both (5.3) and (5.4).

Proof. (i) If  is of finite -variation then, trivially, (5.3) holds. Conversely,

let us write  () = , it follows from (5.3) that we can find   0 small

enough and  ∞ so thatX
∈


£

¡
  +1

¢¤
 

for any dissection  = () of [0  ] with ||  . Then, for an arbitrary

dissection  of [0  ] the number of the intervals of length at least  cannot

be more than −1 and each of these contributes at most 
³
||0;[0 ]

´
where, by continuity of ,

||0;[0 ] ≡ sup
∈[0 ]

 ( ) ∞

Hence, for any dissection  of [0  ],X
∈


£

¡
  +1

¢¤
 + −1

³
||0;[0 ]

´
∞
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which implies that  ∈ -var([0  ] ).

(ii) Introduce the modulus of continuiuty,

osc ( ) = sup { ( ) :   ∈ [0  ]  |− | ≤ } 

By uniform continuity of  : [0  ] →  we have osc ( ) → 0 as  & 0.

The estimateX
∈


¡
  +1

¢ ≤ ÃX
∈


¡
  +1

¢!
osc ( ||)−

then implies

sup
()∈D([0 ])

X



¡
  +1

¢ ≤ ³||-var;[0 ]´ osc ( )−
which converges to 0 with  & 0 as required.

As in the discussion of 1-variation regularity the notion of control or

control function is extremely useful. Let us recall that a control (on [0  ])

is continuous map  of   ∈ [0  ]   ≤  into the non-negative reals, 0 on

the diagonal, and super-additive, i.e for all  ≤  ≤  ∈ [0  ],

( ) + ( ) ≤ ( ).

The perhaps most important example of a control is given by ||−[]
for  ∈ −([0  ] ). This is the content of the following proposition:

Proposition 5.8 Let ( ) be a metric space,  ≥ 1 and  : [0  ] → 

be a continuous path of finite -variation. Then

 ( ) := ||-var;[] 

defines a control.

Proof.We dealt with the case  = 1 in proposition 1.15 and thus can focus

on   1.

Step 1: The same argument which gave super-addivitivity in the case  = 1

gives super-additivity of  in the present setting. The proof of continuity

of  splits up in showing (i) "continuity from inside"

(+ −) ≡ lim
12&0

(+ 1 − 2) =  ( ) 

which follows from the same argument as the case  = 1 and (ii) "continuity

from outside"

(− +) ≡ lim
12&0

(− 1 + 2) =  ( ) 
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for all   . Remark that ( +) (− ) etc. are defined in the
obvious way and that all limits here exist by monotonicty of . In fact,

this reduces the proof of (ii) to showing

(− +) ≥  ( )

and this requires a careful analysis which is not covered by our previous

" = 1"-discussion1. As a further reduction, it is enough to establish "one-

sided continuity from outside", i.e.

 ( ) ≥ ( +) and  ( ) ≥ (− ) . (5.5)

We only discuss  ( ) ≥ ( +), the other inequality following from

the same argument, and show how to deduce it from continuity of  at

the diagonal, i.e.

( +) = 0 (5.6)

(The proof of (5.6) is left to step 2 below.) Fixing    and    0 we

consider  = ( = 0  1  · · ·  −1   = + ) such that

−1X
=0


¡
  +1

¢
 ( + )− ;

splitting  = 1∪2 so that all points in [ ] are contained in1 (clearly,

1 is a dissection of [ ]) yieldsX
∈1


¡
  +1

¢
+ ( + )  ( + )− 

and after sending  to 0, using ( +) = 0,

 ( ) ≥
X

:∈1


¡
  +1

¢
 ( +)− 

and upon sending  to 0 we see that it is indeed enough to prove right-

continuity of  at the diagonal.

Step 2: To see (5.6) we seek a contradiction to

lim
&0

( + ) =:   0

Observe that the limit exists by monotonicity. Keeping  fixed throughout,

thanks to continuity of , we can find 1 such that for all  ∈ [0 1] 

 ( +)

 8 (5.7)

1 In the case  = 1 we used addivity of 1 to obtain continuity from outside. In

general, when   1 a control  is not additive.
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Fix 0 ∈ [0 1] and a dissection ( = 0  1  · · ·  −1   = + 0)

of [ + 0] such that

−1X
=0


¡
  +1

¢
 78

which is possible since  ( + 0) ≥ ( +) = . Using (5.7), we

have
−1X
=1


¡
  +1

¢
 78− 8 = 34.

Doing the same with 1 in place of +0 yields ( = 0  1  · · ·  −1   = 1),

a dissection of [ 1], such that

−1X
=1


¡
  +1

¢
 34.

Combing the previous two sums, over nonoverlapping intervals of form

[  +1]  [   +1] ⊂ [ + 0], yields

( + 0) ≥ 34 + 34 = 32
which implies  ( +) ≥ 32 which contradicts lim&0 ( +) That

concludes the proof.

Proposition 5.9 Let ( ) be a metric space,  ≥ 1 and  : [0  ] → 

be a continuous path of finite -variation and   0. Then

(i)

 ( ) := sup
()∈D([])

X



¡
  +1

¢ ≤ ||-var;[]
defines a control.

(ii) We have

sup
()∈D([0 ])

X



¡
  +1

¢
= sup
()∈D([0 ])

X


||-var;[+1]

as well as

sup
|−|

( )

|− |1
= sup
|−|

||1-Höl[] 

Proof. (i) The proof follows along the same lines as the proof of proposition

5.8.

(ii) In both cases, the ≤ part is obvious. Using that  is a control, we
obtain that

sup
()∈D([0 ])

X



¡
  +1

¢ ≤ sup
()∈D([0 ])

X


||-var;[+1]

≤ sup
()∈D([0 ])

X


 ( +1)

≤  ([0  ])
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and since the by the very definition of  ([0  ]) equality must hold

throughout. The 1-Hölder statement is also simple to prove and left to

the reader.

The following proposition is extremely important. We shall use part (i)

below (without further notice) throughout the book; part (ii) says that

a modulus of continuity on small intervals gives quantitative control over

large intervals.

Proposition 5.10 Let ( ) be a metric space,  a control on [0  ]   ≥
1   0, and  : [0  ]→  a continuous path.

(i) The pointwise estimate

 ( ) ≤   ( )
1

for all    in [0  ]

implies the -variation estimate

||-var;[] ≤   ( )
1

for all    in [0  ] 

(We say that  is of finite -variation controlled by )

(ii) Under the weaker assumption

 ( ) ≤   ( )
1

for all    in [0  ] such that  ( ) ≤ 1

we have

||-var;[] ≤ 2
³
 ( )

1 ∨  ( )
´
for all    in [0  ] 

Proof. (Remark that only the super-additivity of  is used in the proof.)

Ad (i). By assumption,  ( )
 ≤   ( ). Then for any dissection

 = {} of [ ], super-additivity impliesX



¡
  +1

¢ ≤ 
X



¡
  +1

¢ ≤  ( ) 

Taking the supremum over all such dissections finishes the proof of the first

part.

(ii) Defining  () = ∨ we see (cf. exercise 1.8) that ( ) 7→  ( ( ))

is a control. In view of part (i) we only need to prove

 ( ) ≤ 2 ( ( ))1 

If   are such that  ( ) ≤ 1 there is nothing to prove, so we fix   such
that ( )  1. Define 0 = , and +1 = inf {   ( ) = 1}∧. From
superadditivity of  it follows that  =  for  ≥ ( ). We conclude



86 5. Variation and Hölder Spaces

with

 ( ) ≤
X

0≤()

¡
  +1

¢
≤

X
0≤()

 ( +1)
1

≤  (1 +  ( ))

≤ 2 ( ) 

Exercise 5.11 Let  ∈ -var ([0  ] )   ≥ 1 with associated control

function

 ( ) = ||-var;[] .

Show that, for any      in [0  ],

 ( ) +  ( ) ≤  ( ) ≤ 2−1 [ ( ) +  ( )] 

Solution 5.12 The first inequality is immediate. For the second, if  

0    0   we have

 (0  0)
 ≤  (0  )


+  ( 0)



and since (+ )
 ≤ 2−1 ( + ) for   ≥ 0 the conclusion follows.

The very same argument used in lemma 1.18 shows lower semi-continuity

of  7→ ||-var in the following sense.

Lemma 5.13 Let () be a sequence of paths from [0  ] →  of finite

-variation. Assume  →  pointwise on [0  ]. Then, for all    in

[0  ],

||-var;[] ≤ lim inf→∞
||-var;[] 

In particular,

||1-Höl; [] ≤ lim inf→∞
||1-Höl;[] 

In a similar spirit, the following lemma says that ||-var is a right-
continuous function of .

Lemma 5.14 Let  : [0  ]→  be a continuous path of finite -variation.

Then, for all    in [0  ]  the map 0 ∈ [∞) 7→ ||0-var;[] is non-
increasing and

lim
0&

||0-var;[] = ||-var;[]  (5.8)
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Proof. The non-increasing statement was proven in proposition 5.3. In

particular, it implies that

 ( )
1

:= lim
0&

||0-var;[]

exists and satisfies  ( )
1 ≤ ||-var;[]; we only need to show the con-

verse inequality. Clearly,  ( ) ≤ ||0-var;[] and sending 0 &  we

have

 ( ) ≤  ( )
1

(5.9)

for all    in [0  ]. Let us show that that  is super-additive. First

observe that

 ( ) =

µ
lim
0&

||0-var;[]
¶
= lim

0→
||00-var;[] 

Then, for  ≤  ≤  and using super-additivity of ( ) 7→ ||00-var;[],

 ( ) +  ( ) = lim
0→

³
||00-var;[] + ||

0

0-var;[]

´
≤ lim

0→
||00-var;[] =  ( ) 

But (5.9) and super-additivity of  imply ||-var;[] ≤  ( )
1
. We

conlcude that  ( )
1

= ||-var;[] as required.

5.1.2 On some path-spaces contained in -var ([0  ]  )

Observe  is a path of finite -variation controlled by ( ) 7→ |− | if and
only if  is 1-Hölder. Hence, 1-Hölder paths are of finite -variation.

Conversely, we now show that every finite -variation path is the time-

change of a 1-Hölder path.

Proposition 5.15 Let ( ) be a metric space, and let  : [0  ] →  be

a continuous path. Then  is of finite -variation if and only if there exists

a continuous increasing function  from [0  ] onto [0 1] and a 1-Hölder

path  such that  =  ◦ 
Proof. Let  be of finite -variation, non zero. Then,

() =
 (0 )

 (0  )

defines a continuous (from proposition 5.8) increasing function from [0  ]

onto [0 1]  Then, there exists a function  such that  ◦  () =  ()  as
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 (1) =  (2) =⇒  (1) =  (2)  Now,

sup
∈[01]

| ()−  ()|
|− |1

= sup
∈[0 ]

| ( ())−  ( ())|
| ()−  ()|1

≤  (0  )
1  ( )

1

| (0 )−  (0 )|1


From the sub-additivity of  | (0 )−  (0 )| ≥ | ( )|  so
that

sup


| ()−  ()|
|− |1

≤  (0  )
1



i.e.  is 1-Hölder.

Exercise 5.16 (Absolute continuity of order ) We say that  : [0  ]→
 is "absolutely continuous of order ", if for all   0, there exists   0,

such that for all 1  1 ≤ 2  2 ≤ · · ·     in [0  ] withP
 | − |  , we have X



 (  )

  (5.10)

(i) Assume  ≥ 1. Show that in the definition of absolute-continuity-of-

order- one can replace (5.10) byX


||-var;[]  

(ii) Assume   1 and show that  is absolutely continuous of order  if

and only if

lim→0 sup
∈D([0 ])

X



¡
  +1

¢
= 0 (5.11)

Solution 5.17 (i) Consider 1  1 ≤ 2  2 ≤ · · ·     in [0  ]

with
P

 | − |  . Let
¡

¢ ∈ D ([ ]) be a dissection of [ ]and

observe that⎛⎝X


¯̄
+1 − 

¯̄⎞⎠1

≤
X


¯̄
+1 − 

¯̄
=  − 

It follows that
P



P


¯̄
+1 − 

¯̄ ≤P | − |   and so

X


X



³
+1  




´
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and we conclude by taken the supremum over all possible dissections of

[ ]   = 1     .

(ii) ”⇐ ” : Condition (5.11) implies that,

∀  0 : ∃̃ : sup
∈D̃([0 ])

X



¡
  +1

¢
 

for any dissection  with || ≤ ̃. Fix   0 and take 1  1 ≤ 2  2 ≤
· · ·     in [0  ] such thatX



| − |   := ̃


which plainly implies max | − | ≤ ̃. Take  = () to be a refinement

of {0 ≤ 1  1 ≤ · · ·     ≤ } with mesh || ≤ ̃, without adding

any (unnecessary) points in the intervals [ ]. It then follows thatX


 (  )
 ≤

X
:∈


¡
  +1

¢
 

which shows that  is absolutely continuous of order .

” =⇒ ” : Fix  an absolutely continuous path of order  and   0; We

may write an arbitrary dissection  = () of [0  ] in form

 = {0 ≤ 1  1 = 2  · · ·  −1 =    ≤ }

and furthermore assume || is small enough so thatP | − | ≤  ||−1 
 where  is chosen so that this implies, using the assumption of absolute

continuity of oder  of the path X



¡
  +1

¢
 

This estimate is uniform over all dissections  with ||  ( )1(−1) =
̃. It follows that lim→0 sup∈D([0 ])

P
 
¡
  +1

¢
= 0

Example 5.18 (Besov spaces) In section 1.4 we introduced the (Sobolev)

path spaces  1 ([0  ]  ) which provided examples of finite 1-variation

paths with precise Hölder modulus |− |1−1. We now introduce the frac-
tional Sobolev - or Besov spaces   ([0  ]  ) with   1 whose elements

are paths has finite -variation with  = 1  1 and precise Hölder mod-

ulus |− |−1. More precisely, we make the following definition. Given
 ∈ [1∞) and  ∈ (1 1) the space   ([0  ]  ) is the set of all

 ∈  ([0  ]  ) for which

|| ;[0 ] :=

ÃZ 

0

Z 

0

Ã
 ( )

| − |+1

!



!1
∞
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Following appendix A.2, the Garsia-Rodemich-Rumsey estimate leads quickly

to a Besov-Hölder resp. -variation "embedding" by which we mean

||−1-Höl;[0 ] ≤ (const) || ;[0 ] 

||(1)-var;[0 ] ≤ (const) || ;[0 ] 

5.2 Approximations in geodesic spaces

For a continuous path  : [0  ] → R, and a dissection  = () of

[0  ]  we constructed the piecewise linear approximation  by defining

 =  and connecting by straight lines in between. Straight lines in R


are geodesics in the sense of the following definition.

Definition 5.19 In a metric space ( ) a geodesic (or geodesic path)

joining two points   ∈  is a continuous path Υ : [0 1]→  such that

Υ (0) = Υ (1) =  and


³
Υ Υ




´
= |− |  ( ) (5.12)

for all    in [0 1]. If any two points in  are joined by a (not necessarily

unique) geodesic, we call  a geodesic space.

Equation (5.12) expresses that there are no shortcuts between any two

points on the geodesic path. Even if  is complete and connected, it need

not be a geodesic space; for example, the unit circle 1 ⊂ R2 with metric
induced from R2 is not geodesic. However, 1 is a geodesic space under
arclength distance. Readers with some background in Riemannian geome-

try will recall the Hopf-Rinow theorem2; it says precisely that a complete

connected Riemannian manifold is a geodesic space. The main example of

a geodesic space to have in mind for our purposes is the free step- nilpo-

tent group equipped with Carnot-Caratheodory metric, to be discussed in

detail later on.

Geodesic spaces have exactly the structure that allows to generalize the

idea of piecewise linear approximations.

To simplify, when considering a geodesic space  and two points   ∈ 

we will define Υ to be an arbitrary geodesic between a and .

Definition 5.20 (Piecewise geodesic approximation) Let  be a con-

tinuous path from [0  ] into some geodesic space ( )  Given a dissection

 = {0 = 0  1  · · ·   = } of [0  ] we define  as the concate-

nation of geodesics connecting  and +1 for  = 1      − 1. More
precisely, set

 =  for all  ∈ 

2E.g. Bishop and Crittenden [14], p154.
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and for  ∈ ( +1),

 = Υ
 +1

µ
− 

+1 − 

¶


Lemma 5.21 Let  be a geodesic space and  ∈ ([0  ] )Then, 

converges to  uniformly on [0  ]. That is,

sup
∈[0 ]


¡
  

¢→ 0 as ||→ 0.

Proof. Fix two consecutive points   +1 in  and note that it is enough

to show that 
¡
  

¢→ 0 uniformly for  ∈ [ +1]. To see this, fix   0
and pick  =  () so that

Osc (; ) ≡ sup
 in [0 ]:

−

 ( )  2

(which is possible since  is continuous on the compact [0  ] and hence

uniformly continuous). Then, for  ∈ [ +1] and provided that ||  ,

we have


¡
  

¢ ≤ 
¡
  

¢
+  (  )

=

¯̄̄̄
− 

+1 − 

¯̄̄̄

¡
  +1

¢
+  (  )

≤ 2Osc (; )  

which already finishes the proof.

Proposition 5.22 Let  be a geodesic space and  ∈ -var([0  ] )

 ≥ 1 and  = {0 = 0  1  · · ·   = } a dissection of [0  ]  Then,¯̄

¯̄
-var;[0 ]

≤ 31−1 ||-var;[0 ]  (5.13)

If  is 1-Hölder,¯̄

¯̄
1-Höl;[0 ]

≤ 31−1 ||1-Höl;[0 ]  (5.14)

Remark 5.23  induces a dissection of any interval [  ] with endpoints

  ∈ . It follows that [0  ] in (5.13) may be replaced by any interval

[  ] with   ∈ .

Proof. -variation estimate: To prove (5.13) we use the control  ( ) =

||-var;[] and then define  first on the intervals of  by,

( ) =

µ
− 

+1 − 

¶
 ( +1) for  ≤  ≤  ≤ +1 1 ≤   #;
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and then for arbitary   , say 1 ≤     # and  ≤  ≤ +1 ≤  ≤
 ≤ +1, by

( ) = ( +1) + (+1 ) + (  ) (5.15)

Clearly, if  ≤  ≤  ≤ +1


¡
  




¢
= 

µ
Υ +1

µ
− 

+1 − 

¶
Υ +1

µ
− 

+1 − 

¶¶
=

¯̄̄̄
− 

+1 − 

¯̄̄̄

¡
  +1

¢
using (5.12)

≤ ( )
1

On the other hand, if  ≤  ≤ +1 ≤  ≤  ≤ +1


¡
  




¢ ≤ 
³
  


+1

´
+ 

¡
+1  

¢
+ (  )

≤ ( +1)
1 + (+1 )

1 + (  )
1

≤ 31−1 (( +1) + (+1 ) + (  ))
1

= 31−1( )1

using (5.15) in the last lime. Hence, for all    in [0  ] 


¡
  




¢ ≤ 3−1( ) (5.16)

It now suffices to show that  is a control (only superadditivity is non-

trivial) to obtain the desired conclusion, namely¯̄

¯̄
-var;[0 ]

≤ 31−1(0  )1

= 31−1 ||-var;[0 ] 

To see superadditivity, ( ) + ( ) ≤ ( ) for  ≤  ≤  in

[0  ] we first consider the case when    are contained in one interval,

say  ≤      ≤ +1 Then

( ) + ( ) =

µ
− 

+1 − 

¶
 ( +1) +

µ
− 

+1 − 

¶
 ( +1)

≤
µ

− 

+1 − 

¶
 ( +1) =  ( ) 

Consider the case that   are contained in one interval, say  ≤    ≤
+1 ≤  ≤  ≤ +1. Then

( ) + ( ) = ( ) + ( +1)| {z }
≤(+1)

+  (+1 ) + ( )
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(using the first case!) and conclude the defining equality  ( ) =  ( +1)+

 (+1 ) + ( ) The case that   are contained in one interval is

similar. At last, if    are in three different intervals, say

 ≤  ≤ +1 ≤  ≤  ≤ +1 ≤  ≤  ≤ +1

then ( ) + ( ) equals

( +1) + (+1 ) + (  ) + ( +1)| {z }
≤( +1)=( +1)

+ (+1 )

| {z }
≤(+1)

+ ( )

and we conclude again with the defining equality for  ( ). This covers

all cases and we established that  is a control.

1-Hölder estimate: If  is actually 1-Hölder then

 ( )
1

= ||-var;[] ≤ ||1-Höl;[0 ] |− |1

and so for  ≤  ≤  ≤ +1

( ) =

µ
− 

+1 − 

¶
 ( +1) ≤ ||1-Höl;[0 ] |− | 

For general   , say  ≤  ≤ +1 ≤  ≤  ≤ +1, we have

( ) = ( +1) + (+1 ) + (  )

≤ ||1-Höl;[0 ] (|+1 − |− | − +1|− |−  |)
= ||1-Höl;[0 ] |− |

The claimed estimate (5.14) now follows immediately from


¡
  




¢ ≤ 31−11 ( ) ≤ 31−1 ||1-Höl;[0 ] |− |1 

Remark 5.24 The above proof actually shows that

¯̄

¯̄
-var;[0 ]

≤ 3−1 sup
()∈D||([0 ])

X


||-var;[+1]  (5.17)

and a slight extension shows that for ||   one has the estimate

sup
()∈D([0 ])

X


¯̄

¯̄
-var;[ +1]

≤ 3−1 sup
()∈D([0 ])

X


||-var;[+1] 

(5.18)
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Combining lemma 5.21 and proposition 5.22 gives immediately the fol-

lowing important approximation result.

Theorem 5.25 Let  be a geodesic space and  ∈ -var([0  ] )  ≥ 1.
Let () be a sequence of dissection of [0  ] such that its mesh || con-
verges to 0. Then,  converges to  "uniformly with uniform -variation

bounds". That is,

sup
∈[0 ]


³


  

´
→ 0

and

sup


¯̄


¯̄
-var;[0 ]

≤ 31−1 ||-var;[0 ] 

If  is 1-Hölder then

sup


¯̄


¯̄
1-Höl;[0 ]

≤ 31−1 ||1-Höl;[0 ] 

Exercise 5.26 Let  be a geodesic space,  ∈ (1∞) and  ∈ 1([0  ] )

as defined in section 1.4.2. Show that

¯̄

¯̄
 1;[0 ]

=
X

:∈

¯̄

¡
  +1

¢¯̄
|+1 − |−1



5.3 Hölder and -variation paths on R

5.3.1 Hölder and -variation Banach spaces

We now turn to R (equipped with Euclidean distance) as our most familiar
example of a metric (and geodesic) space.

Theorem 5.27 (i) -var
¡
[0  ] R

¢
is Banach with norm  7→ | (0)|+

||-var;[0 ]. The closed subspace of paths in -var
¡
[0  ] R

¢
started at

0, is also Banach under  7→ ||-var;[0 ].
(ii) 1-Höl

¡
[0  ] R

¢
is Banach with norm  7→ | (0)|+ ||1-Höl;[0 ].

The closed subspace of paths in 1-Höl
¡
[0  ] R

¢
started at 0, is also

Banach under  7→ ||1-Höl;[0 ] 
These Banach spaces are not separable.

Proof. The case  = 1 was dealt with in section 1.3. Leaving straight-

forward details to the reader let us say that that completeness in the case

  1 is proved as in the case  = 1; non-separability follows from the

following example.
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Example 5.28 We construct an uncountable family of functions so that

the distance of any two  6=  0 remains bounded below by a fixed positive
real. An uncountable subset of  ([0 1] R) is given by

 () =
X
≥1

2
− sin

¡
2

¢
  ∈ [0 1] 

where  is a ±1 sequence, that is,  ∈ {−1 1} for all . We show (i) that

 ∈ 1-Höl
¡
[0 1] R

¢ ⊂ -var
¡
[0 1] R

¢
and (ii) if  6= 0 then

2  | − 0 |-var;[01] ≤ | − 0 |1-Höl;[01] 

Proof. Ad (i). For 0 ≤    ≤ 1 we have

| ()−  ()| ≤
X

1≤≤|log(2)(−)|
2
− ¡sin ¡2¢− sin ¡2¢¢

+
X

|log(2)(−)|
2
− ¡sin ¡2¢− sin ¡2¢¢

where log(2) is the logarithm with base 2. Using ||∞ ≤ 1, we obtain
¯̄
sin
¡
2

¢− sin ¡2¢¯̄ ≤
2 |− | for the first sum and |sin (· · · )| ≤ 1 for the the second, and hence

| ()−  ()| ≤  |− |
X

1≤≤|log(2)(−)|
2−2 +

X
|log(2)(−)|

22−

≤ 1 |− |1

for some constant 1 = 1 (), independent of   and . This proves (i).

Ad (ii). Assume  6= 0 and let  ≥ 1 be the first index for which  6= 0 ,
i.e.

1 = 01 · · ·  −1 = 0−1 but  6= 0 

Consider then a dissection  of [0 1] given  = 2−−1 :  = 0     2+1.

From ¯̄
sin
¡
2+1

¢− sin ¡2¢¯̄ = 1
it follows readily that

¯̄
sin
¡
2·¢¯̄

-var;[01]
≥ 2 Moreover,

|( − 0) (+1)− ( − 0) ()| =
¯̄
 − 0

¯̄
2−

¯̄
sin
¡
2+1

¢− sin ¡2¢¯̄
= 22−

This shows that | − 0 |-var;[01] ≥ 2.
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5.3.2 Compactness

Lemma 5.29 Consider () ⊂ 
¡
[0  ] R

¢
and assume  →  ∈


¡
[0  ] R

¢
uniformly.

(i) Assume sup ||-var;[0 ]  ∞. Then  →  in 0-variation for any
0  .

(ii) Assume sup ||-Höl;[0 ] ∞. Then  →  in 0-Hölder norm for

any 0  .

Proof. By lemma 5.13 we see that  is of finite -variation. It then suffices

to apply the interpolation result (proposition 5.5) to the difference − .

Proposition 5.30 (Compactness) Consider () ⊂ 
¡
[0  ] R

¢
.

(i) Assume () is equicontinuous, bounded and sup ||-var;[0 ]  ∞.
Then  converges (in 0   variation, along a subsequence) to some

 ∈ -var
¡
[0  ] R

¢
.

(ii) Assume () is bounded and sup ||-Höl;[0 ]  ∞. Then  con-

verges (in 0   Hölder topology, along a subsequence) to some  ∈
-Höl

¡
[0  ] R

¢
.

Proof. Obvious consequence of Arzela-Ascoli and the previous lemma.

The following corollary will be useful e.g. in the proof of the forthcoming

theorem 6.8.

Corollary 5.31 (i) Assume ()   are in -var
¡
[0  ] R

¢
such that

sup ||-var;[0 ] ∞ and lim→∞ ∞;[0 ] ( ) = 0 then for 0  

sup
()∈∆

¯̄̄
||0-var;[] − ||0-var;[]

¯̄̄
→ 0 as →∞.

wherer∆ = {( ) : 0 ≤  ≤  ≤ }. Furthermore,
n
||0-var; [··] :  ∈ N

o
is equicontinuous in the sense that for every   0 there exists  such that

|− |   implies

sup

||0-var; []   (5.19)

(ii) If ()   are in -Höl ([0  ]  ) such that sup ||-Höl;[0 ]  ∞
and lim→∞ ∞;[0 ] ( ) = 0, then for all    in [0  ], as  → ∞,
then for 0  

sup
()∈∆

¯̄̄
||0-Höl;[] − ||0-Höl;[]

¯̄̄
→ 0 as →∞

and
n
||0-Höl; [··] :  ∈ N

o
is equicontinuous, similar to part (i).
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Proof. (i) Proposition 5.5, applied to  − , actually shows that

lim
→∞

sup

| − |0-var;[] = 0.

Hence, ||0-var;[··] converges uniformly on∆ and hence, by Arzela-Ascoli’s

theorem, is equicontinuous. That is, for any   0 there exists  such that

|( )− (0 0)|   implies

sup


¯̄̄
||0-var;[] − ||0-var;[00]

¯̄̄
 .

In particular, this applies to ( ) ∈ ∆ with |− |   and 0 := 0 := ,

and using ||0-var;[00] = 0 we see that

sup

||0-var;[]  

which concludes the proof of (i). The proof of (ii) follows similar lines.

5.3.3 Closure of smooth paths in variation norm

For  ≥ 1 we define 0-var ¡[0  ] R¢ resp. 01-Höl ¡[0  ] R¢ as the
closure of smooth paths from [0  ] → R in -variation resp. 1-Hölder

norm. In symbols,

0-var
¡
[0  ] R

¢
: = ∞ ([0  ] R)

-var


01-Höl
¡
[0  ] R

¢
: = ∞ ([0  ] R)

1-Höl


Obviously, these are closed, linear subspace of-var
¡
[0  ] R

¢
resp. 1-Höl

¡
[0  ] R

¢
and thus Banach spaces and so is the restriction to paths with  (0) = 0,

denoted by 0-var

¡
[0  ] R

¢
resp. 

01-Höl


¡
[0  ] R

¢
. The case  = 1

was already discussed earlier in section 1.3 where, among other things, we

identified 01-var as absolutely continuous paths and 01-Höl
¡
[0  ] R

¢
as 1

¡
[0  ] R

¢
. For   1 we have

Lemma 5.32 Let   1.

(i) Let Ω be a set in 1-var
¡
[0  ] R

¢
such that 01-var

¡
[0  ] R

¢ ⊂
Ω
1-var

 Then,

Ω
-var

= 0-var
¡
[0  ] R

¢


(ii) Let Ω be a set in 1-Höl
¡
[0  ] R

¢
such that 1

¡
[0  ] R

¢ ⊂ Ω1-Höl 
Then,

Ω
1-Höl

= 01-Höl
¡
[0  ] R

¢
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Proof. (i) First, 0-var ⊂ Ω-var follows immediately from

∞ ⊂ 01-var ⊂ Ω1-var ⊂ Ω-var.

The converse inclusion follows readily from 1-var ⊂ ∞
-var

; indeed,

Ω ⊂ 1-var ⊂ ∞
-var

=⇒ Ω
-var ⊂ ∞

-var
.

To see 1-var ⊂ ∞
-var

recall from exercise 2.6 that any  ∈ 1-var can

be approximation by  ∈ ∞ in uniform norm with uniform 1-variation

bounds, i.e.

|− |∞;[0 ] → 0 sup

||1-var;[0 ] ∞;

then interpolation (proposition 5.5 applied to  − ) gives  →  in -

variation which is what we had to prove.

(ii) Similar and left to the reader.

Theorem 5.33 (Wiener’s Characterization) Let  ∈ -var([0  ]R),
with   1. The following statements are equivalent.

(i.1)  ∈ 0-var([0  ]R)
(i.2a) lim→0 sup=()||

P
 ||-var;[+1] = 0

(i.2b) lim→0 sup=()||
P

 
¡
  +1

¢
= 0

(i.3) lim||→0 -var
¡
 

¢
= 0.

Secondly, let  ∈ 1-Höl
¡
[0  ]R

¢
, with   1. The following statements

are equivalent:

(ii.1)  ∈ 01-Höl
¡
[0  ]R

¢


(ii.2a) lim→0 sup|−| ||1-Höl,[] = 0
(ii.2b) lim→0 sup|−| ( )|− |1 = 0
(ii.3) lim||→0 1-Höl

¡
 

¢
= 0.

Remark 5.34 From purely metric considerations, we have seen in exercise

5.16 that (i.2b) is equivalent to "absolute continuity of order ". Remark

also that the case  = 1 requires special care: By corollary 1.38 (i.1)⇔ (i.3)

holds true. On the other hand, proposition 1.17 tells us that in the case

 = 1 condition (i.2) is tantamount to saying  is constant; in particular,

conditions (i.1),(i.3) do not imply (i.2). Similar comments apply in the

Hölder case.

Proof. We only prove the -variation statements, as the 1-Hölder ones

follow the same logic.

From lemma 5.32, the −-closure of 1−
¡
[0  ] R

¢
is 0-var([0  ]R)

which implies that (3)⇒ (1). The reverse proof of (1)⇒ (3) follows

the same lines as the proof in the case  = 1 i.e. the proof of proposition

1.38.
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We already proved in proposition 5.9 that (2)⇔ (2) and now turn

to (1)⇒ (2)

Let us fix   0 and a smooth path  such that -var ( )
 ≤ 2−

For a dissection , we obtain from the triangle inequalityX
∈


¡
  +1

¢ ≤ 2−1 X
∈


¡
  +1

¢
+ 2−1-var;[0 ]( )



Since  is smooth, there exists   0 (that depends on ) such that for all

dissections ||   implies thatX
∈


¡
  +1

¢
 2−

Hence, we obtain that for all dissections  with ||  ,X
∈


¡
  +1

¢ ≤ 

We finish by proving that (2)⇒ (3) First, if  and  are two paths,

and  is some fixed positive real, observe that for all subdivsion  = () X



¡
+1  +1

¢
≤

X
|+1−|≤


¡
+1  +1

¢
+

X
|+1−|


¡
+1  +1

¢
≤ 2−1

⎛⎝ X
|+1−|≤

||-var;[+1] +
X

|+1−|≤
||-var;[+1]

⎞⎠
+



0 ( ) 

Taking the supremum over all dissections, we obtain

− ( )
 ≤ 2−1 sup

()∈D([0 ])

X


||-var;[+1]

+2−1 sup
()∈D([0 ])

X


||-var;[+1]

+



0 ( ) 

Take a bounded variation path  and its piecewise linear approximation

 for some dissection  with ||   we obtain, using inequality (5.18),

-var
¡
 

¢ ≤  sup
()∈D([0 ])

X


||-var;[+1]

+



0
¡
 

¢
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First fix   0 such that  sup()∈D([0 ])
P

 ||-var;[+1]  2 Then

as  converges to  in uniform topology when ||→ 0 there exists 2  

such that for all dissections  with ||  2




0
¡
 

¢
 2

Hence, for all dissection  with ||  2 we have −
¡
 

¢
  and

the proof is finished.

We then have

Corollary 5.35 For   1 we have the following set inclusions,[
1≤

-var
¡
[0  ] R

¢ ⊂ 0-var
¡
[0  ] R

¢
⊂ -var

¡
[0  ] R

¢ ⊂ \


-var
¡
[0  ] R

¢
Proof. Recalling basic inclusions between - and -variation spaces (propo-

sition 5.3) only the inclusion[


-var ([0  ] R) ⊂ 0-var ([0  ] R)

requires an argument. Thanks to proposition 5.6,

 ∈
[

1≤
-var ([0  ] R) =⇒ lim

→0
sup

=()||

X



¡
  +1

¢
= 0

and we conclude using 8.23.

Example 5.36 An example of a function in 12-Höl ([0 1]R) but not
in 012-Höl ([0 1]R) is given by  7→ 12, as follows immediately from

Wiener’s characterization, theorem 8.23.

Exercise 5.37 (i) Define  () =
P∞

=1 
− sin

¡

¢
. If  is a sufficiently

large positive integer, show that  ∈ -var ([0 1] R) but  ∈ 0-var ([0 1] R) 
(ii) Define  () = 1 cos2 ()  log  for   0,  (0) = 0. Show that

 ∈ 0-var ([0 1] R) and

 ∈ ∪-var ([0 1] R) 

Proposition 5.38 Let  ≥ 1. The spaces 0-var ¡[0  ] R¢  01-Höl ¡[0  ] R¢
are separable Banach space (and hence Polish).

Proof. From proposition 1.39, there is countable space Ω that is dense in

01−
¡
[0  ] R

¢
. We conclude using lemma 5.32.
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5.4 Generalized variation

5.4.1 Definition and basic properties

The concept of variation (and then -variation) allows for an obvious gen-

eralization:

Definition 5.39 Let ( ) be a metric space,  ∈  ([0∞) [0∞)), 0 at
0, strictly increasing and onto. A path  : [0  ]→  is said to be of finite

-variation on the interval [ ] if

||-var;[0 ] := inf
(
  0 sup

∈D([0 ])

X
∈



"

¡
  +1

¢


#
≤ 1

)
∞

We will use the notation -var([0  ] ) for the set of continuous paths

 : [0  ]→  of finite -variation. The set of paths pinned at time zero to

some fixed element  ∈  is denoted by -var
 ([0  ] ).

For  () =  the definition of ||-var;[0 ] coincides with ||-var;[0 ].
If ( ) is a normed space and  is (globally) convex, ||-var;[0 ] is a semi-
norm. Several variation functions of interest are not convex (including the

class  to be introduced in the forthcoming definition 5.47 which will be

convenient for our later applications).

A first interest in -variation comes from the fact that (sharp) sam-

ple path properties for stochastic processes are often available in this form.

For example, a classical result of Taylor (cf. the forthcoming theorem 13.16)

states that Brownian motion has a.s. finite 21-variation on any compact

interval [0  ] and this is optimal (cf. theorem 13.71). A wide class of (en-

hanced) Gaussian processes have almost surely finite 2-variation, while

(enhanced) Markov processes (with uniformly ellipticic generator in diver-

gence form) have the "Brownian" 21-variation regularity. The other rea-

son for our interest in -variation is that it is intimately related to unique-

ness of solution to rough differential equations under minimal regularity

assumptions; as will be discussed in section 10.5.

Lemma 5.40 Let  ∈ -var([0  ] ). Then, for all  ≥ ||-var;[0 ] we
have

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
≤ 1 (5.20)

Proof. Only the case  = ||-var;[0 ] requires a proof. By definition,
there exists a sequence  ↓ such that (5.20) holds with  replaced by

. In particular, for a fixed dissection ,

X
∈



"

¡
  +1

¢


#
≤ 1 and hence

X
∈



"

¡
  +1

¢


#
≤ 1
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by continuity of . Taking the supremum over all  ∈ D ([0  ]) finishes
the proof.

Just as in the common case of -variation, controls are a very useful

concept.

Proposition 5.41 Let ( ) be a metric space,  ∈  ([0∞) [0∞)), 0
at 0, strictly increasing and onto. Then the following are equivalent

(i)  ∈ -var([0  ] ) with ||-var;[0 ] ≤ for some  ≥ 0
(ii) there exists a control  with  (0  ) ≤ 1 such that for all    in

[0  ] 

 ( ) ≤−1 ( ( )) 

Proof. Define

 ( ) := sup
∈D([])

X
∈



"

¡
  +1

¢


#


Working as in the proof of proposition 5.8, we see that  is a control

with  (0  ) ≤ 1. We then by definition of  have that  ( ) ≤
−1 ( ( )) 
Conversely, we assume that for all    in [0  ] 

 ( ) ≤−1 ( ( ))

for some   0 and control  with  (0  ) ≤ 1 Then, for a dissection 

we have X
∈



"

¡
  +1

¢


#
≤

X
∈

 ◦ −1 [ ( +1)]

≤  (0  ) ≤ 1
and hence ||-var;[0 ] ≤

For simplicity, we will only look at -variation of paths for function 

satisfying the following condition.

Condition 5.42 (∆) Assume  ∈  ([0∞) [0∞)), 0 at 0, strictly in-
creasing and onto. We say  satisfies condition ∆ if for all   0, there

exists ∆ ≥ 0 such that ∀ ∈ [0∞) :  () ≤ ∆ () and lim→0∆ = 0.

The condition ∆ leads to the following convenient equivalences.

Proposition 5.43 Let ( ) be a metric space, and let  : [0  ]→  be a

continuous path. Assume the variation-function  satisfies condition (∆).

Then the following conditions are equivalent.

(i) The path  is of finite -variation;

(ii) there exists   0 such that

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
∞;
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(iii) for all   0,

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
∞

Proof. Trivially, (i) =⇒ (ii) and (iii) =⇒ (ii). We show that (ii) implies (i)

and (iii). For any   0, using condition ∆ we have

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
≤ ∆ sup

∈D([0 ])

X
∈



"

¡
  +1

¢


#
∞

which proves that (ii)=⇒(iii). Similarly,

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
≤ ∆ sup

∈D([0 ])

X
∈



"

¡
  +1

¢


#
≤ 1 for  large enough (as ∆ →→∞ 0)

and so (ii) =⇒ (i). The proof is finished.

Recall −var ([0  ]  ) ⊂  ̃−var ([0  ]  ), ̃ ≥ . This generalizes to

Lemma 5.44 Assume  ̃ satisfies condition (∆) and ̃ =  () at 0+.

Then

−var ([0  ]  ) ⊂ ̃−var ([0  ]  ) 

Proof. Let  ∈ −var ([0  ]  )  then for all   0 and in particular

 := ||0[0 ]  we have

sup
∈D([0 ])

X
∈



"

¡
  +1

¢


#
∞

For all  
¡
  +1

¢
 ≤ 1 and by assumption, on [0 1]  there exists a

finite constant  such that ̃ () ≤  () for all  ∈ [0 1]  Hence

sup
∈D([0 ])

X
∈

̃

"

¡
  +1

¢


#
≤  sup

∈D([0 ])

X
∈



"

¡
  +1

¢


#
∞

and so  ∈ ̃−var ([0  ]  ), using proposition 5.43.
We now make some quantitative relations between -variation and -

variation. As will be seen in corollary 5.46 below, -variation estimates

often imply -variation estimates with no extra work.

Theorem 5.45 Fix  ≥ 1 and assume that  satisfies condition ∆.

Assume also that −1 (·) is convex on [0 ] for some  ∈ (0 1] Let
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 ∈ -var([0  ] ). Then, the control3

 ( ) := sup
∈D([])

X
∈



"

¡
  +1

¢
||-var;[0 ]

#

satisifies  (0  ) ≤ 1. Moreover, for  =  ( ) and all    in [0  ] 

||-var;[] ≤  ||-var,[0 ] −1 ( ( )) 

Proof. It suffices to consider the case of non-constant  (·) so that ||-var,[0 ] 
0. By lemma 5.40,  (0  ) ≤ 1. Then, as  satisfies condition ∆ there

exists   0 such that ∆ ≤  and we have



"


 ( )

||-var;[0 ]

#
≤ ∆

"
 ( )

||-var;[0 ]

#
≤  ( )

from which  ( )
 ≤ − ||-var,[0 ] −1 ( ( )). Note that  ( ) ∈

[0 ] for any    in [0  ] and so, from convexity of −1 (·) on [0 ],
( ) 7→ −1 ( ( ))

is a control. It then follows from basic super-additivity properties of controls

that

||-var;[] ≤
||-var,[0 ]


−1 ( ( )) ≤

||-var,[0 ]


−1 ( ( ))

where we used  ≤ 1 in the final step, and the proof is finished.
We now consider a second path  with values in some metric space (̃ ̃),

whose -variation is dominated by the -variation of . (This situation will

be typical for solution of (rough) differential equations.)

Corollary 5.46 Fix  ≥ 1 and assume that  satisfies condition ∆.

Assume also that −1 (·) is convex on [0 ] for some  ∈ (0 1] Let

 ∈ ([0  ] )  ∈ ([0  ] ̃) be such that for all    in [0  ] 

||-var;[] ≤  ||-var;[]  (5.21)

Then, for some constant  =  ( ) and all    in [0  ] 

||-var;[] ≤  ||-var;[] 
Proof. From theorem 5.45, we have

 ( ) ≤ ||-var;[] ≤  ||-var;[]
≤  ||-var,[0 ] −1 ( ( )) 

3With convention 00 = 0.
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Hence, if  = () is a dissection of [0  ], we have

X
∈



"

¡
  +1

¢
 ||-var,[0 ]

#
≤
X
∈

 ( +1) ≤  (0  ) ≤ 1

which implies that ||-var;[0 ] ≤  ||-var;[0 ]. There is nothing special
about the interval [0  ] and by a simple reparametrization argument we

see that ||-var;[] ≤  ||-var;[].

5.4.2 Some explicit estimates for 

We now apply all these abstract consideration to the following class of

variation function.

Definition 5.47 For any ( ) ∈ R+ ×R set  (0) = 0 and

 () :=

½


(ln ln 1)
for  ∈ (0 −)

 for  ≥ −

or, equivalently,  () =  (ln∗ ln∗ 1) where ln∗ = max (1 ln) 

Exercise 5.48 Show that, for any ( ) ∈ R+ × R the function  (·)
satisfies condition ∆

Solution 5.49 A possible choice is ∆ = 4 (1). The details are left

to the reader.

Exercise 5.50 For (1 1)  (2 2) in R+ × R, we say that (1 1) ≤
(2 2) if 1 ≤ 2 or if 1 = 2 and 1 ≤ 2 Show that for (1 1) ≤
(2 2) 

11
-var ([0  ]  ) ⊂ 22

-var ([0  ]  ) 

Solution 5.51 In all cases, we have

lim sup
→0+

22 ()

11 ()
= lim sup

→0+
2−1

µ
1

ln ln 1

¶2−1
and this limit is bounded as  → 0+ if (1 1) ≤ (2 2) The result follow
from lemma 5.44.

The following estimates on the inverse of −1 will be useful to us later
on.

Lemma 5.52 There exists  =  ( ) such that for all  ∈ [0∞),
1


1− () ≤ −1 () ≤ 1− () .



106 5. Variation and Hölder Spaces

Proof. For  large enough  () = , 1− = 1 and there is

nothing to show. For  small it suffices to observe that 1− is the
asymptotic inverse of  at 0 + 

Finally, the following proposition will allow us to use theorem 5.45 with

the functions 

Proposition 5.53 For any 0    0 and  ∈ R, the function ¡−1 (·)¢0 is
locally convex in a positive neighbourhood of 0.

Proof. Obvious from an explicit computation of the second derivative of

−1 (·)
0
near 0 + 

5.5 Higher dimensional variation

5.5.1 Definition and basic properties

We now discuss -variation regularity of a function

 : [0  ]
2 → ¡

R |·|¢µ




¶
7→ 

µ




¶
The generalization to [0  ]


with   2 follows the same arguments but

will not be relevant to us. Given a rectangle  = [ ]× [ ] ⊂ [0  ]2 we
write

 () := 

µ
 

 

¶
:= 

µ




¶
+

µ




¶
−

µ




¶
−

µ




¶
. (5.22)

If  = 1 and  is smooth, this is precisely
R


2


( )  Also, if

 ( ) =  ⊗ , then



µ
 

 

¶
=  ⊗ 

We will also use the following notations, consistent with our one dimen-

sional increment notation.



µ


 

¶
: = 

µ




¶
− 

µ




¶




µ
 



¶
: = 

µ




¶
− 

µ




¶
We will also frequently use the notation || for the area of 
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Definition 5.54 Let  : [0  ]
2 → ¡

R |·|¢ and  ∈ [1∞) We say that 
has finite -variation if | |-var;[0 ]2 ∞ where

| |-var;[]×[] = sup
()∈D([])
(0)∈D([])

⎛⎝X


¯̄̄̄


µ
 +1
0  

0
+1

¶¯̄̄̄⎞⎠1

and write  ∈ -var
¡
[0  ] R

¢


In the one dimensional (1D) case, i.e. functions defined on [0  ], the

notion of control is fundamental. In the two dimensional (2D) case controls

are defined on ∆ ×∆ where we recall that

∆ := ∆ = {( ) : 0 ≤  ≤  ≤ } 
We think of elements in ∆ × ∆ as rectangles contained in the square

[0  ]
2
and write [ ]×[ ] rather than (( )  ( )) for a generic element.

Definition 5.55 Let ∆ = {( ) : 0 ≤  ≤  ≤ }. A 2 control (more

precisely: 2 control function on [0  ]
2
) is a continuous map  : ∆ ×

∆ → [0∞) which is super-additive in the sense that for all rectangles
1 2and  with 1 ∪2 ⊂  and 1 ∩2 = ∅

 (1) +  (2) ≤  ()

and such that for all rectangles of zero area,

 () = 0

A 2D control  is said to be Hölder-dominated if there exists a constant 

such that for all    in [0  ] 


³
[ ]

2
´
≤  |− | 

The proof of the following lemma is a straight-forward adaption of the

1D case treated in section 5.1 and left to the reader.

Lemma 5.56 Let  ∈ 
³
[0  ]

2
R

´
. Then

(i) If  is of finite -variation for some  ≥ 1
 rectangles in [0  ]

2 7→ | |-var;
is a 2D control.

(i)  is of finite -variation on [0  ]
2
if and only if there exists a 2 control

 such that for all rectangles  ⊂ [0  ]2 
| ()| ≤  ()

and we say that " controls the -variation of  ."
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Remark 5.57 If  : [0  ]
2 → R is symmetric (i.e.  ( ) =  ( ) for

all  ) and of finite -variation then [ ] × [ ] 7→ | |-var;[]×[] is
symmetric. In fact, one can always work with symmetric controls, it suffices

to replace a given  with [ ]× [ ] 7→  ([ ]× [ ])+ ([ ]× [ ]).

Lemma 5.58 A function  ∈ 
³
[0  ]

2
R

´
is of finite -variation if and

only if

sup
()∈D([0 ])

X


¯̄̄̄


µ
 +1
  +1

¶¯̄̄̄
∞

Moreover, the -variation of  is controlled by 3−1 times

 ([ ]× [ ]) := sup
()∈D([0 ])

X


[+1]⊂[]
[ +1]⊂[]

¯̄̄̄


µ
 +1
  +1

¶¯̄̄̄


Proof. Assuming that 
³
[0  ]

2
´
is finite, it is easy to check that  is a

2 control. Then, for any given [ ] and [ ] which do not intersect or

such that [ ] = [ ] ¯̄̄̄


µ
 

 

¶¯̄̄̄
≤  ([ ]× [ ]) 

Take now  ≤  ≤  ≤  then,



µ
 

 

¶
= 

µ
 

 

¶
+ 

µ
 

 

¶
= 

µ
 

 

¶
+ 

µ
 

 

¶
+ 

µ
 

 

¶


Hence,¯̄̄̄


µ
 

 

¶¯̄̄̄
≤ 3−1

³
 ([ ]× [ ]) + 

³
[ ]

2
´
+  ([ ]× [ ])

´
≤ 3−1 ([ ]× [ ]) 

The other cases are dealt similarly, and we find at the end that for all  ≤ 

 ≤  ¯̄̄̄


µ
 

 

¶¯̄̄̄
≤ 3−1 ( [ ]× [ ]) 

This concludes the proof.

Example 5.59 Given two functions   ∈ -var
¡
[0  ] R

¢
we can de-

fine

( ⊗ )

µ




¶
:=  ()⊗  () ∈ R ⊗R
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and  ⊗  has finite 2 -variation4 . More precisely,¯̄̄̄
( ⊗ )

µ
 

 

¶¯̄̄̄
≤ ||-var;[] ||-var;[] =:  ([ ]× [ ])

and since  is indeed a 2 control function (as product of two 1 control

functions!) we see that

| ⊗ |-var;[]×[] ≤ ||-var;[] ||-var;[] .

Exercise 5.60 Given  ∈ -var
³
[0  ]

2
R

´
 for any fixed [ ]×[ ] ∈

[0  ]
2
 prove that the (one dimensional) -variation of  ∈ [ ]→ 

µ


 

¶
is bounded by | |−[]×[]  Similarly, prove that the (one dimensional)
-variation of  ∈ [ ]→ 

µ
 



¶
is bounded by | |−[]×[] 

Remark 5.61 If  is a 2 control function, then

( ) 7→ 
³
[ ]

2
´

is a 1 control function i.e. 
³
[ ]

2
´
+ 

³
[ ]

2
´
≤ 

³
[ ]

2
´
, and

( )→ 
³
[ ]

2
´
is continuous and zero on the diagonal.

Remark 5.62 A function  ∈ 
³
[0  ]

2
R

´
of finite -variation can

also be considered as path  7→  ( ·) with values in the space -var
¡
[0  ] R

¢
with -variation (semi-)norm. It is instructive to observe that  7→  ( ·)
has finite -variation if and only if  has finite 2D -variation.

5.5.2 Approximations to 2D functions

Piecewise linear type approximations

Recall from section 5.3 that a continuous path of finite -variation can

be approximated by smooth and/or piecewise linear paths in the sense

of "uniform convergence with uniform -variation bounds", but not, in

general, in -variation norm. The same is true in the 2D case and the

approximations defined below are the natural 2D analogue of piecewise

linear approximations.

4X⊗ X is equipped with a compatible tensor norm.
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Definition 5.63 ( ̃ piecewise-linear-type approximation of a 2D func-

tion). Assume  ∈ 
³
[0  ]

2
 
´
where  is a normed space. Let

 = ( )  ̃ = (̃ ) ∈ D [0  ] 

A function ̃ ∈ 
³
[0  ]

2
 
´
with the property that

̃

µ




¶
= 

µ




¶
for all ( ) ∈  × ̃

is uniquely defined by requiring that

(̃) (· 0) =  (· 0) 
(̃) (0 ·) =  ̃ (0 ·) 

and, for ( )× ( ) ⊂ (   +1)× (̃   ̃ +1)

(̃)
µ

 

 

¶
=

− 

 +1 −  
×  − 

̃ +1 − ̃ 


µ
   +1
̃   ̃ +1

¶


Proposition 5.64 Let  ∈ -var
³
[0  ]

2
 
´
and  ̃ ∈ D [0  ]. Then,

for all    in  and    in ̃ we have¯̄̄
̃

¯̄̄
-var;[]×[]

≤ 9−1 | |-var;[]×[] ; (5.23)

Moreover, ̃ →  uniformly as || 
¯̄̄
̃
¯̄̄
→ 0.

Remark 5.65 It need not be true that ̃ →  as || 
¯̄̄
̃
¯̄̄
→ 0 in -

variation. However, by interpolation this holds true when  is replaced by

0  .

Proof.Without loss of generality [ ]×[ ] = [0 1]2. Given = ( )  ̃ =

(̃ ) ∈ D [0 1] we now define ̃ on [0 1]
2
as follows: for small rectangles

[ ]× [ ] ⊂  ×  ≡ [   +1]× [̃  ̃ +1] we set

 ([ ]× [ ]) := (− ) ( − )

| ×  | | |-var;× (with   ∈ ;   ∈ );

then, for vertical "strips" of form [ ] × (1 ∪ · · · ∪ ) with   ∈  ≡
[   +1] and  = [ +−1  +]

 ([ ]× (1 ∪ · · · ∪ )) := (− )

|| | |-var;×(1∪) for   ∈ ;   ∈  ;
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We use the similar definition for horizontal strips; at last, for (possibly)

large rectangle with endpoints in  we set

 ((1 ∪ · · · ∪ )× (1 ∪    )) := | |-var;(1∪···∪)×(1∪) 

Now, an arbitrary rectangle  = [ ]× [ ] ⊂ [0 1]2 decomposes uniquely
into (at most) 9 rectangles 1     9 of the above type (4 small rec-

tangles in the corners, 2 vertical and 2 horizontal strips and 1 rectangle

with endpoints in ) and we define ̃ () =
P9

=1 ̃ (). We leave

it to the reader to check that ̃ is indeed a 2D control function on

[0 1]
2
. On the other hand, it is clear from the definition of ̃ that¯̄̄

̃ ()
¯̄̄
≤ ̃ () for  = 1     9 and so

¯̄̄
̃ ()

¯̄̄
=

¯̄̄̄
¯
9X

=1

̃ ()

¯̄̄̄
¯


≤ 9−1
9X

=1

¯̄̄
̃ ()

¯̄̄
= 9−1̃ () 

The proof of (5.23) is then finished with the remark that ̃

³
[0 1]

2
´
=

||
-var;[01]2

. At last, uniform convergence of ̃ →  as || 
¯̄̄
̃
¯̄̄
→ 0 is

a simple consequence of (uniform) continuity of  on [0 1]
2
.

Mollifier approximations

We now turn to another class of well known smooth approximations: mol-

lifier approximations.

Notation 5.66 (Continuous extension of 2D functions) Whenever nec-

essary, we shall extend a continuous function  defined on [0  ]
2
to a

continuous function  =  ( ) defined on R2 by setting

 (0 0) for    0  (0  ) for   0   

 (  ) for      ( 0) for      0

and, for  ∈ [0  ] resp.  ∈ [0  ]

 ( ) =

½
 ( 0) if   0

 (  ) if   
resp.  ( ) =

½
 (0 ) if   0

 ( ) if   


Note that, as a consequence of this definition, we have

 () = 
³
 ∩ [0  ]2

´
for all rectangles in R2.
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Definition 5.67 ( ̃ mollifier approximation of a 2D function) Assume

 ∈ 
³
[0  ]

2
 
´
where  is a normed space. Let  ̃ be two compactly

supported probability measures on R. We define ̃ ∈ 
³
[0  ]

2
 
´
by

̃
µ





¶
=

Z Z


µ
− 

− 

¶
 () ̃ () 

noting that the same relation remains valid for rectangular increments,

̃
µ

 

 

¶
=

Z Z


µ
−  − 

−   − 

¶
 () ̃ () 

Proposition 5.68 Let  ̃ be two compactly supported probability measure

on R and  ∈ -var
³
[0  ]

2
 
´
, extended to a continuous function on R2

cf. notation above, with -variation controlled by



µ
 

 

¶
= | |-var;[]×[] 

Then ̃ is also of finite -variation, controlled by the 2D control

̃
µ

 

 

¶
=

Z Z


µ
−  − 

−   − 

¶
 () ̃ () 

and ¯̄
̃

¯̄
-var;[0 ]2

≤ ̃
³
[0  ]

2
´
≤ | |

-var;[0 ]2
 (5.24)

Moreover, ̃ →  uniformly on [0  ]
2
whenever  ̃ converge to

the Dirac measure at zero5 .

Remark 5.69 There is nothing special about the interval [0  ]. However,

we cannot deduce from (5.24) that¯̄
̃

¯̄
-var;[]2

= | |
-var;[]2

for all    in [0  ] 

The reason is that ̃ depends on our extension of  from [0  ]
2
to R2.

Thus, if we construct ̂̃ from ̂ =  |[]2 , extended to R2, it will not, in
general, coinicde with ̃.

5 I.e.

 →  (0) for all continuous, bounded .
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Proof. Given () ∈ D [0  ],() ∈ D [0  ] we have, using Jensen’s inequal-
ity,¯̄̄̄
̃

µ
 +1
  +1

¶¯̄̄̄
=

¯̄̄̄Z Z


µ
 −  +1 − 

 −  +1 − 

¶
 () ̃ ()

¯̄̄̄
≤

Z Z ¯̄̄̄


µ
 −  +1 − 

 −  +1 − 

¶¯̄̄̄
 () ̃ ()

=

Z Z ¯̄̄̄


µµ
 −  +1 − 

 −  +1 − 

¶¶¯̄̄̄
 () ̃ ()

≤ ̃ ([ +1]× [  +1]) 

which shows that  has finite -variation in controlled by ̃. Moreover,

since  () = 
³
 ∩ [0  ]2

´
for all rectangles

| |-var;[0−−]×[0−−] ≤ | |-var;[0 ]2

and so ̃
³
[0  ]

2
´
≤ | |

-var;[0 ]2
which concludes the proof.

5.6 Comments

Proposition 5.8 appears in [113]; our (complete) proof partially follows [43,

p.93]. Continuity properties of the type discussed in Lemma 5.14 appear in

[126]. The notion of paths which are "absolutely continuous of order ", cf.

Exercise 5.16 is due to Love [107]. Fractional Sobolev spaces (discussed in

5.18) are also known as Besov or Slobodetzki spaces and arise in many areas

of analysis. The notion of "geodesic space" and its variations (length space

etc.) is now well understood e.g. [69] or [18] and the references therein. Ex-

ercise 5.37 is taken from [44, p.28]. An almost complete list of references for

generalized variation, or -variation, is found in [43]. Comments on higher

dimensional -variation will be given in the chapter on Young integration.
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6

Young Integration

We construct
R ·
0
, the Young integral of  against  where

 ∈ -var
¡
[0  ] R

¢
  ∈ -var

¡
[0  ]  

¡
RR

¢¢
with 1+1  1. Although the results here are well-known, our approach

is novel and extends - without much conceptual effort! - to rough path

estimates for ordinary - and then rough - differential equations.

6.1 Young—Lóeve estimates

We start with two elementary analysis lemmas, tailor-made for obtaining

the Young—Lóeve estimate in proposition 6.4 below.

Lemma 6.1 Let   0 and   1. Consider  : [0  ]→ R with

 () ≤ 2 (2) +  for all  ∈ [0  ] (6.1)

and such that  () =  () as → 0+, i.e.

lim
→0+

 ()


= 0 (6.2)

Then, for all  ∈ [0  ] 

 () ≤ 

1− 21− 


Proof. We define  () =  () 
¡

¢
and note that (6.1) implies

 () ≤ 1 + 21− (2) 
Iterated use of this inequality shows that for all  ∈ N,

 () ≤ 1 +
−1X
=1

¡
21−

¢
+
¡
21−

¢

³ 

2

´
 (6.3)

We now send →∞. The last term on the right-hand-side above tends to

zero since ¡
21−

¢

³ 

2

´
=

¡
21−

¢  (2−)
2−

≤ 1−



 (2−)
2−

→ 0 by assumption (6.2)
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and the proof is finished with

 () ≤
∞X
=0

2−2 =
1

1− 21− 

Lemma 6.2 Let Γ : ∆ ≡ {0 ≤    ≤ }→ R and assume
(i) there exists a control ̂ such that

lim
→0

sup
()∈∆: ̂()≤

|Γ|


= 0; (6.4)

(ii) there exists a control  and   1   0 such that

|Γ| ≤ |Γ|+ |Γ|+  ( )

 (6.5)

holds for 0 ≤  ≤  ≤  ≤  . Then, for all 0 ≤    ≤  ,

|Γ| ≤ 

1− 21−  ( )



Remark 6.3 It is important to notice that the control ̂ does not appear

in the conclusion.

Proof. At the cost of replacing Γ by Γ we can and will take  = 1 We

assume that ̂ ≤ 1

 for some   0 If it is not the case, we replace  by

 + ̂ and let  tends to 0 at the end. Define for all  ∈ [0  (0  )] 
 () = sup

 such that ()≤
|Γ| 

Consider any fixed pair ( ) with 0 ≤    ≤  such that  ( ) ≤ ,

and pick  such that

 ( )   ( ) ≤  ( ) 2

(This is possible thanks to basic properties of a control function, see exercise

1.12). By definition of 

|Γ| ≤  (2)  |Γ| ≤  (2) 

and it follows from the assumption (6.5) that

|Γ| ≤ 2
³
2

´
+ 

Taking the supremum over all    for which  ( ) ≤  yields that for

 ∈ [0  (0  )]
 () ≤ 2

³
2

´
+ 



6. Young Integration 117

On the other hand, assumption (6.4) implies that

lim
→0

 ()


= 0.

It then suffices to apply lemma 6.1 to see that for all  ∈ [0  (0  )] 

 () ≤ 1

1− 21− 


and this readily translates to the statement that, for all 0 ≤    ≤ 

|Γ| ≤ 1

1− 21−  ( )



Proposition 6.4 (Young-Lóeve estimate) Assume

 ∈ 1-var
¡
[0  ] R

¢
  ∈ 1-var

¡
[0  ]  

¡
RR

¢¢
for   ≥ 1 with  := 1+ 1  1With the definition

Γ :=

Z 



 −  =

Z 





we have

|Γ| ≤ 1

1− 21− ||-var;[] ||-var;[]  (6.6)

Remark 6.5 It is instructive to think of  as a first order Euler ap-

proximation to the Riemann-Stieltjes integral
R 

 so that (6.6) is noth-

ing but a "first order Euler error" estimate. The point of this estimate

is its uniformity: although 1-variation was assumed to have a well-defined

Riemann-Stieltjes integral, the final estimate only depends on the respective

 -variation.

Proof. From exercise 1.10,

 ( ) := ||1
-var;[]

||1
-var;[]

is a control. For all    in [0  ] we define

Γ =

Z 



 −  =

Z 





Then, for fixed      in [0  ], we have

Γ − Γ − Γ =

Z 



 −
Z 



 −
Z 





= 
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and hence

|Γ| ≤ |Γ|+ |Γ|+ ||-var;[] ||-var;[]
= |Γ|+ |Γ|+  ( )


.

Defining ̃ ( ) = ||1-var;[]+ ||1-var;[]  elementary Rieman-Stieljes in-
tegral estimates show that

|Γ| ≤ |·|∞;[] ||1-var;[] ≤ ̃ ( )
2
.

It only remains to apply lemma 6.2 and the proof is finished.

In the following section we shall use the Young—Lóeve estimate to define

the Young-integral for  ∈ -var and  ∈ -var .

Remark 6.6 We could have assumed  ∈ -var right away in proposition

6.4. Indeed, as long as  ∈ 1-var , Γ remains a well-defined RS integral

and the only change in the argument is to use

̃ ( ) := ||1-var;[] + ||-var;[] =⇒ |Γ| ≤ ̃ ( )
1+1

in the final lines of the proof.

6.2 Young integrals

The Young—Lóeve estimate clearly imply that

( ) 7→
Z ·

0



is bilinear (as a function of smooth R- resp. 
¡
RR

¢
-valued paths  )

and continuous in the respective -and -variation norm. The (unique, con-

tinuous) extension of this map to

 ∈ 0-var
¡
[0  ] R

¢
  ∈ 0-var

¡
[0  ]  

¡
RR

¢¢
is immediate from general principles and by squeezing   to  +   + 

so that 1 (+ ) + 1 ( + )  1 one covers genuine -variation and -

variation regularity, i.e.  ∈ -var and  ∈ -var . That said, we shall

proceed in a slight different way which will motivate our later definition of

rough differential equation. To this end, recall that any  ∈ -var
¡
[0  ] R

¢
can be approximated "uniformly with uniform variation bounds" by bounded

variation paths , i.e.

∞;[0 ] (
 )→ 0 and sup


||-var;[0 ] ∞

(For instance, piecewise geodesic=linear approximations will do.)
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Definition 6.7 (Young integral) Given  ∈ -var
¡
[0  ] R

¢
  ∈ -var

¡
[0  ]  

¡
RR

¢¢
we say that  ∈  ([0  ] R) is a (indefinite) Young-integral of  against 
if there exists a sequence ( ) ⊂ 1-var

¡
[0  ] R

¢×1-var ¡[0  ]   ¡RR¢¢
which converges uniformly with uniform variation bounds in the sense

| − |∞;[0 ] → 0 and sup

||-var;[0 ] ∞

| − |∞;[0 ] → 0 and sup

||-var;[0 ] ∞

and Z ·

0

 →  uniformly on [0  ] as →∞.

If  is unique we write
R ·
0
 instead of  and set

R 

 :=

R 
0
−R 

0
.

Theorem 6.8 (Young-Lóeve) Given  ∈ -var
¡
[0  ] R

¢
  ∈ -var

¡
[0  ]  

¡
RR

¢¢
with  = 1+1  1, there exists a unique (indefinite) Young integral of

 against , denoted by
R ·
0
 and the Young—Lóeve estimate

∀0 ≤  ≤  ≤  :

¯̄̄̄Z 



− 

¯̄̄̄
≤ 1

1− 21− ||-var;[] ||-var;[]

remains valid. Moreover, the indefinite Young-integral has finite -variation

and ¯̄̄̄Z ·

0



¯̄̄̄
-var;[]

≤  ||-var;[]
³
||-var;[] + ||∞;[]

´
≤ 2 ||-var;[]

³
||-var;[0 ] + |0|

´
(6.7)

where  =  ( ).

Proof. Let us first argue that any limit point  of
R ·
0
 (in uniform

topology on [0  ]) satisfies the Young—Lóeve estimate. For every   0

small enough so that

 := 1 (+ ) + 1 ( + )  1

the Young-Loéve estimate of proposition 6.4 gives¯̄̄̄Z 



 

 −  




¯̄̄̄
≤ 1

1− 21− |
|(+)-var;[] ||(+)-var;[]  (6.8)

By Corollary 5.31, the right-hand-side above can made arbitrarily small,

uniformly in , provided − is small enough; this readily leads to equicon-
tinuity of the indefinite RS-integrals½Z ·

0

 

 :  ∈ N

¾




120 6. Young Integration

Boundedness is clear and so, by Arzela-Ascoli, we have uniform convergence

along a subsequence to some  ∈  ([0  ] R) which proves existence of
the Young integral. Using the first part of corollary 5.31, we let  tend to

∞ in (6.8) and obtain

| − | ≤ 1

1− 21− ||(+)-var;[] ||(+)-var;[] 

Then, an application of lemma 5.14 justifies the passage & 0 which shows

validity of the Young—Lóeve estimate,

| − | ≤ 1

1− 21− ||-var;[] ||-var;[]  (6.9)

To prove uniqueness we use the control  ( ) := ||1
-var;[]

||1
-var;[]

(cf. exercise 1.10). Assume  ̃ are two limit points of
R ·
0
 so that

0 = ̃0 = 0 Fix a dissection () of [0  ] and observe

| − ̃ | ≤
X


¯̄
+1 − +1 + +1 − ̃+1

¯̄
≤ 2

1− 21−
X


 ( +1)


≤ 2

1− 21−  (0  )max  ( +1)
−1



Applying this to a sequence of dissections with mesh (=max |+1 − |)
tending to zero we see that | − ̃ | can be made arbitrarly small and
hence must be zero. This shows  = ̃ and, as  was arbitrary,  ≡ ̃.

At last, set  = 1
¡
1− 21−¢ and observe that (6.9) implies

|| ≤ 21−1
³
 ( )


+ ||∞;[] ||-var;[]

´


We observe that the right-hand-side above is super-additive in ( ) and

so ¯̄̄̄Z ·

0



¯̄̄̄
-var;[]

≤ 21−1
³
 ( )


+ ||∞;[] ||-var;[]

´
and the proof is easily finished.

Exercise 6.9 The purpose of this exercise is to show that our definition

6.7 is consistent with the "usual" definition of Young integrals as limits

of Riemann-Stieltjes sums. To this end, let  ∈ -var ([0  ] R)   ∈
-var ([0  ] R) with  := 1+ 1  1 and let  = (


 ) be a sequence

of dissections of [0  ] with || → 0 and  some points in
£
  


+1

¤


Show that
P||−1

=0  ( )+1 converges when  tends to ∞ to a limit 

independent of the choice of  and the sequence (). Identify  as Young

integral
R 
0
 in the sense of definition 6.7.
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Exercise 6.10 Let  = ()=1 be a collection of maps from R to R

and assume  ∈ -var
¡
[0  ] R

¢
. Show thatZ ·

0

 () 

is a well-defined Young integral provided , viewed as map R → 
¡
RR

¢
is ( − 1)-Hölder provided

  

and  − 1 ∈ (0 1] to avoid trivialities.(We shall encounter this type of
regularity assumption in our forthcoming discussion of rough integrals).

Solution 6.11 The path  (·) has finite  =  ( − 1)-variation and we
see that the Young integral is well-defined since

1


+
1


=




 1

6.3 Continuity properties of Young integrals

Proposition 6.12 Given  ∈ -var
¡
[0  ] R

¢
  ∈ -var

¡
[0  ]  

¡
RR

¢¢
with 1+ 1  1 the map

( ) 7→
Z ·

0



from -var
¡
[0  ] R

¢ × -var
¡
[0  ]  

¡
RR

¢¢ → -var ([0  ] R)
equipped with the respective   -variation norms is a bilinear and continu-

ous map. As a consequence, it is Lipschitz continuous on bounded sets and

Fréchet smooth.

Proof. Bi-linearity of ( ) 7→ R
 follows from bilinearity of the ap-

proximations in the definition and uniqueness; continuity in the sense of

bilinear maps is immediate from Young—Lóeve and Fréchet smoothness for

bilinear, continuous maps is trivial.

The following property deals with continuity with respect to "uniform

convergence with uniform bounds".

Proposition 6.13 Assume given   ∈ -var
¡
[0  ] R

¢
   ∈ -var

¡
[0  ]  

¡
RR

¢¢
such that

lim
→∞

| − |∞;[0 ] = 0 and sup

||-var;[0 ] ∞

lim
→∞

| − |∞;[0 ] = 0 and sup

||-var;[0 ] ∞
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and 1+ 1  1. Then

lim
→∞

¯̄̄̄Z ·

0

 −
Z ·

0



¯̄̄̄
∞;[0 ]

= 0 and sup


¯̄̄̄Z ·

0


¯̄̄̄
-var;[0 ]

∞

Proof. Increase   by  small enough so that 1 (+ )+1 ( + )  1. By

interpolation,  →  in (+ )-variation and similarly  →  in ( + )-

variation. By the preceding proposition,
R ·
0
 converges to

R ·
0
 in

(+ )-variation and hence in ∞-norm. The uniform -variation bounds

on
R ·
0
 follow immediately from the estimate in the Young—Lóeve

Theorem.

Exercise 6.14 Using continuity properties, establish an integration-by-parts

formula for Young integrals.

Exercise 6.15 Fix   ≥ 1 with 1 + 1  1   0 and fix  ∈
-var

¡
[0  ] R

¢
 Define  =

n
 ∈ -var

¡
[0  ]  

¡
RR

¢¢
 ||-var;[0 ] ≤ 

o


Prove that the map

 → -var ([0  ] R)

 7→
Z ·

0



is Lipschitz using the -var -metric. Prove it is uniformly continuous with

respect to 0−-metric with 0  . Prove also it is uniformly continuous

with respect to ∞-metric.
[Hint: Lipschitz with respect to -var -metric is just the Young—Lóeve esti-

mate. For 0   use the first case plus interpolation.]

6.4 Young—Lóeve-Towghi estimates and 2D Young
integrals

Young integrals extend naturally to higher dimensions but only the 2D

case will be relevant to us. 2D statement which extend line by line from

the 1D statements will not be discussed in detail. In particular, we shall

use the Riemann-Stieljes integral
R
[0 ]2

 of a continuous function  ∈

³
[0  ]

2
 
¡
RR

¢´
with respect to a bounded variation function  ∈

1-var
³
[0  ]

2
R

´
 We will also show that the estimate¯̄̄̄Z





¯̄̄̄
≤ ||∞; ||1-var; 

is valid for any rectangle  ⊂ [0  ]2. We first need to extend lemma 6.2 to
its two dimensional version.
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Lemma 6.16 Let Γ : {0 ≤    ≤ }2 → R be such that 1

(i) for some control ̂

lim
→0

sup
rectangle  s.t ̂()≤

|Γ ()|


= 0 (6.10)

(ii) for some control  and some real   1 for all rectangles  being the

union of two (essentially) disjoint rectangles 1 2

|Γ ()| ≤ |Γ (1)|+ |Γ (2)|+  ()

 (6.11)

Then, for all rectangles  ∈ [0  ]2 

|Γ ()| ≤ 

1− 21−  ()



Proof. The proof follows exactly the same line as the one dimensional

proof.

We now proceed as in the 1D case and prove uniform Young—Lóeve type

estimates, for integrand and driving signal which are assumed to be of

bounded variation.

Proposition 6.17 Let

 ∈ 1-var
³
[0  ]

2
R

´
  ∈ 1-var

³
[0  ]

2
 
¡
RR

¢´
Given  = [ ]× [ ] ⊂ [0  ]2, define

Γ () =

Z




µ
 

 

¶


Then, for all such rectangles  ⊂ [0  ]
2
and   ≥ 1 such that  :=

−1 + −1  1,

|Γ ()| ≤
µ

1

1− 21−
¶2
||-var; ||-var; 

Proof. Define the control  () = ||
1


− ||
1


−  We consider a

generic rectangle  = [ ]× [ ] cut into two non-intersecting rectangles,
say 1 = [ ] × [ ] and 2 = [ ] × [ ]  Observe that from the

1We identify once again {0 ≤    ≤ }2 with rectanges contained in [0  ]2 
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definition of Γ (), we see that

Γ () =

Z




µ
 

 

¶


=

Z
1



µ
 

 

¶
+

Z
2



µ
 

 

¶


= Γ (1) + Γ (2) +

Z
2

½


µ
 

 

¶
− 

µ
 

 

¶¾


= Γ (1) + Γ (2) +

Z
2



µ
 

 

¶


= Γ (1) + Γ (2) +

Z
[]



µ
 

 

¶


µ


µ
 



¶¶


But from exercise 5.60, the one dimensional -variation of 

µ
 



¶
over

[ ] is bounded by ||-var;[][] and the one dimensional -variation of


µ
 



¶
over [ ] is bounded by ||-var;[][]. Hence, using Young—

Lóeve 1 dimensional estimates, we obtain that

|Γ ()| ≤ |Γ (1)|+ |Γ (2)|+ 1

1− 21−  ()



Defining ̃ to be a 2D control dominating the 1-variation of  and  we

see that

|Γ ()| ≤ ̃ ()
2


It only remains to apply lemma 6.16.

With the notation of the above theorem, we see thatZ


 =

Z




µ
 

 

¶
+

Z




µ


 

¶
+

Z




µ
 



¶
+

µ




¶
 () 

We see that the second and third integral will be well defined when 

and  are of finite  and  variation if their 1D projections 

µ




¶
and



µ




¶
are of finite (1D) -variation. This is actually satisfied if 

µ
0



¶
and 

µ


0

¶
are of finite (1D) -variation and  is of finite (2D) -variation.

To simplify, we therefore restrict ourselves to paths  such that 

µ
0



¶
=



µ


0

¶
= 0 In particular, we define 

−
00

³
[0  ]

2
 
¡
RR

¢´
the set

of functions  such that 0.= 0 = 0
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Definition 6.18 (Young integral) Given  ∈ -var
³
[0  ]

2
R

´
  ∈


-var
00

³
[0  ]

2
 
¡
RR

¢´
we say that  ∈ 

³
[0  ]

2
R

´
is a (indef-

inite) Young-integral of  against  if there exists a sequence ( ) ⊂
1-var

³
[0  ]

2
R

´
×1-var00

³
[0  ]

2
 
¡
RR

¢´
which converges uniformly

with uniform variation bounds in the sense

lim
→∞

∞;[0 ]2 (
 ) = 0 and sup


||-var;[0 ]2 ∞

lim
→∞

∞;[0 ]2 (
 ) = 0 and sup


||-var;[0 ]2 ∞

and

lim
→∞

Z
[0]×[0]

 =  uniformly on ( ) ∈ [0  ]2 as →∞.

If  is unique we write
R ·
0
 instead of .

Following the same lines as the 1-dimensional case (which involves gen-

eralising a few analysis and -variation lemmas from 1D to 2D), we obtain

Theorem 6.19 (Young-Lóeve-Towghi) Given  ∈ -var
³
[0  ]

2
R

´
  ∈


-var
00

³
[0  ]

2
 
¡
RR

¢´
with  = 1 + 1  1 there exists a unique

(indefinite) Young integral of  against , denoted by
R ·
0
 and we have¯̄̄̄Z





µ


· 


·
¶


¯̄̄̄
≤
µ

1

1− 21−
¶2
||-var; ||-var; (6.12)

for all rectangles  = [ ]× [ ] ⊂ [0  ]2.
One can also check, just as in the 1D case, that ( ) 7→ R ·

0
 is a

bilinear continuous map from

-var
³
[0  ]

2
R

´
× 

-var
00

³
[0  ]

2
 
¡
RR

¢´→ -var
³
[0  ]

2
R

´
(and hence Lipschitz on bounded sets and Fréchet-smooth).

6.5 Comments

Young integration goes back to [172]. The higher-dimensional was partially

discussed in [172] and then in [165] in the form which is relevant to us.
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7

Free Nilpotent Groups

Motivated by simple higher order Euler schemes for ODEs we give a sys-

tematic and self-contained account on the "algebra of iterated integrals".

Tensor algebras play a natural role. However, thanks to algebraic relations

between iterated integrals the "correct" state-space will be seen to be a

(so-called) free nilpotent Lie group, faithfully represented as a subset of

the tensor algebra. It becomes a metric (and even geodesic) space under

the so-called Carnot-Caratheodory metric and will later serve as natural

state-space for geometric rough paths.

7.1 Motivation: iterated integrals and higher order
Euler schemes

Let  be an R-valued continuous path of bounded variation and define the
 iterated integrals of the path segment |[] as

g;1···  :=
Z 



Z 





Z 2



11 


 (7.1)

The collection of all such iterated integrals,

g =
¡
g;1···  : 1 ≤  ≤  ; 1      ∈ {1     }

¢
(7.2)

is called the step- signature of the path segment |[] and is denoted
by  (). Postponing (semi-obvious) algebraic formalities to the next

section, let us consider (higher order) Euler schemes for the ODE

 =  ()  =

X
=1

 () 


with  ∈ 
¡
R 

¡
RR

¢¢
and recall that ( ) (0 0;) stands for any

(not necessarily unique) solution started at 0, possibly only defined up to

some explosion time. Let  denote the identity function on R and recall
the identification of a vector field  =

¡
 1  

¢
: R → R with the

first order differential operator

X
=1

  ()



.
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Granted sufficient regularity of  , a simple Taylor expansion suggests, at

least for 0  −   1, a step- approximation of the form

 ≈  +

X
=1

 ()



+   

+
X

1
∈{1}

1 · · ·  ()
Z 



Z 





Z 2



11 





Having made plain the importance of iterated integrals in higher order

Euler schemes, let us observe the presence of non-linear constraints between

the iterated integrals (7.1). This happens already at the "second" level of

iterated integrals.

Example 7.1 Let  ∈ 1-var0

¡
[0  ] R

¢
and write x = 2 () for its step-

2 lift.

(i) Using integration-by-parts it readily follows that, for all   ∈ {1     }

x
2;
 + x

2;
 =

Z 





 +

Z 





 = 


 (7.3)

(ii) As a trivial consequence of x1 :=  −  we have

x
1;
 + x

1;
 = x

1;
  = 1      (7.4)

More interestingly, an elementary computation1 gives

x2; = x
2;
 + x

2;
 + x

1;
x

1;
   = 1      (7.5)

This (matrix) equation can be expressed in terms of equations of the respec-

tive symmetric and anti-symmetric parts. Adding the equation obtained by

interchanging   we see, using (7.3)



 = 


 + 


 + 


 + 







which just (re-)expresses the additivity of vector-increments (7.4). On the

other hand, subtracting the equation obtained by interchanging  , followed

by multiplication with 12, yields


 = 


 +


 +

1

2

³



 − 







´
(7.6)

1 ... to be compared with the forthcoming theorem 7.11 ...
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FIGURE 7.1. We plot (·  

· ). The triangle connects the points: (


 


) on the

lower left side, ( 

) in the middle and (


 


) on the right side. Note that

the respective area increments (signed area between the path and a linear chord)

are not additive. In fact, 
 = 


 +


 +∆


 where ∆


 is the area of

the triangle as indicated in the figure.

where



 :=

1

2

³
x
2;
 − x2;

´
=
1

2

µZ 





 −

Z 







¶

has an appealing geometric interpretation as seen in the corresponding fig-

ure.

Let us draw some first conclusions.

(i) The naive state space R+
2+ for iterated integrals of form (7.2)

is too big. For instance, there is no need to store the symmetric part

of x2.

(ii) Any analysis which is based on higher order Euler approximations

over finer and finer intervals, e.g. starting with some interval [ ]

then [ ]  [ ] etc, must acknowledge the non-linear nature of "higher

order increments" as seen in (7.5) and (7.6).
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7.2 Step- signatures and truncated tensor
algebras

7.2.1 Definition of 

We have seen that expressions of iterated integrals of typeZ
1

11 


  ∈ 1-var

¡
[0  ] R

¢


appear naturally when considering Euler schemes. A first order Euler scheme

over the interval [ ] involvesµZ




¶
=1

↔
X
=1

µZ




¶
 ∈ R

where ()=1 denotes the canoncial basis of R
. For a second order

scheme one needs additionallyµZ






¶
=1

↔
X

=1

µZ






¶
( ⊗ ) ∈ R⊗R

where R⊗R with basis ( ⊗ )=1 can be viewed as the set of real-

valued  ×  matrices with canoncial basis2. The (obvious) generalization

to  ≥ 2 readsµZ
1

11 



¶
1

↔
X

1

µZ
1

11 



¶
(1 ⊗ · · ·⊗ ) (7.7)

where (1 ⊗ · · ·⊗ ), 1      ∈ {1     }, is the canonical basis of¡
R
¢⊗

, the space of -tensors over R. Life is easier without many in-
dices and we shall write the right-hand-side of (7.7) simply asZ

1

1 ⊗ ⊗  ∈
¡
R
¢⊗



We note that, as vector spaces
¡
R
¢⊗ ∼= R , and it is a convenient con-

vention to set ¡
R
¢⊗0

:= R.

To any R-valued path  of finite length defined on some interval [ ], we

may associate the collection of its iterated integrals. We have

2 ⊗  corresponds to the matrix with entry 1 in the  line,  column and 0

everywhere else.
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Definition 7.2 The step- signature of  ∈ 1-var
¡
[ ] R

¢
is given by

 () ≡
µ
1

Z


    

Z
1

1 ⊗ ⊗ 

¶
∈ ⊕=0

¡
R
¢⊗



The path  7→  () is called the (step-) lift of .

Remark 7.3 This notation is further justified by Chen’s theorem below:

the step- lift of some  ∈ 1-var
¡
[0  ] R

¢
,  7→  () takes values

in a group so that  () is the natural increment of this path, i.e. the

product of ( ())
−1
with  ().

Given two vectors   ∈ R with coordinates ¡¢
=1

and
¡

¢
=1

one can construct the matrix
¡


¢
=1

and hence the 2-tensor

⊗  :=

X
=1

¡


¢
 ⊗  ∈ R ⊗R

(In fact, this is the linear extension of the map ⊗ : R × R → R ⊗ R
which maps the pair ( ) to the ( )


basis element of R ⊗ R, for

which we already used the suggestive notation  ⊗  .) More generally,

given

 =
X

1

11 ⊗ · · ·⊗  ∈
¡
R
¢⊗

(7.8)

then, with similar notation for for  ∈ ¡R¢⊗, we agree that ⊗ is defined
⊗  =

X
111 ⊗ · · ·⊗  ⊗ 1 ⊗     (7.9)

∈ ¡
R
¢⊗ ⊗ ¡R¢⊗ ∼= ¡R¢⊗(+)

We now define


¡
R
¢
:= ⊕=0

¡
R
¢⊗

 (7.10)

and write  : 

¡
R
¢ → ¡

R
¢⊗

for the projection to the  tensor

level. We shall also use the projection

0 : 

¡
R
¢→  

¡
R
¢
, for  ≤  , (7.11)

which maps  =
¡
0     

¢ ∈ 
¡
R
¢
into

¡
0     

¢ ∈ 
¡
R
¢
.

Here,  =  () ∈
¡
R
¢⊗

is sometimes refered to as the  level of .

Given   ∈ 
¡
R
¢
, one extends (7.9) to 

¡
R
¢
by setting

 ⊗  =
X

+≤
≥0

 ⊗  ⇔ ∀ ∈ {0     } :  ( ⊗ ) =

X
=0

− ⊗ 
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The vector space 
¡
R
¢
becomes an (associative) algebra under ⊗. More

precisely, we have

Proposition 7.4 The space
¡


¡
R
¢
+ ;⊗¢ is an associative algebra

with neutral element

1 := (1 0     0) = 1 + 0 + · · ·+ 0 ∈ 
¡
R
¢

(The unit element for + is 0 = (0 0     0), of course.) We will call


¡
R
¢
the truncated tensor algebra of level  .

Proof. Straight-forward and left to the reader.

Remark 7.5 We shall see below that the set of all  ∈ 
¡
R
¢
with

0 () = 1 forms a (Lie) group under ⊗ with unit element 1. When  = 1

this group is isomorphic to
¡
R+

¢
with the usual unit element 0 and this

persuades us to set

 := (1 0     0) 

Similar to the algebra of square-matrices, the algebra product is not

commutative (unless  = 1 or  = 1), indeedµ
1

0

¶
⊗
µ
1

1

¶
=

µ
1 1

0 0

¶
6=
µ
1

1

¶
⊗
µ
1

0

¶
=

µ
1 1

1 0

¶


Let us now define a norm on 
¡
R
¢
:= ⊕=0

¡
R
¢⊗

. To this end, we

equip each tensor-level
¡
R
¢⊗

with Euclidean structure which amounts to

declaring the canoncial basis {1 ⊗ · · ·⊗  : 1      ∈ {1     }} to be
orthonormal so that for any  ∈ ¡R¢⊗ of form (7.8)

||(R)⊗ =
s X

1

|1 |2

and when no confusion is possible we shall simply write ||. Let us also
observe that for 0 ≤  ≤  ≤  ,

( ) ∈ ¡R¢⊗ × ¡R¢⊗−  |⊗ |
(R)⊗

= ||
(R)⊗

||
(R)⊗(−)

which is a compability relation between the tensor norms on the respective

tensor levels. Then for any  =
P

=0  () ∈ 
¡
R
¢
we set

|| (R) := max
=0

| ()|

which makes 
¡
R
¢
a Banach space (of finite dimension 1++2+ · · ·+

 ); again we shall write || if no confusion is possible. We remark that
there are other choices of norms on 

¡
R
¢
, of course all equivalent, but

this one will turn out to be convenient later on (cf. defintion of  later

on).
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Exercise 7.6 Consider the (infinite) tensor algebra ∞
¡
R
¢
:= ⊕∞=0

¡
R
¢⊗

.

Show that 
¡
R
¢
is the algebra obtained by factorization by the ideal©

 ∈ ∞
¡
R
¢
:  () = 0 for 0 ≤  ≤ 

ª
.

Exercise 7.7 Identify ∞
¡
R
¢ ≡ R h1     i with the algebra of poly-

nomial in  non-commutative indeterminants 1     . Conclude that 

¡
R
¢

can be viewed as algebra of polynomialw in  non-commutative indetermi-

nants for which 1     ≡ 0 whenever  ≥  .

7.2.2 Basic properties of 

Given  : [0  ] → R, continuous of bounded variation, and a fixed  ∈
[0  ) the path  ()· takes values in 

¡
R
¢ ∼= R1++···+ , as vector

spaces. Almost by definition, the path  () then satisifes an ODE on


¡
R
¢
driven by .

Proposition 7.8 Let  : [0  ] → R be a continuous path of bounded
variation. Then, for fixed  ∈ [0  ),½

 () =  () ⊗ 

 () = 1

Remark 7.9 If we write  (·) =P
=1 

 (·)  and define the (linear!) vec-
tor fields  : 


¡
R
¢→ 

¡
R
¢
by  7→  ⊗   ∈ {1     } this ODE

can be rewritten in the more familiar form

 () =

X
=1



³
 ()·

´


Proof. Let us look at level   ≥ 1, of  (),Z
1

1 ⊗ ⊗  =

Z 

=

ÃZ
1−1

1 ⊗ ⊗ −1

!
⊗ 

=

Z 

=

−1
³
 ()

´
⊗ 

Hence, we see that

 () = 1 +

Z 



 () ⊗ 

Proposition 7.8 tells us that  () satisfies an ordinary differential equa-

tion of the type discussed in Part I of this book. A number of interesting

properties of signature are then direct consequences of the corresponding

ODE statements. We first describe what happens under reparametrization.
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Proposition 7.10 Let  : [0  ] → R be a continuous path of bounded
variation,  : [0  ]→ [1 2] a non-decreasing surjection, and write 


 :=

() for the reparametrization of  under . Then, for all   ∈ [0  ] 

 ()()() = 
¡

¢




Proof. A consequence of proposition 3.10 and proposition 7.8.

Simple as it is, proposition 7.10 has an appealing interpretation. If []

denotes the equivalence class of some  ∈ 1-var
¡
[0  ] R

¢
obtained by

all possible reparametrizations then the signature-map

 ∈ 1-var
¡
[0  ] R

¢ 7→  ()0

is really a function of []. We now discuss the signature of the con-

catenation of two paths. Recall that, given  ∈ 1-var
¡
[0  ] R

¢
  ∈

1-var
¡
[ 2 ] R

¢
, we set

 t  ≡
½

 (·) on [0  ]
 (·)−  (0) +  ( ) on [ 2 ]

so that  t  ∈ 1-var
¡
[0 2 ] R

¢
. If  was defined on [0  ]  rather than

[ 2 ], one may prefer to reparametrize such that  t  too is defined

on [0  ]. Whatever parametrization one chooses, thanks to the previous

proposition the signature of the entire path  t  is intrinsically defined.

The following theorem says the signature of  t  is precisely the tensor

product of the respective signatures of  and .

Theorem 7.11 (Chen) Given  ∈ 1-var ¡[0  ] R¢   ∈ 1-var ¡[ 2 ] R¢ 
 ( t )02 =  ()0 ⊗  ()2 

Equivalently, given  ∈ 1-var
¡
[0  ] R

¢
and 0 ≤      ≤  we have

 () =  () ⊗  () 

Proof. We prove it by induction on  . For  = 0 it just reads 1 = 11.

Assume it is true for  and all      ∈ [0  ], and let us prove it is
true for  + 1. First observe, in  (+1)

¡
R
¢
,

+1 () = 1 +

Z 



+1 () ⊗  = 1 +

Z 



 () ⊗ 

where the second equality follows from truncation beyond level ( + 1).

For similar reasons,

 () ⊗
Z 



 () ⊗  = +1 () ⊗
Z 



 () ⊗ 
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Hence, using the induction hypothesis to split up  () when    

  ,

+1 () = 1 +

Z 



 () ⊗  +

Z 



 () ⊗  () ⊗ 

= +1 () + +1 () ⊗
µZ 



 () ⊗ 

¶
= +1 () ⊗

³
1 +

³
+1 () − 1

´´
= +1 () ⊗ +1 () 

We now show that the inverse (with respect to ⊗) of the signature of a
path is precisely the signature of that path with time reversed.

Proposition 7.12 Let  ∈ 1-var
¡
[0  ] R

¢
 Then, if ←− denotes the

path  :  ∈ [0  ] 7→ − ∈ R

 ()0 ⊗  (
←− )0 =  (

←− )0 ⊗  ()0 = 1

Proof. Using the fact the  7→  ()0 is the solution to an ODE driven by

 (proposition 7.8) this follows immediately from the corresponding results

on ODEs with time-reversed driving signal (proposition 3.13).

Definition 7.13 For  ∈ R, we define the dilation map

 : 

¡
R
¢→ 

¡
R
¢

such that  ( ()) =  () 

Exercise 7.14 Check that if  is a real,  : [0 1] → R is a continuous
path of bounded variation,  the path  scaled by  then

 () =  ()

Proposition 7.15 Let () ⊂ 1-var
¡
[0 1] R

¢
with sup ||1-var;[01] 

∞ uniformly convergent to some  ∈ 1-var
¡
[0 1] R

¢
 Then,  ()0·

converges uniformly to  ()0·. In particular,

lim
→∞

 ()01 =  ()01 

Proof. Using the fact the  7→  ()0 is the solution to an ODE driven

by  (proposition 7.8) this follows immediately from the ODE results on

continuity of the solution map (cf. corollary 3.16).
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7.3 Lie algebra t
¡
R
¢
and Lie Group 1 + t

¡
R
¢

The space
¡


¡
R
¢
+ ⊗¢ is an associative algebra. We introduce two

simple subspaces (linear and affine-linear, respectively) which will guide us

towards the (crucial) free nilpotent Lie algebra and group and their Lie

algebra. Let us set

t
¡
R
¢ ≡ © ∈ 

¡
R
¢
: 0 () = 0

ª
so that

1 + t
¡
R
¢
=
©
 ∈ 

¡
R
¢
: 0 () = 1

ª


7.3.1 The group 1 + t
¡
R
¢

We first show that elements in 1 + t
¡
R
¢
are invertible with respect to

the tensor product ⊗.

Lemma 7.16 Any  = 1 +  ∈ 1 + t ¡R¢ has an inverse with respect to
⊗ given by

−1 = (1 + )
−1
=

X
=0

(−1) ⊗

that is,  ⊗ −1 = −1 ⊗  = 1.

Proof. We have

(1 + )

X
=0

(−1)  =

+1X
=1

(−1)+1  +
X
=0

(−1) 

= +1 + 1

Now because we set to zero any elements in
¡
R
¢⊗

for    , we see that

+1 = 0

It is also obvious that if  and  are in 1 + t
¡
R
¢
 then  ⊗  ∈ 1 +

t
¡
R
¢
 Finally, 1+ t

¡
R
¢
is an affine-linear subspace of 

¡
R
¢
hence

a smooth manifold, trivially diffeomorphic to t
¡
R
¢ ∼= R+̇···+ . Noting

that the group operations ⊗−1 are smooth maps (in fact, polynomial when
written out in coordinates) we have

Proposition 7.17 The space 1 + t
¡
R
¢
is a Lie group3 with respect to

tensor-multiplication ⊗.

3Recall that a Lie group is by definition a group which is also a smooth manifold and

in which the group operation are smooth maps.
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Let us remark that the manifold topology of 1 + t
¡
R
¢
is, of course,

induced by the metric

 ( ) := | − | (R) = | − | = max
=1

| ( − )|  (7.12)

which arises from the norm on 
¡
R
¢ ⊃ 1 + t ¡R¢. We end this sub-

section with a simple observation.

Proposition 7.18 Assume   ⊂ 1+ t
¡
R
¢
 Then, lim→∞ | − | =

0 if and only lim→∞
¯̄
−1 ⊗  − 1

¯̄
= 0.

Proof. All group operations in the Lie group 1 + t
¡
R
¢
are continuous

in the manifold topology of 1 + t
¡
R
¢
. In particular,

 →  ⇔ −1 → −1 ⇔ −1 ⊗  → −1 ⊗  = 1

and we conclude with the remark that, as →∞,

 →  ⇔ | − |→ 0 and −1 ⊗  → 1⇔
¯̄
−1 ⊗  − 1

¯̄
→ 0

7.3.2 The Lie Algebra t
¡
R
¢
and the exponential map

The vector space
¡
t
¡
R
¢
+ 

¢
becomes itself an algebra under ⊗. As in

every algebra, the commutator, in our case

( ) 7→ [ ] :=  ⊗ − ⊗  ∈ t ¡R¢
for   ∈ t ¡R¢, defines a bilinear map which is easily seen to be anti-
commutative, i.e.

[ ] = − [ ]  for all   ∈ t ¡R¢
and to satisfy the Jacobi identity for all    ∈ t ¡R¢; that is,

[ [ ]] + [ [ ]] + [ [ ]] = 0 for all    ∈ t ¡R¢ 
Recalling that a vector space V =(V+ ) equipped with a bilinear, anti-
commutative map [· ·] : V × V → V which satisfies the Jacobi identity is
called a Lie algebra (the map [· ·] is called the Lie bracket) this can be
summarized as

Proposition 7.19
¡
t
¡
R
¢
+  [· ·]¢ is a Lie algebra.

We now define the exponential and logarithm maps via their power series:
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Definition 7.20 The exponential map is defined by

exp : t
¡
R
¢→ 1 + t

¡
R
¢

 7→ 1 +

X
=1

⊗

!


while the logarithm map is defined by

log : 1 + t
¡
R
¢→ t

¡
R
¢

(1 + ) 7→
X
=1

(−1)+1 
⊗




The definitions of exp and log are precisely via their classical power

series with (i) usual powers replaced by "tensor-powers" and (ii) the infinite

sums replaced by
P

=1, thanks to working within the tensor algebra with

truncation beyond level  . A direct calculation shows that

exp (log (1 + )) =  log (exp ()) =  for all  ∈ t ¡R¢ .
We emphasize that log (·) is globally defined and there are no convergence
issues whatsoever.

Example 7.21 Fix  ∈ R ∼= 1
¡
t
¡
R
¢¢
. The step- signature of  (·)

given by  ∈ [0 1] 7→  computes to

 ()01 = 1 +

X
=1

Z
011

1 ⊗ ⊗ 

= 1 +

X
=1

⊗
Z
011

1

= 1 +

X
=1

⊗

!
= exp ()  (7.13)

7.3.3 The Campbell—Baker—Hausdorff formula

Recall that exp maps t
¡
R
¢
one-to-one and onto 1+ t

¡
R
¢
. In general,

 6= +, but one has

∀  ∈ t ¡R¢ :  = ++
1
2
[]+ 1

12
[[]]+ 1

12
[[]]+ (7.14)

where    stands for (a linear combination, with universal coefficients, of)

higher iterated brackets of  and . Thanks to truncation beyond tensor-

level  , all terms involving  or more iterated brackets must be zero.
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For  = 2, this formula is obtained by simple computation; indeed, given

 ∈ t2 ¡R¢ we have
exp ()⊗ exp () =

µ
1 + +

⊗2

2

¶
⊗
µ
1 + +

⊗2

2

¶
= 1 + + +

1

2
(⊗ − ⊗ ) +

(+ )
⊗2

2

= exp

µ
+ +

1

2
[ ]

¶


The same computation is possible, if tedious, for  = 3 and allows to

recover the next set of bracket terms as seen in (7.14). The general case,

however, requires a different argument and we shall give a proof based on

ordinary differential equations.

Given a linear operator  : t
¡
R
¢ 7→ t

¡
R
¢
define 0 as identity

map and set  =  ◦ · · · ◦  ( times). An arbitrary real-analytic func-

tion
P

≥0 
 gives rise to the operator

P
≥0 

 provided this series

converges in operator norm. Fix  ∈ t ¡R¢ and define the linear map
t
¡
R
¢ 3  7→ (ad )  ≡ [ ] ∈ t ¡R¢ 

Observe that (ad )
 ≡ 0 for   

Lemma 7.22 For all   ∈ t ¡R¢ we have
exp ()⊗ ⊗ exp (−) = ad 

where

ad  ≡
X
≥0

1

!
(ad )


=

X
=0

1

!
(ad)




As consequence we have the following operator identity on t
¡
R
¢


ad  = ad  ◦ ad 

where  = log (exp ()⊗ exp ()) 
Proof. Define the linear map  from t

¡
R
¢
into itself by

 :  7→ exp ( )⊗ ⊗ exp (− ) 
Obviously,  7→  () ∈ t

¡
R
¢
is differentiable and




 () = [  ()] = (ad)  () 

Noting 0 () =  the solution is given by  () =  ad  and we conclude

by setting  = 1. The last statement is immediately verified by considering

the image of some  ∈ t ¡R¢ under both ad  and ad  ◦ ad 
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Lemma 7.23 Assume  7→  ∈ t
¡
R
¢
is continuously differentiable.

Then

exp ()⊗ 


exp (−) = − (ad ) ̇

where ̇ =  and

 () =
 − 1


=
X
≥0

1

(+ 1)!


Proof. Set

 = exp ( )⊗ 


exp (− )

Then 0 = 1⊗ 0 = 0 Taking derivatives with respect to  a short compu-
tation shows that




 = [ ]− ̇

= (ad )  − ̇

where ̇ = . Keeping  fixed, the solution is given by

 =  ad 0 −  ( ad ) ̇

= − ( ad ) ̇

where  ( ) = (  − 1) , entire in  Setting  = 1 finishes the proof.

Theorem 7.24 (Campbell—Baker—Hausdorff) Let  ∈ t ¡R¢. Then
log [exp ()⊗ exp ()] = +

Z 1

0


¡
 ad  ◦ ad ¢   (7.15)

where

 () =
ln 

 − 1 =
X
≥0

(−1)
+ 1

( − 1) 

In particular, log (exp ()⊗ exp ()) equals a sum of iterated brackets of 

and , with universal4 coefficients.

Proof. First observe that the linear operator 
¡
 ad  ◦ ad ¢ is in fact

given by a finite series. Indeed,  ad  ◦ ad  minus the identity map is a
finite sum of  or less iterated applications of ad  ad  Consequently,

only the first  terms of the expansion of  are needed. We also observe

that both sides of (7.15) are polynomials of degree less or equal to  in the

4The coefficients are given by numerical constants, computable from . In particular,

they do not depend on  or  = dimR.
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coordinates
©
;1

ª

©
;1

ª
 1 ≤  ≤  . Therefore, it is sufficient

to check (7.15) for  in a neighbourhood of 0. For  ∈ [0 1] define

 = log
¡
  ⊗  

¢


Then

 ⊗ 


− =   ⊗  ⊗ 



¡
− ⊗ − 

¢
= −

which, combined with lemma 7.23, shows that

 =  (ad ) ̇ (7.16)

On the other hand, lemma 7.22 implies the operator identity

ad  = ln
¡
 ad  ◦ ad ¢

which certainly holds when  are small enough. Since (ln )() = 1,

at least near  = 1, the operator identity

 (ad ) = 
¡
ln
¡
 ad  ◦ ad ¢¢ = 

¡
 ad  ◦ ad ¢−1

holds for  are small enough. This allows to rewrite (7.16) as

̇ = 
¡
 ad  ◦ ad ¢ 

and by integration

1 = +

Z 1

0


¡
 ad  ◦ ad ¢  

which is exactly what we wanted to show.

Definition 7.25 Define g
¡
R
¢ ⊂ t ¡R¢ as the smallest sub-Lie algebra

of t
¡
R
¢
which contains 1

¡
t
¡
R
¢¢ ∼= R. That is,

g
¡
R
¢
= R ⊕ £RR¤⊕ · · ·⊕ £R £    £RR¤¤¤| {z }

(−1) brackets



We call it the free step- nilpotent Lie algebra.

Remark 7.26 (Universal Property of free Lie algebras). Let  denote the

(linear) inclusion map

 : 1
¡
t
¡
R
¢¢ ∼= R → g

¡
R
¢


Then g = g
¡
R
¢
has the property that for any (step- nilpotent) Lie

algeba a and any linear map

 : R → a
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there is a Lie algebra homomorphism  : g→ a so that  =  ◦ . Indeed,
we can take a basis of g where each element is of form

 = [1 
£
2 

£
  
£
−1  

¤¤¤
∈ £

R
£
   

£
RR

¤¤¤ ⊂ ¡R¢⊗   ≤ 

and one checks that


³X



´
:=
X

[ (1) 
£
 (2) 

£
  
£

¡
−1

¢
  ()

¤¤¤
has the desired properties.

Corollary 7.27 Let   ∈ g
¡
R
¢
. Then log

¡
 ⊗ 

¢ ∈ g
¡
R
¢
. In

other words, exp
¡
g
¡
R
¢¢
is a subgroup of

¡
1 + t

¡
R
¢
⊗ 1¢

Proof. An obvious corollary of the Campbell—Baker—Hausdorff formula.

7.4 Chow’s theorem

As was seen in example 7.21, the step- signature of the path  ∈ [0 1] 7→
  ∈ R, is precisely exp () ∈ 1 + t ¡R¢. A piecewise linear path is

just the concatenation of such paths (up to irrelevant reparametrization)

and by Chen’s theorem its step- signature is of form

1 ⊗ · · ·⊗  ∈ 1 + t ¡R¢
with 1      ∈ R. Conversely, any element of this form arises as step-
signature of a piecewise linear path, e.g. of  : [0] → R with −1 =
  = 1     and linear between integer times. (If one prefers, the trivial

reparametrization ̃ () =  () defines a piecewise linear path on [0 1]

with identical signature.)

Theorem 7.28 (Chow) Let  ∈ exp ¡g ¡R¢¢  Then, there exist 1      ∈
R such that

 = 1 ⊗ · · ·⊗  

Equivalently, there exists a piecewise linear path  : [0 1]→ R with signa-
ture  by which we mean  =  ()01.

Proof. It is enough to show this for log () in an open neighbourhood of

0 ∈ g ¡R¢ or, equivalently, for  in an open neighbourhood  of the

unit element 1 = exp (0). Indeed, given  ∈ exp ¡g ¡R¢¢, it is clear that
 ∈  for  small enough and if  denotes the (piecewise linear) path

whose signature equals , the scaled path  (·) , which is still piecewise
linear, has signature .
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With ( :  = 1     ) denoting the standard basis in R, let us define the
exp

¡
g
¡
R
¢¢
-valued paths

 = exp () 

An easy application of the Campbell—Baker—Hausdorff formula shows that5



 : = exp (−)⊗ exp (−)⊗ exp ()⊗ exp ()

= exp
¡
2 [ ] + 

¡
2
¢¢


For a multi-index  =  , we define by induction

 : = − ⊗ exp (−)⊗  ⊗ exp ()
= exp

³
|| + 

³
||
´´

where  =
£
1 

£
  
£
−1  

¤¤¤
for  = (1     ) ∈ {1     }. We

then define  := 1|| for  ≥ 0 and for   0,

 :=

(
−||1|| for || odd
−||1|| ⊗ exp

³
− ||1|| 

´
⊗ ||1|| ⊗ exp

³
||1|| 

´
for || even

so that

 = exp ( +  ())  (7.17)

We now choose a vector space basis ( :  = 1     ) of g

¡
R
¢
and

define

 (1     ) = log
³
 ⊗ · · ·⊗ 11

´
∈ g ¡R¢

and note that  (0) = log (1) = 0. We also observe that, thanks to (7.17),

 : R → g
¡
R
¢ ∼= R (as vector spaces) is continuously differentiable

near 0, with non-degenerate derivative at the origin6. This implies that the

(one-to-one) image under  of a small enough neighbourhood of 0 ∈ R,
say Ω, contains an open neighbourhood of 0 ∈ g ¡R¢. On the other hand,
unwrapping the very definition of , shows any element of form

exp (1     ) ∈ exp
¡
g
¡
R
¢¢
 (1     ) ∈ Ω

is the concatenation of piecewise linear path segments in basis directions

( :  = 1     ) and so the proof is finished.

Corollary 7.29 Assume () ⊂ exp
¡
g
¡
R
¢¢
converges to 1 ∈ exp ¡g ¡R¢¢

as →∞. Let  denote the piecewise linear path with signature  as con-
structed in the previous theorem. Then the length of  converges to 0 as

 →∞.

5Observe that the 

2

-term is an element in 


R
∩ R⊗3 ⊕ · · ·⊕ R⊗.

6The differential of log at 1 is the identity map and hence plays no role in the non-

degeneracy at 0.
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Proof. The proof of the previous theorem shows that for any element

 ∈ exp ¡g ¡R¢¢, close enough to 1, can be written as
 = exp (1     )

and the length of the associated (piecewise linear) path  =  is bounded

by


³
|1|1|1| + · · ·+ ||1||

´
where  counts the maximal number of concatenations involved in the



 ’s. Observe that  depends on the space g

¡
R
¢
but can be chosen

independent of . Since  → 1 is equivalent to (1     ) → 0, we the

obtain the desired continuity statement

length ()→ 0 as  → 1.

7.5 Free nilpotent groups

7.5.1 Definition and characterization

Let us consider

(i) the set of all step- signatures of continuous paths of finite length,


¡
R
¢
:=
n
 ()01 :  ∈ 1-var

¡
[0 1] R

¢o
;

(ii) the image of the sub-Lie algebra g
¡
R
¢ ⊂ t

¡
R
¢
, cf. definition

7.25, under the exponential map

exp
¡
g
¡
R
¢¢ ⊂ 1 + t ¡R¢ ;

(iii) the subgroup

exp

¡
R
¢®
of 1 + t

¡
R
¢
generated by elements in

exp
¡
R
¢
, i.e.


exp

¡
R
¢®
:=

(
O
=1

exp () :  ≥ 1 1      ∈ R
)


Theorem 7.30 (and definition) We have


¡
R
¢
= exp

¡
g
¡
R
¢¢
=

exp

¡
R
¢®

and 
¡
R
¢
is a (closed) sub-Lie group of

¡
1 + t

¡
R
¢
⊗¢, called the

free nilpotent group of step  over R.
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Proof. Step 1: We show exp
¡
g
¡
R
¢¢
=

exp

¡
R
¢®
. Obvioulsy, exp

¡
R
¢ ⊂

exp
¡
g
¡
R
¢¢
and it follows from the CBH formula that

exp
¡
R
¢® ⊂ exp ¡g ¡R¢¢ 

Conversely, Chow’s theorem tells us that any element of exp
¡
g
¡
R
¢¢
can

be expressed in the form 1 ⊗ · · ·⊗  with  ∈ R which plainly implies

exp
¡
g
¡
R
¢¢ ⊂ exp ¡R¢® .

Step 2: We show that

exp

¡
R
¢®
is a closed subset of 1 + t

¡
R
¢
. By the

previous step, it suffices to check that exp
¡
g
¡
R
¢¢
is closed. But this

follows from (obvious!) closedness of g
¡
R
¢ ⊂ t ¡R¢, exp ¡g ¡R¢¢ =

log−1
¡
g
¡
R
¢¢
and continuity of log.

Step 3: We show 
¡
R
¢
=

exp

¡
R
¢®
. The inclusion

exp
¡
R
¢® ⊂ 

¡
R
¢

is clear from example 7.21 and Chen’s theorem. Indeed, any 1 ⊗ · · ·⊗
is the step- signature of ̃ : [0 1] → R where ̃ () =  () and  :

[0] → R with −1 =   = 1     and linear between integer

times. (This was already pointed out in our discussion of theorem 7.28.)

By step 2, hexp (R)i = 
exp

¡
R
¢®
and so the other inclusion will follow

from


¡
R
¢ ⊂ hexp (R)i

To prove this inclusion, take  =  ()01 ∈ 
¡
R
¢
, for some  ∈

1-var
¡
[0 1] R

¢
We know that piecewise linear approximations () sat-

isfy sup ||1-var;[01] ∞ and converge to , uniformly on [0 1]. By Chen’s

theorem,  =  ()01 ∈

exp

¡
R
¢®
and from Proposition 7.15,  con-

verges to . This shows that  ∈ hexp (R)i which is what we wanted.
Step 4: We show that the set := 

¡
R
¢
= exp

¡
g
¡
R
¢¢
=

exp

¡
R
¢®

is a closed sub-Lie group of
¡
1 + t

¡
R
¢
⊗¢. Topological closedness was

already seen in step 2. It is also clear that  =

exp

¡
R
¢®
, is an abstract

subgroup of
¡
1 + t

¡
R
¢
⊗¢. To see that we have an actual sub-Lie group

we have to check that that  is a submanifold of 1+ t
¡
R
¢
. It is not hard

to deduce this from  (log ◦ exp) = Id, so that by the chain-rule,  exp is

one-to-one at every point. Alternatively, one can appeal to a standard the-

orem in Lie group theory7 which asserts that a closed abstract subgroup is

automatically a (closed) Lie subgroup.

7See e.g. Warner [170].
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Remark 7.31 (Manifold topology of 
¡
R
¢
) In equation (7.12) we

defined the metric  on 1 + t
¡
R
¢
, induced from the norm |·| (R). By

trivial restriction,  is also a metric on 
¡
R
¢
, given by

 ( ) = max
=1

| ( − )| 

which induces the (sub)manifold topology on 
¡
R
¢
.

7.5.2 Geodesic existence

Chow’s theorem tells us that for all elements  ∈ 
¡
R
¢
 there exists a

continuous path  of finite length such that  ()01 =  One may ask

for the shortest path (and its length) which has the correct signature. For

instance, given   0, we can ask for the shortest path with signature

exp

µµ
0

0

¶
+

µ
0 

− 0

¶¶
∈ 2

¡
R2
¢


or, equivalently, the shortest path in R2 which ends where it starts and
wipes out area . As is well-known from basic isoperimetry, the shortest

such path is given by a circle (with area ) with easily computed length

given by 2
√
. With this motivating example in mind we now state

Theorem 7.32 (Geodesic existence) For every  ∈ 
¡
R
¢
, the so-

called "Carnot-Caratheodory norm"8

kk := inf
½Z 1

0

|| :  ∈ 1-var
¡
[0 1] R

¢
and  ()01 = 

¾
is finite and achieved at some minimizing path ∗, i.e.

kk =
Z 1

0

|∗| and  (∗)01 = .

Moreover, this minimizer can (and will) be parametrized to be Lipschitz

(i.e. 1-Hölder) continuous and of constant speed. i.e. |̇∗ ()| ≡ (const) for
a.e.  ∈ [0 1].

Remark 7.33 By invariance of length and signatures under reparame-

trization, ∗ need not by defined on [0 1] but may defined for any interval
[ ] with non-empty interior.

8As usual, R is equipped with Euclidean structure so that
 1
0
|| is the length of

 ∈ 1-var

[0 1] R


, based on the Euclidean distance on R
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Proof. From Chow’s theorem, the inf is taken over a non-empty set so that

kk  ∞ By definition of inf, there is a sequence () with signature 

and we can assume (by reparametrization, cf. proposition 1.42) that each

 =  () has a.s. constant speed

|̇| ≡ ||1-Höl;[01] = 

where  is the length of the path · and  ↓ kk  Clearly,
sup

||1-Höl;[01] = sup


 ∞

and from Arzela—Ascoli, after relabeling the sequence,  converges uni-

formly to some (continuous) limit path ∗ By lemma 1.26,

|∗|1-Höl;[01] ≤ lim inf |
|1-Höl;[01] (7.18)

which shows in particular that ∗ itself is 1-Hölder, hence absolutely con-
tinuous, so that Z 1

0

|∗| =
Z 1

0

|̇∗ | 

From basic continuity properties of the signature (proposition 7.15)

 ≡  (
)01 →  (

∗)01

which shows that  (
∗)01 =  It remains to see that

kk =
Z 1

0

|̇∗ | 

First, kk ≤ R 1
0
|̇∗ |  is obvious from definition of kk  On the other hand,

using (7.18) we haveZ 1

0

|̇∗ |  = |∗|1-Höl;[01] ≤ lim inf  = kk

and the proof is finished.

7.5.3 Homogeneous norms

Let us now define the important concept of a homogenous norm on
¡
R
¢
.

Definition 7.34 A homogenous norm is a continuous map |||||| : 
¡
R
¢→

R+ which satisfies
(i) |||||| = 0 if and only if  equals the unit element 1 ∈ 

¡
R
¢
,

(ii) homogenity with respect to the dilation operator ,

|||||| = ||  |||||| for all  ∈ R
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A homogenous norm is said to be symmetric if |||||| =
¯̄¯̄¯̄
−1

¯̄¯̄¯̄
, and sub-

additive if ||| ⊗ ||| ≤ ||||||+ ||||||.

Remark 7.35 If |||||| is a non-symmetric homogenous norm, then  →
|||||| +

¯̄¯̄¯̄
−1

¯̄¯̄¯̄
is a symmetric homogenous norm. Sub-additivity is pre-

served under such symmetrization.

Proposition 7.36 Every symmetric sub-additive homogenous norms ||||||
leads to a genuine metric 

¡
R
¢
via

( ) 7→
¯̄¯̄¯̄
−1 ⊗ 

¯̄¯̄¯̄


Moreover, this metric is left-invariant9 .

Proof. We write  ( ) =
¯̄¯̄¯̄
−1 ⊗ 

¯̄¯̄¯̄
. Property (i) in definition 7.34

implies  ( ) = 0 iff  = . Sub-additivity of |||||| implies the triangle
inequality for  and symmetry |||||| implies  ( ) =  ( ). At last,

left-invariance of , i.e.

 ( ⊗   ⊗ ) =  ( ) 

follows from ( ⊗ )
−1 ⊗ ( ⊗ ) = −1 ⊗ .

Example 7.37 The simpliest example of a homogenous norm is the map

 ∈ 
¡
R
¢ 7→ |||||| = max

=1
| ()|1 

In general, it is neither symmetric, nor sub-additive.

Exercise 7.38 (i) Prove that ||||||1 :  ∈ 
¡
R
¢ 7→ ( !)

−1
max=1 (! | ()|)1

is a sub-additive homogenous norm.

(ii)Prove that ||||||2 :  ∈ 
¡
R
¢ 7→ max=1 | (log )|1 is a sym-

metric homogenous norm.

Exercise 7.39 Compute the minimal length of all paths with signature

exp

µµ




¶
+

µ
0 

− 0

¶¶


(This is precisely the Carnot-Caratheodory norm of (  ) ∈ H, the 3-
dimensional Heisenberg group.) Check that this givesp

2 + 2 when  = 0

2
p
 || when  =  = 0

(See [151] for instance)

9 ... but in general not right-invariant. A right-invariant metric could be defined by ⊗ −1
.
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7.5.4 Carnot-Caratheodory metric

We now check that the Carnot-Caratheodory norm k·k, which we intro-
duced in theorem 7.32 defines a homogenous norm in the sense of definition

7.34.

The geodesic existence result came with a map, the Carnot-Caratheodory

norm, from 
¡
R
¢→ [0∞). In conjunction with the group structure of


¡
R
¢
, it is only a small step to define a genuine metric on 

¡
R
¢


Proposition 7.40 Let   ∈ 
¡
R
¢
. We have

(i) kk = 0 if and only if  = 1, the unit element in 
¡
R
¢
;

(ii) homogenity kk = || kk for all  ∈ R;
(iii) symmetry kk =

°°−1°°;
(iv) sub-additivity k ⊗ k ≤ kk+ kk;
(v) continuity:  7→ kk is continuous.
Proof. Notation: for  ∈  let ∗ = ∗ denote an arbitrary minimizer from
the geodesic existence theorem.

(i) if kk = 0 , ∗ has almost everywhere zero derivative, hence  =


¡
∗
¢
01
= 1 If  = 1 it is obvious that kk = 0.

(ii) The case  = 0 is easy, so we assume  6= 0. The path ∗ satisfies


¡
∗

¢
01

= . Hence kk ≤ length
¡
∗

¢
= || × length

¡
∗
¢
=

|| kk. The opposite inequality follows from replacing  by 1 and  by

.

(iii) Using the fact that 

³←−
∗
´
01
= −1 we obtain°°−1°° ≤ length³←−∗´ = length ¡∗¢ = kk .

The opposite inequality follows from replacing  by −1.
(iv) If ∗ 

∗
 denote the resp. geodesics then, from Chen’s theorem,

 ⊗  = 
¡
∗

¢
01

where ∗ is the (Lipschitz continuous) concatenation of 
∗
 and ∗ with

obvious length kk+kk. Hence, k ⊗ k must be less than or equal to the
length of ∗.
(v) Consider a sequence  such that | − | →→∞ 0. (Here |·| denotes
a norm on the tensor algebra which induces the "original" topology on


¡
R
¢
.) By continuity of the group operations ⊗ and (·)−1, all of which

are polynomial in the coordinates, −1 ⊗  → 1 is an obvious consequence.

From sub-additivity,

|kk− kk| ≤
°°−1 ⊗ 

°°
and since

°°−1 ⊗ 
°° is dominated by the length of any path with correct

signature (namely −1 ⊗ ) it follows from corollary 7.29 that°°−1 ⊗ 
°°→ 0.
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As a consequence, |kk− kk|→ 0 which implies continuity.

Definition 7.41 The Carnot-Carathedory norm on 
¡
R
¢
induces (via

proposition 7.36) a genuine (left-invariant, continuous10) metric  on 
¡
R
¢
,

called Carnot-Carathedory metric.

The space
¡


¡
R
¢
 
¢
is not only a metric but a geodesic space (in

the sense of definition 5.19). To this end recall that, given  ∈ 
¡
R
¢
,

theorem 7.32 provides us with an associated Lipschitz path ∗ : [0 1] →
R of minimal length11 equal to kk such that  ∈ [0 1] 7→  (

∗)0 ∈


¡
R
¢
connects the unit element in 

¡
R
¢
with .

Proposition 7.42 
¡
R
¢
equipped with Carnot metric  is a geodesic

space. Given  ∈ 
¡
R
¢
, a connecting geodesic is given by

 ∈ [0 1] 7→ Υ :=  ⊗  (
∗)0

where ∗ is the geodesic associated to −1 ⊗ 

Proof. Obviously, Υ is continuous and Υ0 =  Υ1 = . For any    in

[0 1] 

 (ΥΥ) : =
°°° (∗)°°°

≤
Z 



|∗| (7.19)

= (− )

Z 1

0

|∗|

= (− )
°°−1 ⊗ 

°° = |− |  ( ) 
In fact, the inequality can’t be strict; there would be a strict inequality in

 ( ) ≤  (Υ0Υ) +  (ΥΥ) +  (ΥΥ1)

≤ (||+ |− |+ |1− |)  ( )
=  ( )

which is not possible. We conclude that equality holds in (7.19) which shows

that Υ is the desired connecting geodesic.

Remark 7.43 (Sub-Riemannian structure of 
¡
R
¢
) The geodesic

constructed above satisfies the differential equation

Υ =

X
=1

 (Υ) 


10By proposition 7.40, part (v).
11By reparametrization, the speed |̇∗ | may be taken constant for a.e.  ∈ [0 1].
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where the  () =  ⊗ ,  = 1      are easily seen to be left-invariant

vector field on 
¡
R
¢
. In fact,

Lie [1     ] | = T
¡
R
¢

for all  ∈ 
¡
R
¢
where Lie[   ] stands for the usual Lie bracket of

vector fields and T
¡
R
¢
denotes the tangent space to 

¡
R
¢
at the

point . Chow’s theorem can now be understood as the statement that any

two points in 
¡
R
¢
can be joined by a path that remains tangent to the

{1     }. A sub-Riemannian metric on T
¡
R
¢
is given by declar-

ing the {1     } to be orthonormal. This induces a natural length for
any path which remains tangent to span{1     }. This applies in par-
ticular to the geodesic Υ of the previous proposition (Υ0 = Υ1 = ) and

this natural length is precisely the Carnot-Caratheodory distance  ( ).

7.5.5 Equivalence of homogeneous norms

Similar to the case of norms on R, all homogenous norms on 
¡
R
¢

are equivalent. The proof relies crucially on the continuity of homogenous

norms (which was part of their definition).

Theorem 7.44 All homogenous norms on 
¡
R
¢
are equivalent. More

precisely, if kk1 and kk2 are two homogenous norms, there exists  ≥ 1
such that for all  ∈ 

¡
R
¢
 we have

1


kk1 ≤ kk2 ≤  kk1  (7.20)

Proof. It is enough to consider the case when kk1 is given by
|||||| := max

=1
| ()|1 

Let  =
©
 ∈ 

¡
R
¢
 |||||| = 1ª. Clearly,  is a compact set by con-

tinuiuty, kk2 atteins a (positive) minimum  and maximum  i.e. for all

 ∈ ,

 ≤ kk2 ≤

Since (7.20) holds trivially true when  = 1, the unit element of 
¡
R
¢
,

we only need to consider  6= 1. We define  = 1 |||||| so that |||||| = 1.
In particular,

 ≤ ||||2 ≤

and by using homogeneity of kk2 we obtain  ≤ ||||2  |||||| ≤  and

(7.20) follows.

Let us recall that the metric  on 
¡
R
¢
, induced from the norm

|·| (R), is given by
 ( ) = | − | = max

=1
| ()−  ())| . (7.21)
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When  = 1 this reduces to

| − 1| = max
=1

| ()| 

Proposition 7.45 Let |||||| be a homogenous norm on 
¡
R
¢
. Then,

there exists a constant   0 such that for all  ∈ 
¡
R
¢

1


min

n
||||||  ||||||

o
≤ | − 1| ≤ max

n
||||||  ||||||

o
and

1


min

n
| − 1|  | − 1|1

o
≤ |||||| ≤ max

n
| − 1|  | − 1|1

o


Proof. By equivalence of homogenous norms, it suffices to consider the

case when

|||||| := max
=1

| ()|1 

But then, obviously, |||||| ≤ max
n
| − 1|  | − 1|1

o
which implies that

min
n
||||||  ||||||

o
≤ | − 1| 

On the other hand

| − 1| = max
=1

| ()| ≤ max
=1

|||||| = max
n
||||||  ||||||

o
and together these imply all the stated inequalities.

Corollary 7.46 The topology on 
¡
R
¢
induced by Carnot-Caratheodory

distance (in fact: by any metric associated to a symmetric sub-additive ho-

mogenous norm) coincides with the original12 topology of 
¡
R
¢
.

Proof. Let |||||| be any symmetric sub-additive homogenous norm on


¡
R
¢
and write  ( ) =

¯̄¯̄¯̄
−1 ⊗ 

¯̄¯̄¯̄
for the associated metric. Given

a sequence () ⊂ 
¡
R
¢
and  ∈ 

¡
R
¢
, proposition 7.45 implies

that
¯̄
−1 ⊗  − 1

¯̄
→ 0 if and only if  ( ) =

¯̄¯̄¯̄
−1 ⊗ 

¯̄¯̄¯̄
→ 0 On the

other hand, we saw in proposition 7.18 that
¯̄
−1 ⊗  − 1

¯̄
→ 0 if and only

if | − |→ 0

Remark 7.47 There are more geometric arguments for this. A Riemannian

taming argument easily gives that convergence with respect to the CC dis-

tance implies convergence in the original topology. For the converse, conti-

nuity of the CC norm implies of
°°−1 ⊗ 

°°→ 0 as −1 ⊗  → 1, which (by

proposition 7.18) is equivalent  →  in the original topology.

12Cf. remark 7.31.
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We can improve corollary 7.46 towards a quantiative comparison of the

Carnot-Caratheodory distance with the "Euclidean" distance on 
¡
R
¢

as given in (7.21). To this end, we need

Lemma 7.48 Let   ∈ 
¡
R
¢
, of form  = 1+1++ ,  ∈ ¡R¢⊗

and similarly for  The following equations then hold in
¡
R
¢⊗

  =

1  ¡
−1 ⊗ 

¢
=

X
=1

¡
−1

¢− ⊗ ( − ) (7.22)

and

 −  =

X
=1

− ⊗ ¡−1 ⊗ 
¢
 (7.23)

Proof. Set 0 = 0 = 1 By definition of the tensor product in 
¡
R
¢ ⊂


¡
R
¢

¡
−1 ⊗ 

¢
=
P

=0

¡
−1

¢− ⊗ The result follows from sub-

tracting to the previous expression 0 =
¡
−1 ⊗ 

¢
=
P

=0

¡
−1

¢− ⊗ 

The other equality follows from

−  =  ⊗ ¡−1 ⊗ − 1¢
Proposition 7.49 (Ball-box estimate) Consider   ∈ 

¡
R
¢
. There

exists a constant  =  ()  0 such that

( ) ≤ max
n
|− |  |− |1 max

n
1 kk1− 1



oo
(7.24)

and

|− | ≤ max
n
 ( )max

n
1 kk−1

o
  ( )


o
 (7.25)

In particular, recalling from (7.21) that  ( ) ≡ |− |,

 :
¡


¡
R
¢
 
¢
¿

¡


¡
R
¢
 
¢

is Lipschitz on bounded sets in → direction and 1-Hölder on bounded

sets in ← direction.

Proof. Equation (7.22) implies¯̄̄¡
−1 ⊗ 

¢ ¯̄̄ ≤ 1

X
=1

°°−1°°−  ¯̄ − 
¯̄

= 1

X
=1

kk− 
¯̄
 − 

¯̄
by symmetry of k·k

≤ 2 |− |max
³
1 kk−1

´




154 7. Free Nilpotent Groups

Hence,

max


¯̄̄¡
−1 ⊗ 

¢ ¯̄̄1 ≤ 3 max
=1

h
max

n
1 kk1− 1



o
|− |1

i
≤ 4max

n
|− |  |− |1 max

n
1 kk1− 1



oo


Conversely, from (7.23),

¯̄
 − 

¯̄
≤ 5

X
=1

kk−
°°−1 ⊗ 

°° 
Hence,

|− | ≤ 6

X
=1

X
=1

kk−
°°−1 ⊗ 

°°
≤ 7

X
=1

 ( )

max

n
1 kk−

o
≤ 8max

n
 ( )max

n
1 kk−1

o
  ( )


o

Corollary 7.50 Let  denote the Carnot-Caratheodory distance on 
¡
R
¢
.

Then
¡


¡
R
¢
 
¢
is a Polish space in which closed bounded sets are com-

pact.

Proof. Completeness, separability and compactness of closed, bounded sets

are obvious for 
¡
R
¢
under , the metric induced from |·| (R). It then

suffices to apply the previous proposition.

Exercise 7.51 (i) Let  ∈ R. Show that kexp ()k = ||, the Euclidean
length of .

(ii) Assume kk1 is a sub-additive, homogenous norm on 
¡
R
¢
such that

for all  ∈ R
(∗) : kexp ()k1 = || .

Show that kk1 ≤ kk for all  ∈ 
¡
R
¢
. This says that the Carnot-

Caratheodory norm is the largest sub-additive, homogenous norm which

satisfies (∗).

Solution 7.52 Let  ∈ 
¡
R
¢
  a geodesic associated to  and () a

sequence of piecewise linear approximations. Then, if ( ) are the disconti-
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nuity points of the derivative of °°° ()01°°°
1
=

°°°°°O


 (
) 


+1

°°°°°
1

≤
X


°°° () +1°°°1
=

X


°°°exp³ +1´°°°1
=

X


¯̄̄
 


+1

¯̄̄
=

Z 1

0

|| 

Letting  tend to ∞ we have by continuity of the map  ()01  which

follows from theorem 3.15,°°° ()01°°°
1
≤
Z 1

0

|| 

which reads kk1 ≤ kk 

7.5.6 From linear maps to group homomorphisms

Linear maps from R to R can always be written as  →  where  is

a  ×  matrix. With a slight abuse of notation, we will call  the linear

map itself. It is obvious that  is a homomorphism from the group (R+)
into the group

¡
R+

¢
(in fact, the linear maps describe the set of all such

homomorphisms), i.e. that for all   ∈ R  (+ ) = +. It will be

useful to extend  to a homomorphism from  (R) to 
¡
R
¢
. To this

end, we recall that t (R) is generated by R in the sense that a vector
space basis of t (R) is given by

∪=1
(

O
=1

 :  ∈ {1     }
)

where 1      is the canonical basis of R. We can then (uniquely) ex-
tend  to a homomorphisms t (R) → t

¡
R
¢
by requiring that it is

compatible with ⊗, i.e.



Ã
O
=1



!
:=

O
=1

() ∈
¡
R
¢⊗ ⊂ t ¡R¢

and then extend  by linearity to all of t (R). On the other hand, t (R)
is a Lie algebra with bracket [ ] =  ⊗  −  ⊗  and so  is clearly
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compatible with the bracket, which is to say a Lie algebra homomorphism.

From the Campell-Baker-Hausdorff formula,

A (·) := exp ( (log (·)))

is then a group homomorphism between the Lie groups 1 + t (R) and
1 + t

¡
R
¢
. Equivalently, one can define directly

A
¡
1 + 1 + · · ·+ 

¢
:= 1 +1 +⊗22 + · · ·+⊗ 

where  =  () ∈ (R)⊗ and ⊗ : (R)⊗ → ¡
R
¢⊗

is defined by

linearity from

⊗ (1 ⊗ · · ·⊗ ) := 1 ⊗ · · ·⊗ with  ∈ {1     } 

and check that this defines a group homomorphism. By sheer restriction,

this yields the group homomorphism A between  (R) and 
¡
R
¢
.

That said, we will find it convenient in the sequel to have a direct con-

struction of A based on step- signatures. We have

Proposition 7.53 Let  be a linear map from R into R There exists a
unique homomorphism from  (R) to 

¡
R
¢
, denoted by A, such that

for all  ∈ R,
A exp () = exp () 

For all  ∈  (R) we have13

kAk ≤ || kk

and if  ∈  (R) is written as step- signature of some  ∈ 1-var ([0 1] R),
i.e.  =  ()01, then

A = A ()01 =  ()01 

Proof. Let  ̃ be continuous paths of bounded variation such that  =

 ()01 =  (̃)01  Then, writing  ()01 and  (̃)01 in coor-

dinates shows that they are equal. Hence, it is possible to define

A =  ()01 

We establish that A is a homomorphism which may be done by checking

A
¡
−1 ⊗ 

¢
= (A)

−1⊗A for arbitrary elements   ∈  (R)  which
we may assume to be of form

 =  ()01   =  ()01

13 |·| denotes the operator (matrix) norm.
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(  are continuous paths of bounded variation). We recall that −1 =
 (
←− )01, the signature of ←− =  (1− ·) and define  to be the concate-

nation of ←− and  Then, we have

A
¡
−1 ⊗ 

¢
=  ()01 

On the other hand,  is the concatenation of
←−
 = ←− and  and the

proof is finished by observing that

 ()01 = 

³←−

´
01
⊗  ()01 = (A)

−1 ⊗A

Finally, we discuss the estimate on kAk. Let  : [0 1]→ R be a geodesic
path associated to , i.e. a path such that  ()01 =  and

R 1
0
|| = kk 

Then,

kAk =
°°° ()01°°° ≤ Z 1

0

| ()| ≤ ||
Z 1

0

|| = || kk

and the proof is finished

Example 7.54 One simple linear map from R ⊕ R into R is the ad-
dition map, i.e. plus ( ) = +  where   ∈ R. It extends to a homo-
morphism plus from  (R ⊕R) into  (R) 

Example 7.55 Another simple linear map from R ⊕ R0 onto R is the
projection  onto the first  coordinates. It then extends to a homomorphism

p from 
³
R ⊕R0

´
into 

¡
R
¢
. For example, if ( ) is a R⊕R0-

valued path,

p ◦  ( )01 =  ()01 

Exercise 7.56 Another simple linear map from R to R is the map →
 for a given  ∈ R Prove that its homomorphism extension is the re-

striction of the dilation map  to 
¡
R
¢
.

Exercise 7.57 Consider for  = ()1≤≤ ∈ R the map  : 1 +

t
¡
R
¢→ 1 + t

¡
R
¢
defined by



⎛⎝1 + X
=1

X
1≤1≤

11 ⊗   ⊗ 

⎞⎠ = 1+

X
=1

X
1≤1≤

11    1⊗  ⊗ 

(i) Prove that  is the extension of the linear map
P

=1  7→
P

=1 .

(ii) Prove that if all the  are equal to some scalar, then the restriction of

 to 

¡
R
¢
is the dilation map from exercise 7.56.
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Exercise 7.58 Show that

sup
∈(R)kk0

kAk  kk = || 

Solution 7.59 ≤ is clear from proposition 7.53 and equality is achieved at
 = exp () where  ∈ R, non-zero, is such that ||  || = ||.

Exercise 7.60 Prove that for all ( ) ∈ R+ × 
¡
R
¢
 k ()k ≤

(max=1 ) kk and kk ≤ (max=1 1) k ()k 

7.6 The lift of continuous bounded variation paths
on R

7.6.1 Quantitative bound on 

Recall from section 7.2.1 that  maps a continuous path  of finite 1-

variation with values in R to a path { 7→  () ≡  ()0} simply by
computing all iterated (Riemann-Stieltjes) integrals up to order  . Recall

also that  () was seen to take values in the (free, step- nilpotent)

group 
¡
R
¢ ⊂ 

¡
R
¢
. We call  () the canoncial lift of  to a


¡
R
¢
-valued path since14

1

³
 ()0

´
= 0

for all  ∈ [0  ]. As we shall now see,  () is not only of finite length
(i.e. 1-variation) with respect to Carnot-Caratheodory metric on 

¡
R
¢

but has the same length as the R-valued path .

Proposition 7.61 Let  ∈ 1-var
¡
[0  ] R

¢
 Then,

k ()k1-var;[0 ] = ||1-var;[0 ] 

Proof. From the very definition of the Carnot-Caratheodory norm,
°°° ()°°° ≥

|| for all 0 ≤    ≤  and thus

 ( ()   ()) =
°°° ()°°° ≥ || .

Clearly then, k ()k1-var;[] ≥ ||1-var;[] for all 0 ≤    ≤  . Con-

versely, °°° ()°°° ≤ Z 



|| = ||1-var;[]

141

 ()


=  for all  ∈ [0  ] only holds if  (0) = 0.
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and since ( ) 7→ ||1-var;[] is a (super-additive) control function, we
immediately obtain that for all 0 ≤    ≤  ,

k ()k1-var;[] ≤ ||1-var;[]
and the proof is finished.

Exercise 7.62 The purpose of this exercise is to replace 1-var-regularity

in proposition 7.61 by  1-regularity with  ∈ (1∞). Following section
1.4.2, the space of all x : [0  ]→ 

¡
R
¢
with

kxk1;[0 ] :=

Ã
sup

⊂[0 ]

X
:∈

°°x+1°°
|+1 − |−1

!1
∞

is denoted by  1
¡
[0  ] 

¡
R
¢¢
, a subset of 1-var

¡
[0  ]  

¡
R
¢¢


Let  ∈ 1
¡
[0  ] R

¢
and recall from section 1.4.1 that its 1-(semi)norm

is given by

|| 1;[0 ] =

ÃZ 

0

|̇| 
!1



Show that

k ()k1;[0 ] = || 1;[0 ] .

(The case of  12
¡
[0  ]  2

¡
R
¢¢
is important as it allows an intrinsic

definition of the rate function of enhanced Brownian motion viewed as sym-

metric diffusion process on 2
¡
R
¢
)

Solution 7.63 From the results in section 1.4.1 we know that  is the

indefinite integral of some ̇ ∈ 
¡
[0  ] R

¢
and that

|| 1;[0 ] = sup
⊂[0 ]

X
:∈

¯̄
+1

¯̄
|+1 − |−1

=

Z 

0

|̇| 

Next, k ()k1;[0 ] ≥ || 1;[0 ] follows readily from
°°° ()°°° ≥

||. For the converse inequality, we first observe that°°° ()°°° ≤ Z 



|̇|  ≤ || 1;[] |− |1−1 

Hence°°° ()°°°
|− |−1

≤ || 1;[] =⇒ k ()k1;[] ≤ ||1;[] 

where we used super-additivity of ( ) 7→ ||1;[].
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We aim now to show that continuous 
¡
R
¢
-valued paths of bounded

variation are in one-to-one correspondence with elements of 1-var
¡
[0  ] R

¢
.

We first need a simple lemma; recall that  ≡ 1 stands for the unit element
in 

¡
R
¢
. We note that the projection map 0 (cf. (7.11)) may be re-

stricted to yield a projection map 0 : 

¡
R
¢ → 

¡
R
¢
, whenever

 ≤  .

Lemma 7.64 Let xy be two elements of 

¡
[0  ]  

¡
R
¢¢
such that

0−1 (x) = 0−1 (y)  Then, the path  defined by

 := log
¡
x−1 ⊗ y

¢ ∈ g ¡R¢
is such that for some constant  depending only on  for all   ∈ [0  ] 

|| ≤  (kxk+ kyk)

Proof. Note that only the projection of  to
¡
R
¢⊗

is non-zero so that

exp () commutes with all elements in 
¡
R
¢
. In particular,

y = y−1 ⊗ y
= exp (−)⊗ x−1 ⊗ x ⊗ exp ()
= x−1 ⊗ x ⊗ exp (−)⊗ exp ()
= x ⊗ exp () 

Using the equivalence of homogeneous norm, we obtain

|| ≤  kexp ()k

≤ 
³°°x−1 ⊗ y°°´

≤  (kxk+ kyk) 

Theorem 7.65 Let  ≥ 1 and  ∈ 1-var

¡
[0  ] R

¢
. Then x =  ()

is the unique "lift" of  in the sense that 1 (x) =  and such that x ∈
1-var

¡
[0  ]  

¡
R
¢¢
. Moreover,

 : 
1-var


¡
[0  ] R

¢→ 1-var

¡
[0  ]  

¡
R
¢¢

is a bijection with inverse 1 and, for all 0 ≤    ≤  ,

kxk1-var;[] = ||1-var;[] 

Proof. It is obvious that x =  () has the lifting property, i.e. that

1◦ is the identity map on 1-var

¡
[0  ] R

¢
, and from proposition 7.61

we see that x ∈ 1-var

¡
[0  ]  

¡
R
¢¢
. To see uniqueness it is enough to
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show that  ◦ 1 is the identity map on 1-var

¡
[0  ]  

¡
R
¢¢
. This is

trivially true when  = 1. By induction, we now assume the statement is

true at level  − 1 for  ≥ 2. Define y =  ◦ 1 (x) and the path  by

 := log
¡
x−1 ⊗ y

¢ ∈ g ¡R¢ .
From lemma 7.64, || ≤  (kxk+ kyk) ≤  ( )


where  ( ) is

the super-additive (control) function kxk1-var;[] + kyk1-var;[]. In partic-
ular,  is of finite 1


-variation. As 1  1 and 0 = 0 this implies that

 ≡ 0 i.e. that y = x.

7.6.2 Modulus of continuity for the map 

Proposition 7.66 Let 1 2 ∈ 1-var
¡
[0  ] R

¢
 and  ≥ max=12

¯̄

¯̄
1−[] 

Then, for all  ≥ 1

∃ : ∀0 ≤    ≤  :
¯̄̄


³


¡
1
¢

− 

¡
2
¢


´¯̄̄
≤ 

−1 ¯̄1 − 2
¯̄
1-var;[]



(7.26)

In particular, if  is a fixed control and  is a positive real such that for all

  ∈ [0  ] 
max
=12

¯̄

¯̄
1-var;[]

≤  ( ) and
¯̄
1 − 2

¯̄
1-var;[]

≤  ( ) 

we have15

max
=1

sup
0≤≤

| (x − y)|
 ( )


≤ 

Proof. Obviously, (7.26) holds true with 1 = 1 for  = 1. We proceed

by induction, assuming (7.26) holds. Then

+1

³
+1

¡
1
¢

− +1

¡
2
¢


´
=

Z 





³


¡
1
¢

− 

¡
2
¢


´
⊗ 1

+

Z 





³


¡
2
¢


´
⊗ 

¡
1 − 2

¢


From the induction hypothesis,

sup
∈[]

¯̄̄


³


¡
1
¢

− 

¡
2
¢


´¯̄̄
≤ 

µ
max
=12

¯̄

¯̄
1-var;[]

¶−1 ¯̄
1 − 2

¯̄
1-var;[]



hence the first integral on the right-hand-side above is estimated by¯̄̄̄Z 





³


¡
1
¢

− 

¡
2
¢


´
⊗ 1

¯̄̄̄
≤ 

µ
max
=12

¯̄

¯̄
1-var;[]

¶ ¯̄
1 − 2

¯̄
1-var;[]



15 In the terminology of the forthcoming definition 8.6, this is equivalent to

1




1

 


2
 ≤ 
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On the other hand, sup∈[]
¯̄̄


³


¡
2
¢


´¯̄̄
≤ (1 !)

¯̄
2
¯̄
1-var;[]

so

that we can estimate the second integral on the right-hand-side above:¯̄̄̄Z 





³


¡
2
¢


´
⊗ 

¡
1 − 2

¢¯̄̄̄ ≤ 1

 !

¯̄
2
¯̄
1-var;[]

¯̄
1 − 2

¯̄
1-var;[]



Combining the two estimates finishes the induction step and thus concludes

the proof of the first part of the proposition. The second part is an obvious

corollary of the first part.

The previous proposition implies in particular that if 1 and 2 are two

continuous paths of length bounded by 1 and such that |1 − 2|1-var;[01] ≤
 then for all  ∈ {1 2 3    },

max
=1

| (1 − 2)| ≤ 

where  :=  ()01 ∈ 
¡
R
¢
  = 1 2. We now prove in some sense

the converse statement.

Proposition 7.67 Let 1 2 ∈ 
¡
R
¢
 with k1k  k2k ≤ 1 and

max
=1

| (1 − 2)| ≤   = 1     

Then, there exists  ∈ 1-var
¡
[0 1] R

¢
, such that

 ()01 =   = 1 2

and a constant 2 = 2 (1 ) such that

max
=12

||1-var;[01] ≤ 2

|1 − 2|1-var;[01] ≤ 2

Proof. First Case: Assume that 1−1 (1) = 1−1 (2) = 0 In such

case, we can write  = exp () = 1 + ; hypothesis implies that || ≤ 1

and that 2 = 1 +  with || ≤ 2 We write 1 and 2 in the following

way:

1 = exp (1 −)⊗ exp ()
2 = exp (1 −)⊗ exp ((1 + ))

= exp (1 −)⊗ (1+)1 exp () 

Define  : [0 1]→ R a geodesic associated to the group element exp (1 −)

(oberve that the length of  is bounded by a constant independent of ).

Define also  : [0 1] → R a geodesic associated to the group element
exp () (the length of  is bounded by a constant independent of ). De-

fine 1 : [0 2]→ R to be the concatenation of  and  and 2 : [0 2]→ R
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FIGURE 7.2. We illustrate the basic idea of the proof of proposition 7.67. Two

points of 2

R2

, identified with the three dimensional Heisenberg group, are

given as 1 = (9 9 15) and 2 = (8 85 2). The corresponding paths 1 2 are

the concatenation of straight lines, connecting the origin with (9 9) and (8 85)

respectively, followed by a circle which wipes out the prescribed area, 15 and 2

respectively.

to be the concatenation of  and (1 + )
1

 Observe that the 1-variation

distance between 1 and 2 is equal to
h
(1 + )

1 − 1
i
times the length

of  i.e. it is bounded by a constant times
³
(1 + )

1 − 1
´
≤  Repara-

metrising the paths 1 and 2 to be from [0 1] into R finishes the first
case.

General Case: We prove the general case by induction. The case  = 1

can be solved using the first case (or more simply with straight lines).

Assuming that the proposition holds for elements in 
¡
R
¢
we now prove

that it also holds for elements in +1
¡
R
¢
. To this end, take two arbitrary

elements 1 2 ∈ +1
¡
R
¢
with

max
=1+1

| (1)−  (2)|  

Set 3 := k1k ∨ k2k and define  ∈ 
¡
R
¢
by projection of  to the

first  levels, i.e. so that 0 () = 0 (). Obviously kk ≤ 3 for

 = 1 2 and

max
=1

| (1)−  (2)|  

By induction hypothesis, there exist two paths 1 2 (which we may take to

be defined on [0 1]) of length bounded by 4, with length of 1−2 bounded
by 4, where 4 = 4 ( 3), and with the property that  ()01 =

  = 1 2 We now define

 = +1 ()
−1
01 ⊗  ∈ +1

¡
R
¢
;  = 1 2
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Clearly, kk ≤ 4+3 =: 5 and 1 () = 0 Also, from proposition 7.66,

we have, for all  ≤  + 1¯̄̄


³
+1 (1)

−1
01 − +1 (2)

−1
01

´¯̄̄
=

¯̄̄


³
+1 (

←−1)01 − +1 (
←−2)01

´¯̄̄
≤ 6

It is easy to see that, for any   ∈ +1
¡
R
¢
,

0 () = 0 () =⇒ −1 ⊗  = 1 + +1
¡
−1

¢
+ +1 () 

Applied in our context this gives  = 1++1

³
+1 ()

−1
´
++1 () 

and hence, for all  ≤  +1 we have | (1 − 2)| ≤ (1 + 6)  Therefore,

using the first case, there exist two paths 1 2 (defined on [0 1]) of length

bounded by 7, with length of 1−2 bounded by 7, and with the property
that +1 () = ;  = 1 2. We conclude the proof by observing that the

paths  =  t , (re)parametrized to [0 1], satisfy +1 () =  are

of length bounded by 8 and with length of 1 − 2 bounded by 8. The

proof is now finished.

As a first corollary of this power lemma, we prove a modulus of continuity

for homomorphism on 
¡
R
¢
that extends linear map on R (see section

7.5.6).

Proposition 7.68 Let  be a linear map from R into R Then, for
  ∈  (R) with kk and kk bounded by 1 we have for some constant
 =  () 

|A −A| ≤  || | − | 
Proof. Using lemma 7.67, we take  =  ()01 and  =  ()01, where

 and  are some bounded variations paths of length bounded by some

constant 1 and such that

|− |1-var;[01] ≤ 2 | − | 
Then, using proposition 7.66,

|A −A| = | ()01− ()01|
≤ 3 | (− )|1−[01]
≤ 3 || |(− )|1−[01]
≤ 4 | − | 

7.7 Comments

Section 7.2: The signature map goes back to the classical work of Chen

[24, 25] and it was clear from his work that truncation at step- leads to
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(a presentation) of the step- free nilpotent Lie group. This point of view

was in particular adopted by Lyons [108, 109]; see [116] for references.

Section 7.3: All this is standard, see [116] for references. The proof of

Campbell—Baker—Hausdorff formula via differential equations is also well-

known and appears, for instance, in [152]. If one only cares about the quali-

tative statement corollary 7.27, an algebraic proof is possible via Friedrich’s

criterion, see [137] for instance.

Section 7.4: In our setting, Chow’s theorem plays the rôle of a converse

to the Campbell—Baker—Hausdorff formula. See [50, 7] for related point of

views. It can be formulated in sub-Riemannian geometry ([125] and the

references therein), see also [169].

Section 7.5: Again, geodesics are essentially a sub-Riemannian concept

but the details are simpler in our setting. Equivalence of homogenous

norms, on the other hand, is a group concept and allows for consider-

able simplifcation when it comes to topological consistency of Carnot—

Caratheodory metric with the original topology. Exercise 7.39 is taken from

[151].

Section 7.6 contains some "lifting" estimates which corresponding, in

essence, to the case  = 1, in the forthcoming estimates for the Lyons

lift (see section 9.1). Proposition 7.67 appears to be new; the construction

of "almost" geodesic paths associated to a pair of "nearby" group elements

will be a key ingredient (cf. the proof of the forthcoming theorem 10.29) in

establishing local Lipschitzness of the Lyons-Itô map.
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8

Variation and Hölder Spaces on
Free Groups

In the general setting of a (continuous) path with values in a metric space,

say  : [0  ] → , we defined its -variation "norm" over [0  ]  in sym-

bolds ||-var;[0 ]. This applies in particular to a  = 
¡
R
¢
-valued

path x (·), where 
¡
R
¢
is the free step- nilpotent group discussed at

length in the previous chapter. As a constant reminder that the (Carnot—

Caratheodory) metric  on 
¡
R
¢
was derived from k·k, the Carnot—

Caratheodory norm, we shall then use the notation

kxk-var;[0 ] = sup
()⊂[0 ]

ÃX



¡
x x+1

¢!1
(8.1)

= sup
()⊂[0 ]

ÃX


°°x+1°°
!1

and, thanks to homogeneity of k·k with respect to dilation, speak of ho-
mogenous -variation norm. As a special case of definition 5.1,

-var
¡
[0  ]  

¡
R
¢¢
=
n
x ∈ 

¡
[0  ]  

¡
R
¢¢
: kxk-var;[0 ] ∞

o
and we shall assume  ≥ 1 unless otherwise stated. When  = R, (8.1) is
precisely the usual -variation (semi-)norm and

( ) 7→ |0 − 0|+ |− |-var;[0 ]
defines a genuine metric, the -variation metric, on path space. Recalling

that |− |-var;[0 ] is of form

sup
()⊂[0 ]

X


¯̄
+1 − +1

¯̄
(with  ≡  −  ∈ R) a convenient extension to a 

¡
R
¢
-valued

path is to replace | − | by  (xy), where now

x ≡ x−1 ⊗ x ∈ 
¡
R
¢


Alternatively, we may replace
¯̄
+1 − +1

¯̄
by | (x − y)|

for all  = 1      using the fact that 
¡
R
¢ ⊂ 

¡
R
¢
; recalling
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that  : 

¡
R
¢ → ¡

R
¢⊗

denotes projection to the -tensor level.

When  = 1, the two notations coincide; for  ≥ 2, they do not. However,
both resulting -variation distances remain "locally uniformly" comparable

(and in particular induce the same topology and the same notion of Cauchy-

sequences) and both are useful. The first allows to discuss properties of the

space -var
¡
[0  ]  

¡
R
¢¢
with often identical arguments as in the R-

case. The second arises naturally in Lipschitz estimates of the Lyons-lift and

the Itô-Lyons map, discussed in later chapters. Of course, everything said

here applies in a Hölder context. In particular, the homogenous 1-Hölder

norm is given by

kxk1-Höl;[0 ] = sup
0≤≤

 (xx)

|− |1
= sup

0≤≤

kxk
|− |1

 (8.2)

and

1-Höl
¡
[0  ]  

¡
R
¢¢
=
n
x ∈ 

¡
[0  ] 

¡
R
¢¢
: kxk1-Höl;[0 ] ∞

o


8.1 -variation and 1-Hölder topology

8.1.1 Homogenous -variation and Hölder distances

As usual in the discussion of -variation we assume  ≥ 1. We then have

Definition 8.1 (Homogenous variation and Hölder distance) Given

xy ∈ 
¡
[0  ]  

¡
R
¢¢
we define

-var;[0 ](xy) :=

Ã
sup


X
∈


¡
x+1 y+1

¢!1

and

1-Höl;[0 ](xy) := sup
0≤≤

 (xy)

|− |1


where it is understood that

0;[0 ] (xy) := 0-Höl;[0 ](xy) := sup
0≤≤

 (xy) 

With  = 1, the unit element in 
¡
R
¢
, we note that -var;[0 ](x ) =

kxk-var;[0 ], the homogenous -variation norm of x and similarly in the

Hölder case. It is obvious that

(xy) 7→ -var;[0 ](xy) resp. 1-Höl;[0 ](xy) (8.3)
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is non-negative, symmetric and one sees (precisely as the case of R-valued
paths) that the triangle inequality is satisfied. On the hand, when the right-

hand-side above is 0 this only tells us that x = ⊗ y with  = x−10 ⊗ y0.
If attention is restricted to paths with fixed starting point, which is the

case for -var


¡
[0  ] 

¡
R
¢¢
resp. 

1-Höl


¡
[0  ]  

¡
R
¢¢
, then (8.3)

defines a genuine metric. Otherwise, it suffices to add the distance of the

starting points in which case

(xy) 7→ (x0y0) + -var;[0 ](xy)

resp. 7→ (x0y) + 1-Höl;[0 ](xy)

gives a genuine metric on -var
¡
[0  ]  

¡
R
¢¢
resp. 1-Höl

¡
[0  ]  

¡
R
¢¢
.

Let us observe that for any  ∈ R,

-var;[0 ](x y) = || -var;[0 ](xy)
1-Höl;[0 ](x y) = || 1-Höl;[0 ](xy)

where  denotes dilation by  on

¡
R
¢
, which explains the terminology

homogenous -variation (resp. 1-Hölder) distance; we also note that

( ) 7→ -var;[](xy)


is a control function.

Definition 8.2 (Homogenous - distance) (i) Given a control func-

tion  on [0  ] and

x ∈ 
¡
[0  ]  

¡
R
¢¢

we define1 the homogenous - norm

kxk-[0 ] := sup
0≤≤

 (xx)

 ( )
1

= sup
0≤≤

kxk
 ( )

1
(8.4)

and


¡
[0  ]  

¡
R
¢¢
=
n
x ∈ 

¡
[0  ]  

¡
R
¢¢
: kxk−;[0 ] ∞

o


(ii) Given xy ∈ 
¡
[0  ] 

¡
R
¢¢
and a control function  on [0  ],

we define

-;[0 ] (xy) = sup
0≤≤

 (xy)

 ( )
1



1The definition of k·k−[0 ] and  would make sense for paths with values in

an abstract metric space.
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Remark 8.3 Whenever  ( ) = 0 for some   , the right hand side

of (8.4) is infinity unless kxk = 0 in which case we use the convention

00 = 0. Equivalently, one can define

kxk−[0 ] = inf
n
 ≥ 0 : kxk ≤ ( )

1
for all 0 ≤    ≤ 

o


Similar remarks apply to our definition of -;[0 ] (xy).

It is clear from the definition that

(xy) 7→  (x0y0) + −[0 ] (xy)

is a metric on 
¡
[0  ]  

¡
R
¢¢
and, as above, one can omit the term

 (x0y0) if attention is restricted to paths pinned at time 0. Let us also

observe, as an elementary consequence of super-additivity of controls,

-var;[0 ](xy) ≤  (0  )
1

−[0 ](xy); (8.5)

in the special case  ( ) = −  this reads

-var;[0 ](xy) ≤  11-Höl;[0 ](xy)

Proposition 8.4 For all x1x2 ∈ -var
¡
[0  ]  

¡
R
¢¢
there exists a

control  with  (0  ) = 1 such that°°x°°
−[0 ]  ≤ 31

°°x°°
-var;[0 ]

  = 1 2;

−[0 ](x
1x2) ≤ 31-var;[0 ](x

1x2)

Proof. Given xy ∈ -var
¡
[0  ]  

¡
R
¢¢
define the control

xy ( ) :=

µ
-var;[](xy)

-var;[0 ](xy)

¶
(using the convention 00 = 0 if necessary). Note x ( ) = kxk-var;[]  kxk-var;[0 ]
where  denotes the trivial path constant equal to the unit element in


¡
R
¢
. Then

 ( ) :=
1

3
x1x2 ( ) +

1

3
x1 ( ) +

1

3
x2 ( )

has the desired properties. For instance,

(x1x
2
) ≤ -var;[](x

1x2) ≤ -var;[0 ](x
1x2)x1x2 ( )

1| {z }
≤(3())1

and similar for x1  and x2 .
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We now show that a map which is uniformly continuous on bounded sets

in the metric − for all possible control functions  is also uniformly
continuous on bounded sets in the metric -var. To this end, for paths

x ∈ 
¡
[0  ]  

¡
R
¢¢
we define the (homogenous) balls

- () =
©
x : -;[0 ] (x )  

ª


-var () =
©
x : -var;[0 ] (x )  

ª


Corollary 8.5 Consider the map

 : -var
¡
[0  ]  

¡
R
¢¢→ -var

¡
[0  ]  (R)

¢


Assume that for any any control function , any   0 and   0 there

exists  =  (;) such that

xy ∈ - ()   (xy)   =⇒ - ( (x)   (y))  

Then, for any   0 and   0 there exists  =  () such that

xy ∈ -var ()  -var (xy)   =⇒ -var ( (x)   (y))  

In fact, we can choose  =  ( ;)  with  = 31. (This shows

that if  is (locally) -Hölder on bounded sets in the metric − , for all
possible control functions  it is also (locally) -Hölder on bounded sets in

the metric -var .)

Proof. Given   0 and   0 and xy ∈ -var () we take the corre-

sponding control  with the properties as stated in proposition 8.4. Taking

 = 
¡
 31

¢
31 then shows that

-var (xy)   =⇒ - (xy)  

so that  ( (x)   (y))   and we conclude with (8.5).

8.1.2 Inhomogenous -variation and Hölder distances

Our definition of homgenous (variation, Hölder, -modulus) distance was

based on measuring the distance of increments x,y ∈ 
¡

¢
using

the Carnot—Caratheodory distance. Alternative, recalling that 
¡

¢ ⊂


¡

¢
we can use the (vector space) norm defined on the latter which

leads to distance of increments given by

|x − y| () = max
=1

| (x − y)| 

Observe that, for   1, this distance is not homogenous with respect to

dilation on 
¡

¢
.
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Definition 8.6 (Inhomogenous variation and Hölder distance) Given

xy ∈ 
¡
[0  ]  

¡
R
¢¢
we define

(i) for  = 1     


()

-var;[0 ]
(xy) = sup

()⊂[0 ]

ÃX


¯̄

¡
x+1 − y+1

¢¯̄!



and

-var;[0 ] (xy) = max
=1


()

-var;[0 ]
(xy) ;

(ii) for any control function  on [0  ], for  = 1     


()

-[0 ]
(xy) = sup

0≤≤

| (x − y)|
 ( )




and

-[0 ] (xy) = max
=1


()

-[0 ]
(xy) ;

(iii) for  = 1     


()

1-Höl;[0 ]
(xy) = sup

0≤≤

| (x − y)|
|− |



and

1-Höl;[0 ] (xy) = max
=1


()

1-Höl;[0 ]
(xy) 

Some remarks are in order. By taking y ≡  we have a notion of inho-

mogenous (variation, Hölder, -modulus) "norm" but these will play no

role in the sequel. Let us also remark that

kxk-var;[0 ] = -var[0 ] (x ) ∞ iff -var[0 ] (x ) ∞
so that -var

¡
[0  ]  

¡
R
¢¢
is precisely the set of paths x with finite

-var[0 ] distance between x and . The map

(xy) 7→ -var;[0 ](xy)

is obvioulsy non-negative, symmetric and one easily sees that the trian-

gle inequality is satisfied. Then, precisely as the previous section, adding

|x0 − y0| () gives rise to a genuine metric on -var
¡
[0  ] 

¡
R
¢¢
;

if attention is restricted to path with pinned starting point -var;[0 ] is

already a metric. Of course, all this applies mutatis mutandis in a 1-

Hölder resp. - context and 1-Höl resp. - gives rise to metrics on the

1-Höl resp. - spaces. Super-addivitiy of controls leads easily to

-var;[0 ]
¡
x1x2

¢ ≤ -;[0 ]
¡
x1x2

¢
max

³
 (0  )

1
  (0  )


´


(8.6)

which should be compared with (8.5).
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Proposition 8.7 For all x1x2 ∈ -var
¡
[0  ]  

¡
R
¢¢
there exists a

control  with  (0  ) = 1 and a constant  =  () such that

−[0 ](x
 ) ≤ -var;[0 ](x

 )  = 1 2;

−[0 ](x
1x2) ≤ -var;[0 ](x

1x2)

Proof. Given xy ∈ -var
¡
[0  ]  

¡
R
¢¢
, we define for convenience,

for  = 1      ,

()xy ( ) = 
()

-var;[]
(xy)




We then define

̄() ( ) =
1

3

()

x1x2
( ) 

()

x1x2
(0  )

+
1

3

()

x1
( ) 

()

x1
(0  )

+
1

3

()

x2
( ) 

()

x2
(0  ) 

so that ̄() is a control with ̄() (0  ) = 1 and finally

 ( ) =
1



X
=1

̄() ( ) 

To see that this definition of  does the job, observe that for all  =

1     and all 0 ≤    ≤ ¯̄

¡
x1 − x2

¢¯̄ ≤ () ( )

≤ 3̄() ( )× () (0  )

≤ 3 ( )× () (0  )

from which we see that¯̄

¡
x1 − x2

¢¯̄ ≤ (3)


 ( )
 ×

³
() (0  )

´
≤ (3)


 ( )

 × max
=1

h
() (0  )

i
≤ (3)


 ( )


−[0 ]

¡
x1x2

¢
which says precisely that

−[0 ]
¡
x1x2

¢ ≤ (3) −[0 ] ¡x1x2¢
The same argument applies to

¡
x1 

¢
and

¡
x2 

¢
and the proof is finished.
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We now show that a map uniformly continuous on boundeds set in the

- metric, for all  is uniformly continuous on bounded sets in the -var
metric. To this end, for paths x ∈ 

¡
[0  ]  

¡
R
¢¢
we define the (inho-

mogenous) balls

 () =
n
x : -;[0 ] (x )  

o


-var () =
n
x : -var;[0 ] (x )  

o


Corollary 8.8 Consider a map

 : -var
¡
[0  ]  

¡
R
¢¢→ -var

¡
[0  ]  (R)

¢
such that for any control function , any   0 and   0 there exists

 =  (;) such that

xy ∈  ()  - (xy)   =⇒ - ( (x)   (y))  

Then, for any   0 and   0 there exists  =  () such that

xy ∈ -var ()  -var (xy)   =⇒ -var ( (x)   (y))  

In fact, we can choose  =  ( ;)  with  =  ( ). (This shows

that if  is (locally) -Hölder on bounded sets in the - metric, for all

 it is also (locally) -Hölder on bounded sets in the -var metric.)

Proof. Obvious from proposition 8.7.

8.1.3 Homogenous vs inhomogenous distances

Proposition 8.9 Let  be a control function on [0  ]. For all paths xy

in 
¡
[0  ]  

¡
R
¢¢

−(xy) ≤ max
n
− (xy)  − (xy)

1
max

n
1 kxk1−

1


−
oo



(8.7)

and

− (xy) ≤ max
n
−(xy)max

n
1 kxk−1−

o
 −(xy)

o
(8.8)

where  =  (). The corresponding Hölder estimates are obtained by

taking  ( ) = − .

Proof. First we see that2

−[0 ] (xy) = sup
0≤≤



µ
 1

()1
x  1

()1
y

¶


−[0 ] (xy) = sup
0≤≤

¯̄̄̄
 1

()1
x −  1

()1
y

¯̄̄̄
 (R)

2 If  ( ) = 0 and x ∈  then x = , the unit element in 

R

, we agree

that  1
0
 = .
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so that these definitions indeed only differ on how to measure distance in

the 
¡
R
¢
. A quantitative comparison of these distances was given in

proposition 7.49, an application of which finishes the proof.

For a concise formulation of the next theorem, let us set

̃−[0 ] (xy) : = −[0 ] (xy) +  (x0y0)

̃−[0 ] (xy) : = −[0 ] (xy) +  (x0y0)

and similarly for 1-Höl -var and 1-Höl -var where we have already

started to omit [0  ] in the notation when no confusion is possible. We

have

Theorem 8.10 Let  be an arbitrary control function on [0  ]. Each iden-

tity map

 :
³
− ¡[0  ]  

¡
R
¢¢
 ̃−

´
¿
¡
− ¡[0  ]  

¡
R
¢¢
 ̃−

¢
 : (

1

-Höl

¡
[0  ]  

¡
R
¢¢
 ̃-Höl)¿ (

1

-Höl

¡
[0  ]  

¡
R
¢¢
 ̃-Höl)

 : (-var
¡
[0  ]  

¡
R
¢¢
 ̃-var)¿ (-var

¡
[0  ] 

¡
R
¢¢
 ̃-var)

is Lipschitz on bounded sets in → direction and 1-Hölder on bounded

sets in ← direction.

Proof. The relevant estimates between " (x0y0) and  (x0y0)" follow

directly from proposition 7.49 and we focus the path-space distance without

tilde: the case of the identiy map from − ¡[0  ] 
¡
R
¢¢
into itself

(equipped with homogenous resp. inhomogenous distance − resp. −)
is covered directly by proposition 8.9, and the case of 1-Hölder paths is

a special case, namely  ( ) = − . We thus turn to -variation.

→ direction: Let x1x2 ∈ -var (), the "homogenous" -variation ball

of radius  as defined before corollary 8.5 and let  denote the correspond-

ing control constructed in proposition 8.4. Then

Then, with constants 1 2 which may depend on   we have

-var
¡
x1x2

¢ ≤ -
¡
x1x2

¢
by (8.6)

≤ 1-
¡
x1x2

¢
by (8.8)

≤ 2-var(x
1x2) by the very choice of .

The← direction follows the same logic, but now we rely on (8.5), (8.7) and

 as constructed in proposition 8.7.

We finish this section with a simple proposition (it will serve as technical

ingredient in our discussion of RDE smoothness later on).

Proposition 8.11 Let A denote the canonical lift of  ∈ 
¡
RR

¢
to

the 
¡
 (R) 

¡
R
¢¢
. Then, for fixed x ∈ -var

¡
[0  ]   (R)

¢
the map

 ∈ 
¡
RR

¢ 7→ Ax := { ∈ [0  ] 7→ Ax} ∈ -var
¡
[0  ]  

¡
R
¢¢
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is continuous.

Proof. We first prove this for x ∈ 
¡
[0  ]   (R)

¢
. Recall that 

and the inhomogenous distance  are locally Hölder equivalent (and in

particular induce the some topology). Consider  ∈ 
¡
RR

¢
with

operator norm bounded by some . Controlling  (AxBx) amounts to

control
¯̄̄
(Ax)

 − (Bx)
¯̄̄
for  = 1      . Every (Ax)


can be written out

as contraction of  ⊗ · · · ⊗  ( times) against the -tensor x. It is then

easy to see that ¯̄̄
(Ax)

 − (Bx)
¯̄̄
≤  |−|

¯̄
x
¯̄

This implies that  7→ Ax is even Lipschitz when -var
¡
[0  ] 

¡
R
¢¢

is equipped with . Switch to  we still have continuity, and hence

− continuity.

8.2 Geodesic approximations

Our interest in 
¡
R
¢
-valued path comes from the fact (cf. section 7.2.1)

that any continuous path  of finite 1-variation with values in R can be
lifted to a path { 7→  () ≡  ()0} with values in 

¡
R
¢
simply

by computing all iterated (Riemann-Stieltjes) integrals up to order  .

It is natural to ask some sort of converse: how can an abstract path

x : [0  ]→ 
¡
R
¢
be approximated by a sequence ( (

))? We have

Proposition 8.12 Let x ∈ -var


¡
[0  ] 

¡
R
¢¢
  ≥ 1. Then there

exists () ⊂ 1-Höl
¡
[0  ] R

¢
, such that

∞;[0 ] (x  (
))→ 0 as →∞

and

sup

k ()k-var;[0 ] ≤ 31−1 kxk-var;[0 ] ∞

For x ∈ 
1-Höl


¡
[0  ]  

¡
R
¢¢
we have

sup

k ()k1-Höl;[0 ] ≤ 31−1 kxk1-Höl;[0 ] ∞

Proof. Given the fact that 
¡
R
¢
is a geodesic space under Carnot—

Caratheodory distance, this follows readily from the approximation results

in geodesic spaces, section 5.2.
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8.3 Completeness and non-separability

By theorem 8.10 we can equip the space -var([0  ] 
¡
R
¢
) with either

homogenous or inhomogenous -variation distance and not only obtain the

same topology but also same "metric" notions of bounded sets or Cauchy

sequences. The same holds for Hölder paths, of course, and we have

Theorem 8.13 (i) Let  ≥ 1. The space -var([0  ]
¡
R
¢
) is a com-

plete, non-separable metric space (with respect to either homogenous or

inhomogenous -variation distance).

(ii) The space 1-Höl([0  ] 
¡
R
¢
) is a complete, non-separable met-

ric space (with respect to either homogenous or inhomogenous 1-Hölder

distance).

Proof. (i) It suffices to consider the homogeneous -variation distance, and

more precisely

̃-var (xy) ≡ -var (xy) +  (x0y0)

for xy ∈ -var([0  ] 
¡
R
¢
). The completeness proof follows exactly

from the arguments used to establish completeness of -var([0  ]R).
Then, if -var([0  ] 

¡
R
¢
) were separable for some  = 1 2    the

same would be true for its projection to = 1 but we know that -var([0  ]R)
is not separable, cf. theorem 5.27 it is not.

(ii) Similar and left to the reader.

8.4 The 0/∞ estimate

Lemma 8.14 Let   ∈ 
¡
R
¢
. Then there exists  =  ( ) such

that °°−1 ⊗ ⊗ 
°° ≤ max

n
kk  kk1 kk1−1

o
Proof. Viewing   as elements in 

¡
R
¢
, and writing (·) ≡  (·) for

projection to the  tensor level, we have for  = 1 ¡
−1 ⊗ ⊗ 

¢
=

X
++=

0

¡
−1

¢
 ∈ ¡R¢⊗ 

Since every tensor-level
¡
R
¢⊗

is equipped with Euclidean structure we

easily see that ¯̄̄¡
−1 ⊗ ⊗ 

¢ ¯̄̄ ≤ X
++=

0

¯̄̄¡
−1

¢ ¯̄̄ ¯̄

¯̄ ¯̄

¯̄
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Using
¯̄

¯̄
≤ 1 kk and similar estimates for −1 , also recalling

°°−1°° =
kk, we find ¯̄̄¡

−1 ⊗ ⊗ 
¢ ¯̄̄ ≤ 2

X
=1

kk− kk

which implies¯̄̄¡
−1 ⊗ ⊗ 

¢ ¯̄̄1 ≤ 3 max
=1

kk1− kk

≤ 3 sup
1≤≤1

kk1− kk

By equivalence of homogenous norms,°°−1 ⊗ ⊗ 
°° ≤ 4 sup

1≤≤1
kk1− kk 

The proof is now easily finished.

Proposition 8.15 (0∞ estimate) On the path-space 0
¡
[0 1]  

¡
R
¢¢

the distances ∞ and 0 ≡ 0-Höl are locally 1-Hölder equivalent. More

precisely, there exists  =  ( ) such that

∞ (xy) ≤ 0 (xy) ≤ max
n
∞ (xy)  ∞ (xy)

1
(kxk∞ + kyk∞)1−1

o


Proof. Only the second inequality requires a proof. We write  instead

of  ⊗ . For any    in [0 1],

x−1y = x
−1
y

−1
 xxx

−1
 yx

−1
 yy

−1
 x

By sub-additivity,°°x−1y°° ≤
°°x−1y−1 xx

°°+ °°x−1 yx
−1
 yy

−1
 x

°°
=

°°−1y−1 x
°°+ °°−1x−1 y

°°
with  = x and  = y−1 x. Note that°°y−1 x

°° = °°x−1 y
°° =  (xy)

and kk  kk ≤ kxk∞ + kyk∞. The conclusion now follows from Lemma

8.14.

8.5 Interpolation and compactness

This interpolation result will extensively be used.
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Lemma 8.16 Assume 0   ≥ 1.
(i) Let xy two elements of -var

¡
[0  ]

¡
R
¢¢
. Then,

0-var (xy) ≤ (kxk-var + kyk-var)
0
0 (xy)

1−0
 (8.9)

(ii) Let x two elements of 
¡
[0  ] 

¡
R
¢¢
. Then, for all 0  ,

0- (xy) ≤ (kxk0- + k yk0-)
0
0 (xy)

1−0
 (8.10)

Proof. (i) Consider a dissection () ⊂ [0  ]. Then (8.9) follows from


¡
x+1 y+1

¢0 ≤ 
¡
x+1 y+1

¢
0[0 ] (xy)

0−

≤ ¡°°x+1°°+ °°y+1°°¢ 0[0 ] (xy)0− 
followed by summation over , the elementary (

P | + |)1 ≤ (
P ||)1+

(
P ||)1 and taking the supremum over all such dissections.

(ii) Left to the reader.

As a consequence of the above interpolation result, proposition 5.13, and

Arzela-Ascoli theorem, we obtain the following compactness result.

Proposition 8.17 Let (x) be a sequence in 
¡
[0  ]  

¡
R
¢¢
.

(i) Assume (x) is equicontinuous, bounded and sup kxk-var;[0 ] ∞.
Then x converges (in 0   variation, along a subsequence) to some

x ∈ -var
¡
[0  ]  

¡
R
¢¢
.

(ii) Assume (x) is bounded and sup ||x||-Höl;[0 ] ∞. Then x con-
verges (in 0   Hölder topology, along a subsequence) to some x ∈
-Höl

¡
[0  ] 

¡
R
¢¢
.

The following corollary will also be useful.

Corollary 8.18 (i) If (x) x are in -var
¡
[0  ]  

¡
R
¢¢
such that

sup |x|-var;[0 ] ∞ and lim→∞ ∞;[0 ] (xx) = 0 then for 0  

sup
()∈∆

¯̄̄
kxk0-var;[] − kxk0-var;[]

¯̄̄
→ 0 as →∞.

where ∆ = {( ) : 0 ≤  ≤  ≤ }. Furthermore, {kxk0-var; [··] :  ∈ N}
is equicontinuous in the sense that for every   0 there exists  such that

|− |   implies

sup

kxk0-var; []   (8.11)

(ii) If (x) x are in -Höl
¡
[0  ]  

¡
R
¢¢
so that sup ||x||-Höl;[0 ] 

∞ and lim→∞ ∞;[0 ] (xx) = 0, then for all    in [0  ], as →∞,
then for 0  

sup
()∈∆

¯̄̄
kxk0-Höl;[] − kxk0-Höl;[]

¯̄̄
→ 0 as →∞

and
n
kxk0-Höl;[··] :  ∈ N

o
is equicontinuous, similar to part (i).
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Proof. The argument given in the proof of proposition 5.31 for the case of

R-valued paths extends line by line to the case of 
¡
R
¢
-valued paths.

8.6 Closure of lifted smooth paths

We now define 0-var
¡
[0  ] 

¡
R
¢¢
resp. 01-Höl

¡
[0  ] 

¡
R
¢¢

as the closure of step- lifted smooth paths from [0  ]→ R in -variation
resp. 1-Hölder topology. A little care is needed since, by convention,

 ()0 = 1 ≡ , the unit element in 
¡
R
¢


Definition 8.19 (i) We define 0-var

¡
[0  ]  

¡
R
¢¢
as the set of con-

tinuous paths x : [0  ] → 
¡
R
¢
for which there exists a sequence of

smooth R-valued paths  such that

-var (x ())→→∞ 0

and 0-var
¡
[0  ] 

¡
R
¢¢
as the set of paths x with

x0· = x−10 ⊗ x· ∈ 0-var

¡
[0  ]  

¡
R
¢¢

(ii) Similarly, 
01-Höl


¡
[0  ]  

¡
R
¢¢
is the set of paths x for which

there exists a sequence of smooth R-valued paths  such that

1-Höl (x ())→→∞ 0

and 01-Höl
¡
[0  ]  

¡
R
¢¢
are those paths x with x0· ∈ 

01-Höl


¡
[0  ]  

¡
R
¢¢
.

Obviously, all these spaces are closed subsets of -var
¡
[0  ] 

¡
R
¢¢

resp. 1-Höl
¡
[0  ]  

¡
R
¢¢
and thus complete. Proposition 7.66 im-

plies a fortiori continuiuty of   as map from 1-var

¡
[0  ] R

¢
to 1-var

¡
[0  ]  

¡
R
¢¢
.

Clearly then

01-var
¡
[0  ]  

¡
R
¢¢
= 

¡
01-var

¡
[0  ] R

¢¢
(8.12)

and also 01-Höl
¡
[0  ] 

¡
R
¢¢
= 

¡
1
¡
[0  ] R

¢¢
. The reader will

recall from Proposition 1.36 that 01-var
¡
[0  ] R

¢
, defined as 1-variation

closure of smooth paths, turned out to be precisely the space of absolutely

continuous path (with respect to Euclidean metric on R); in exercise 8.20
it is seen that the same is true in the case of 

¡
R
¢
-valued paths.

Exercise 8.20 Show that 01-var
¡
[0  ] 

¡
R
¢¢
is precisely the space

of absolutely continuous path (with respect to Carnot—Caratheodory metric

on 
¡
R
¢
).
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Solution 8.21 It suffices to consider x ∈ 01-var

¡
[0  ]  

¡
R
¢¢
. Any

such x (·) is of form  ()· where  is an R
-valued absolutely continuous

path. Hence, for every   0 and 1  1 ≤ 2  2 ≤ · · ·     in

[0  ] there exists  so that
P

 | − |   implies
P

 | |   and in

fact (cf. exercise 5.16) X


||1-var;[]  

But then, thanks to proposition 7.61X


| (  )| ≤
X


|x|1-var;[] =
X


||1-var;[]  

Lemma 8.22 We fix   1

(i) If Ω ⊂ 1-var
¡
[0  ] 

¡
R
¢¢
and if 01-var

¡
[0  ]  

¡
R
¢¢
is in-

cluded in the 1-var -closure of Ω then, the -var-closure of Ω is equal to

0-var
¡
[0  ]  

¡
R
¢¢
.

(ii) If Ω ⊂ 1-Höl
¡
[0  ]  

¡
R
¢¢
and if 01-Höl

¡
[0  ]  

¡
R
¢¢
is in-

cluded in the 1-Höl-closure of Ω then, the 1-Höl-closure of Ω is equal to

01-̈
¡
[0  ] 

¡
R
¢¢
.

Proof. Same proof as the  = 1 case (cf. lemma 5.32).

We can now extend "Wiener’s characterization" from the R-setting (the-
orem 8.23) to the group setting. Recall in particular that x denotes the

geodesic approximation to x based on some dissection  = () of [0  ].

That is, x = x for all  and x
|[+1] is a geodesic connecting x and

x+1as in proposition 7.42. The proof of the R
-case then extends without

any changes and we have

Theorem 8.23 (Wiener’s Characterization) Let x ∈ -var([0  ] 
¡
R
¢
),

with   1. The following statements are equivalent.

(i.1) x ∈ 0-var([0  ] 
¡
R
¢
)

(i.2a) lim→0 sup=()||
P

 kxk-var;[+1] = 0
(i.2b) lim→0 sup=()||

P
 
¡
x x+1

¢
= 0

(i.3) lim||→0 -var
¡
xx

¢
= 0.

Secondly, let x ∈ 1-Höl
¡
[0  ] 

¡
R
¢¢
, with   1. The following

statements are equivalent:

(ii.1) x ∈ 01-Höl
¡
[0  ]R

¢


(ii.2a) lim→0 sup|−| kxk1-Höl;[] = 0
(ii.2b) lim→0 sup|−| (xx)|− |1 = 0
(ii.3) lim||→0 1-Höl

¡
xx

¢
= 0.

Exercise 8.24 Let  ≥ 1. Show that 0-var ¡[0  ]  
¡
R
¢¢
is precisely

the space of paths which are absolutely continuous of order .
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Solution 8.25 The case  = 1 was dealt with in exercise 8.20. For   1

we simply combine the result of exercise 5.16 with Wiener’s characteriza-

tion.

Corollary 8.26 For   1 we have the following set inclusions,[
1≤

-var
¡
[0  ]  

¡
R
¢¢ ⊂ 0-var

¡
[0  ]  

¡
R
¢¢

⊂ -var
¡
[0  ]  

¡
R
¢¢

⊂
\


-var
¡
[0  ] 

¡
R
¢¢


Moreover, the inclusions are strict.

Proof. Similar to corollary 5.35.

Proposition 8.27 Let  ≥ 1. The spaces

0-var
¡
[0  ]  

¡
R
¢¢
 01-Höl

¡
[0  ]  

¡
R
¢¢

are Polish with respect to either homogenous or inhomogenous -variation

resp. 1-Hölder distance.

Proof. As remarked in section 8.3, either choice (homogenous, inhomoge-

nous) of -variation distance leads to the same topology and notion of

Cauchy sequence. Clearly then, 0-var is complete under either distance. It

remains to discuss separability. From proposition 1.39, there exists a count-

able space Ω dense in 01-var
¡
[0  ] R

¢
; by continuity of    (Ω) is

dense in 01-var
¡
[0  ]  

¡
R
¢¢
. We conclude using lemma 5.32. Similar

arguments for 1-Hölder spaces are left to the reader.

8.7 Comments

Section 8.1 introduces the basic path space distance for 
¡
R
¢
-valued

paths (homogenous such as -var, inhomogenous such as -var). As will

be discussed in detail in the next chapter, if one chooses  = [] these

distances are "rough path" distances. Noting that both -var and -var
induce the same topology, both notions are useful. Typical rough path

continuity statements are locally Lipschitz continuous in the inhomogenous

distance (which is also the distance put forward by Lyons, e.g. [113] in the

references therein). The homogenous distance, on the other hand, comes

in handy when establishing large deviation results via exponentially good

approximation (as seen in lemma 13.41 for instance); not to mention its

general convenience which often allows to write arguments in the same

way as for paths on Euclidean space.
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The geodesic approximation result of Section 8.2 appeared in [59]; here it

is derived as a special case of a general approximation result on geodesic

spaces. Section 8.3 follows [59]. The 0∞-estimate in Section 8.4 is
taken from [57]; Sections 8.5 and 8.6 follow [59].
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9

Geometric Rough Path Spaces

We have studied 
¡
R
¢
-valued paths of finite -variation for any  ∈ N

and  ≥ 1. If one thinks of 
¡
R
¢
as the correct state space that allows

not only to keep track of the spatial position in R but also to keep track of
the accumulated area (and higher indefinite iterated integrals up to order

) then it should not be surprising that  and  should stand in some

canonical relation. To wit, if  = 1, knowledge of the R-valued path allows
to compute iterated integrals by Riemann-Stieltjes theory and there is no

need to include area and other iterated integrals in the state-space. The

same remark applies, more generally, to  ∈ [1 2) using iterated Young
integration and in this case we should take  = [] = 1. When  ≥ 2, this
is not possible and knowledge of higher indefinite iterated integrals up to

order  = [] must be an apriori information, i.e. assumed to be known.1

However, we shall establish in the section that integrals of order greater

than [] are still canonically determined. More precisely, we shall see that

for  ≥ [] that there exists a canonical bijection2

 : 
-var


³
[0  ] []

¡
R
¢´→ -var



¡
[0  ]  

¡
R
¢¢

such that for all x ∈ -var


¡
[0  ]  []

¡
R
¢¢
we have

kxk-var;[0 ] ≤ k (x)k-var;[0 ] ≤  kxk-var;[0 ] 

The analogous 1-Hölder estimate also holds, and is a consequence of the

-variation estimate. Indeed, by reparametrization, [0  ] may be replaced

by [ ] so that the Hölder statement follows trivially from kxk-var;[] ≤
kxk1-Höl |− |1 
This gives a first hint on the importance of these so-called (weak) geome-

teric rough paths whose regularity (-variation) is in relation to their state-

space
¡
[]

¡
R
¢¢
.

1 In a typical probabilistic situation (cf. Part III of this book),  = 2 or 3 and the

required iterated integrals will be constructed via some stochastic integration procedure.
2Recall that  in 

-var
 indicates that all paths start at the unit element of [].
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9.1 The Lyons-lift map  7→ ()

9.1.1 Quantitative bound on 

We start with two simple technical lemmas.

Lemma 9.1 Let 1 2 ∈ +1
¡
R
¢
 Then,

1 ⊗ 2 − (1 + 2) = 0 (1)⊗ 0 (2)− 0 (1 + 2)

In particular, if 1 2 ∈ +1
¡
R
¢
are such that 0 (1) = 0 (1)

and 0 (2) = 0 (2)  we have

1 ⊗ 2 − (1 + 2) = 1 ⊗ 2 − (1 + 2)

Proof. Simple algebra.

Lemma 9.2 Let 1 2 ∈ 1-var
¡
[ ] R

¢
 such that for some  ≥ 1


¡
1
¢

= 

¡
2
¢


 Then, if  ≥ max©R 


¯̄
1

¯̄

R 


¯̄
2

¯̄ª
 we have

for some constant  depending only on ¯̄̄
+1

¡
1
¢

− +1

¡
2
¢


¯̄̄
≤  +1 (9.1)

Proof. By assumption,¯̄̄
+1

¡
1
¢

− +1

¡
2
¢


¯̄̄
=
¯̄̄
+1

³
+1

¡
1
¢

− +1

¡
2
¢


´¯̄̄
and (9.1) follows from¯̄̄

+1

³
+1

¡

¢


´¯̄̄
≤ 1

( + 1)!

µZ 



¯̄

¯̄¶+1

  = 1 2.

Alternative proof of (9.1) which introduces the useful idea of "reducing two

paths to one path". Without loss of generality, assume ( ) = (0 1) and

observe that 
¡
1
¢
01
= 

¡
2
¢
01
implies

+1
¡
1
¢
01
− +1

¡
2
¢
01
= +1

¡
1
¢
01
⊗ +1

¡
2
¢−1
01
− 1

Define  = 1 t←−2, i.e. as the concatenation of 1 (·) and 2 (1− ·) and
assume  is (re-)parametrized on [0 1]. It follows that

+1
¡
1
¢
01
− +1

¡
2
¢
01
= +1 ()01 − 1

with  ()01 = 1 and ||1-var;[01] =
¯̄
1
¯̄
1-var;[01]

+
¯̄
2
¯̄
1-var;[01]

≤ 2 But
then¯̄̄

+1 ()01 − 1
¯̄̄
=

¯̄̄
+1

³
+1 ()01

´¯̄̄
from  ()01 = 1

≤ 1

( + 1)!
(2)

+1
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and (9.1) follows.

We are now ready for the crucial quantitative estimate on k ()k-var
for  ≥ 

Proposition 9.3 Let  ∈ 1-var
¡
[0  ] R

¢
. Then, for all  ≥ []  there

exists a constant  depending only on  and  (and not depending on the

1-variation norm of  nor its -variation) such that for all    in [0  ] 

k ()k-var;[] ≤ 
°°[] ()°°-var;[]  (9.2)

The constant  can be chosen to be right-continuous with respect to .

Proof. It is enough to show that for all  ≥ [] 

k+1 ()k-var;[] ≤ 1 () k ()k-var;[]  (9.3)

where  7→ 1 () is right continuous. Explicit dependency in  in our con-

stant will be written in this proof.

We define x =  (), y = +1 () and  ( ) = kxk−[]  By theo-
rem 7.32, we can find, for all    in [0  ], a "geodesic" path  : [ ]→
R associated to x ∈ 

¡
R
¢
which is the shortest (Lipschitz) path

which has step- signature equal to x. Then, define

Γ = y − +1
¡


¢




For      we also define  to be the concatenation of  and 

and observe that +1 (
) = +1 (

) ⊗ +1 (
)  Then,

as y ⊗ y = y

Γ − (Γ + Γ) = y ⊗ y − (y + y)
−+1

¡


¢

⊗ +1

¡


¢


++1
¡


¢

+ +1

¡


¢


++1
¡


¢

⊗ +1

¡


¢

− +1 (

) 

By construction, for all  ≤  and all   ∈ [0  ]   (y) = 

³
+1 (

)

´


hence we can apply lemma 9.1 to see that

y ⊗ y − (y + y) = +1
¡


¢

⊗ +1

¡


¢


−
³
+1

¡


¢

+ +1

¡


¢


´


Hence, we are left with

Γ − (Γ + Γ) = +1
¡


¢

− +1 (

) 
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which we bound using lemma 9.2:

|Γ − (Γ + Γ)| ≤ 1max

½Z 



¯̄


¯̄


Z 



| |
¾+1

≤ 2 ( )
+1
 

(9.4)

Secondly, using
R 

|| ≤ R 


||, lemma 9.2 gives

|Γ| =
¯̄̄
y − +1

¡


¢


¯̄̄
≤ 3 ||+11-var;[] =: ̃ ( )

+1

The last two inequalities allow us to apply the same (analysis) lemma 6.2

(which we have already used for establishing the Young-Loéve estimate).

We get, for all 0 ≤    ≤  ,¯̄̄
y − +1

¡


¢


¯̄̄
≤ 4  ( )

+1


where  can be taken to be 1(1−21−
+1
 ). This implies by the triangle

inequality that

|+1 (y)| ≤ 4 ( )
+1
 +

¯̄̄
+1

³
+1

¡


¢


´¯̄̄
≤ 5 (1 + ) ( )

+1
 

and hence, using the equivalence of homogeneous norms, that for all   ∈
[0  ] 

kyk ≤ 6

³
1 + (1 + )

1
´
 ( )

1


This means that

kyk-var;[] ≤ 6

³
1 + (1 + )

1
´
kxk-var;[]

for all 0 ≤    ≤  and the proof is finished.

9.1.2 Definition of the map  on -var


¡
[0  ]  []

¡
R
¢¢

Definition 9.4 Let  ≥ [] ≥ 1 and x ∈ -var


¡
[0  ]  []

¡
R
¢¢
. A path

in -var


¡
[0  ]  

¡
R
¢¢
that projects down onto x is said to be a -Lyons

lift of x of order  . When  is fixed, we will simply speak of Lyons lift.

We now show that there exists a unique Lyons lift of order  , for all x ∈
-var


¡
[0  ]  []

¡
R
¢¢
. In the terminology of the forthcoming definition

9.16 this says precisely that a weak geometric -rough path admits a unique

Lyons lift.

Theorem 9.5 Let  ≥ [] ≥ 1 and x ∈ -var


¡
[0  ]  []

¡
R
¢¢
. Then

there exists a unique Lyons lift of order  of x By writing  (x) for this
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path, we define the map  on -var


¡
[0  ]  []

¡
R
¢¢
. Moreover,

(i) the map  : -var


¡
[0  ]  []

¡
R
¢¢ → -var



¡
[0  ]  

¡
R
¢¢
is a

bijection with inverse 0[];

(ii) we have for some constant  =  ( ), which may be taken right-

continuous in ,

kxk-var;[] ≤ k (x)k-var;[] ≤  kxk-var;[] (9.5)

for all    in [0  ].

Remark 9.6 Observe that if x ∈ -var
¡
[0  ]  []

¡
R
¢¢
for  ≤ 


¡
[] (x)

¢
=  (x). This justifies using the same notation for all ,

and in particular the same notation for   1 and  = 1. For further con-

venience, we will define for  ≤ [] and for x ∈ -var
¡
[0  ] []

¡
R
¢¢

the path  (x) which is just the projection of x onto 

¡
R
¢
 In particu-

lar, the estimate k (x)k-var;[] ≤  kxk-var;[] still holds for  ≤ [] 

Proof. 1 step, existence: Let  be a sequence in 
1-var

¡
[0  ] R

¢
such

that

sup


°°[] ()°°-var;[0 ] ∞ and lim
→∞

∞
¡
[] () x

¢
= 0

By proposition 9.3, for all    in [0  ] and  small enough (namely, such

that [+ ] = []),°°° ()°°° ≤ +
°°[] ()°°(+)-var[] 

By corollary 8.18 the right-hand-side above can be made arbitrarily

small, uniformly in , provided  −  is small enough; this implies readily

that  () is equicontinuous. Boundedness is clear and so, by Arzela-

Ascoli and switching to a subsequence if necessary, we have the existence

of a continuous 
¡
R
¢
-valued path z such that

 (
)→ z uniformly on [0  ] as →∞

From the very choice of () it then follows that the projection of z to a

[]
¡
R
¢
-valued path must be equal to x. Then, for all 0 ≤    ≤ 

kzk = lim
→∞

°°° ()°°°
≤ lim

→∞
k ()k(+)-var[]

≤ + lim
→∞

°°[] ()°°(+)-var[]
where we used (9.2), proposition 9.3, for the last estimate. On the other

hand, from the first part of corollary 8.18,

lim
→∞

°°[] ()°°(+)-var[] = kxk(+)-var[]
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and hence, for all 0 ≤    ≤ 

kzk ≤ + kxk(+)-var;[] 

Using "right-continuity" of  7→  (proposition 9.3) and also right-

continuity of homogenous -variation norm with respect to  (lemma 5.14)

we may send → 0 to obtain

kzk ≤  kxk-var;[] .

Super-additivity of ( ) 7→ kxk-var;[] implies that

kzk-var;[] ≤  kxk-var;[] ;

the converse estimate kxk-var;[] ≤ kzk-var;[] is trivial since we know
that z lifts x.

In particular, we found a (Lyons) lift of x in -var


¡
[0  ]  

¡
R
¢¢


which satisfies (9.5).

2 step, uniqueness: Given z z̃ ∈ -var


¡
[0  ]  +1

¡
R
¢¢
with 0 (z) ≡

0 (z̃) we show (by induction in ) that  ≥ [] implies z ≡ z̃. From
lemma 7.64,  = log

¡
z−1 ⊗ z̃

¢
defines a path in g+1

¡
R
¢∩¡R¢⊗(+1)

,

and for all   ∈ [0  ] 

|| ≤ 1 kzk+1
+ 1 kz̃k+1



We define the control  ( ) = kzk-var;[] + kz̃k-var;[]  The previous
inequality now reads

|| ≤ 2 ( )
(+1)



In particular,  is of finite 
+1

-variation. As 
+1

 1 we deduce that

 is constant equal to 0 = 0, i.e. that z = z̃ which is what we wanted to

show.

3 step: It remains to see that, as stated in (i),  is a bijection with in-

verse 0[]. Obviously, 0[]◦ is the identity map on -var


¡
[0  ]  []

¡
R
¢¢
.

Conversely, given x ∈ -var


¡
[0  ]  

¡
R
¢¢
it is clear from (9.5) that

 ◦ 0[] (x) has finite -variation. By uniqueness, we see that  ◦
0[] (x) = x so that ◦0[] acts as identity map on -var



¡
[0  ]  

¡
R
¢¢
.

This completes the proof.

Exercise 9.7 Let  ≥ [] ≥ 1 and x ∈ -var


¡
[0  ]  []

¡
R
¢¢
. Prove

that there exists z ∈ 

¡
[0  ] 

¡
R
¢¢
such that for all sequences () ⊂

1-var
¡
[0  ] R

¢
such that

∞;[0 ]
¡
[] (

) x
¢→ 0 and sup



¯̄
[] (

)
¯̄
-var;[0 ]

∞
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we have

 (
)→ z uniformly on [0  ] as →∞.

(This exercise shows that we could have defined the Lyons lift as limit,

similar to our definition of Young integral and the forthcoming definition

of solution to a rough differential equation.)

9.1.3 Modulus of continuity for the map 

We shall now establish that the Lyons lifting map is locally Lipschitz con-

tinuous with respect to inhomogenous rough path distances on pathspace.

To this end, we need the following two lemmas.

Lemma 9.8 Let  ≥ [] ≥ 1 and x ∈ -var


¡
[ ]  []

¡
R
¢¢
 and  ∈

1-var
¡
[ ] R

¢
with

R 

|| ≤  kxk-var;[] such that  () =

 (x)  Then, for some constant  depending only on  and ¯̄̄
+1 (x) − +1

¡


¢


¯̄̄
≤  kxk+1-var;[] 

Proof. This is fairly obvious: As  (x) =  (
)  we have¯̄̄

+1 (x) − +1
¡


¢


¯̄̄
=

¯̄̄
+1

³
+1 (x)

´
− +1

³
+1

¡


¢


´¯̄̄
≤

¯̄̄
+1

³
+1 (x)

´¯̄̄
+
¯̄̄
+1

³
+1

¡


¢


´¯̄̄


Using equivalence of homogeneous norms and the quantitative estimates

on the Lyons lift obtained in theorem 9.5, we have¯̄̄
+1 (x) − +1

¡


¢


¯̄̄
≤ 1

µ°°°+1 (x)°°°+1 + °°°+1 ¡¢°°°+1¶
≤ 2

³
kxk+1-var;[] +

°°°°+1
1-var;[]

´
≤ 3 kxk+1-var;[] 

The following result generalizes lemma 9.2.

Lemma 9.9 Let 1 2 ̃1 ̃2 ∈ 1-var
¡
[ ] R

¢
such that


¡
1
¢


= 
¡
2
¢





¡
̃1
¢


= 
¡
̃2
¢




and assume there exist  ≥ 0   0 such that

max

½Z 



|1|+
Z 



|2|
Z 



|̃1|+
Z 



|̃2|
¾
≤ 

max

½Z 



¯̄
1 − ̃1

¯̄


Z 



¯̄
2 − ̃2

¯̄¾
≤ 
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Then, for some constant  depending only on  ,¯̄̄³
+1

¡
1
¢

− +1

¡
2
¢


´
−
³
+1

¡
̃1
¢

− +1

¡
̃2
¢


´¯̄̄
≤ +1

Proof. Working as in the proof of lemma 9.2, we see that we can assume

2 = ̃2 = 0 and ( ) = (0 1)  Then, scaling 1 and ̃1 by 1

 we can

assume  = 1 The lemma then follows from proposition 7.66.

We can now prove local Lipschitzness of the Lyons-lifting map  .

Theorem 9.10 Let x1x2 ∈ -var
¡
[0  ]  []

¡
R
¢¢
and  a control such

that for all 0 ≤    ≤  and  = 1 2°°x°°
-var;[]

≤  ( ) 


¡
x1x2

¢ ≤ 

Then, for all  ≥ []  there exists a constant  depending only on  and

 such that for all    in [0  ] 


¡


¡
x1
¢
 

¡
x2
¢¢ ≤ 

Proof. It is enough to show that for all  ≥ []  if x1 and x2 are two paths
in -var

¡
[0  ] 

¡
R
¢¢
with 

¡
x1x2

¢ ≤  then, for some constant

 


¡
+1

¡
x1
¢
 +1

¡
x2
¢¢ ≤ 

Let 1 2 ∈ 1-var
¡
[ ] R

¢
such that


¡


¢

= x

and such that Z 




¯̄


¯̄
≤ 1 ( )

1
Z 




¯̄
1 − 2

¯̄
≤ 1 ( )

1


This is possible thanks to propostion 7.67, applied to x
1
 and x

2
 with

 = 1 ( )
1
. We define similarly  and  and then  to

be the concatenation of  and  Observe in particular thatZ 




¯̄
1 − 2

¯̄
≤ 21−11 ( )1 

Following the proof of proposition 9.3, we define for   ,

Γ = +1
¡


¢

− +1

¡
x
¢


  = 1 2
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and Γ = Γ
1
 − Γ2. It is clear from the proof of propostion 9.3 that¯̄

Γ
¯̄
≤ 2

2
 ( )

+1
   = 1 2

and, by the triangle inequality,¯̄
Γ

¯̄
≤ 2 ( )

+1
  (9.6)

On the other hand, employing the same logic as in the proof of proposition

9.3, we see that

Γ −
¡
Γ + Γ




¢
= +1

¡


¢

− +1

¡


¢




We can therefore use lemma 9.9 to see that¯̄
Γ −

¡
Γ + Γ

¢¯̄ ≤ 3 ( )
+1
  (9.7)

Inequalities (9.6) and (9.7) allow us to use the (analysis) lemma 6.2, and

we learn that for all 0 ≤    ≤  ,¯̄
Γ

¯̄
≤ 4 ( )

+1
 

From proposition 7.66,¯̄̄
+1

³
+1

¡
1

¢

− +1

¡
2

¢


´¯̄̄
≤ 5 ( )

+1
 

This implies by the triangle inequality that¯̄̄
+1

³
+1

¡
x1
¢

− +1

¡
x2
¢


´¯̄̄
≤ 6 ( )

+1
 

i.e. that 
¡
+1

¡
x1
¢
 +1

¡
x2
¢¢ ≤ 

From theorem 8.10 we immediately deduce

Corollary 9.11 Let  ≥ [] 
(i) The map

 : 
-var


³
[0  ] []

¡
R
¢´→ -var



¡
[0  ] 

¡
R
¢¢

is uniformly continuous on bounded sets, using the −-metric.
(ii) The map

 : 
1-Höl


³
[0  ] []

¡
R
¢´→ 1-Höl

¡
[0  ]  

¡
R
¢¢

is uniformly continuous on bounded sets, using the 1−̈-metric.
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9.2 Spaces of geometric rough paths

Theorem 9.12 Let  ≥ 1 and  ≥ []  Let Ω denote either -var
 

0-var  
1-Höl
 or 

01-Höl
 . Then

(i) The map

x ∈ Ω([0  ]
¡
R
¢
)→ 0[] (x) ∈ Ω([0  ] []

¡
R
¢
)

is a bijection, with inverse the map  

(ii) For  ≥ 2 and  ≥ 2 The map

x ∈ Ω([0  ]
¡
R
¢
)→ 0[]−1 (x) ∈ Ω([0  ] []−1

¡
R
¢
)

is not a bijection.

Remark 9.13 The proof of part (ii) will show (cf. cases (ii a) and (ii b1))

that 0[]−1 is not an injection. It is proven in [115] that it is a surjection
when  is not an integer.

Proof. (i) The case Ω = -var follows from theorem 9.5 and 1−̈ is an

obvious corollary from -var case. The case Ω = 0-var (resp. 01-Höl)

follows from the case Ω = -var (resp. 1-Höl) by Wiener’s characteriza-

tion (theorem 8.23).

(ii) (a) We first assume that Ω = -var or 1-Höl. Let  be a non-zero

g[]
¡
R
¢ ∩ ¡R¢⊗[]-valued path which is 1-Hölder with  =  As in

the proof of lemma 7.64, we see that if x ∈ Ω([0  ] [] ¡R¢) and y is
defined by

y = x ⊗ exp () 
then y ∈ Ω([0  ] [] ¡R¢) and 0[−1] (y) = 0[−1] (x)  This means
that 0[]−1 (y) = 0[]−1 (x), and as y 6= x, 0[]−1 is not a injection
from Ω([0  ]

¡
R
¢
) into Ω([0  ] [−1]

¡
R
¢
).

(b) We now assume that Ω = 0-var or 01-Höl.

(b1) We deal with the case    and again take a non-zero

 ∈ 01-Höl
³
[0  ]  g[]

¡
R
¢ ∩ ¡R¢⊗[]´ 

with  =  Define the path y as above, y = x ⊗ exp (). We have
already seen that y ∈ Ω([0  ] [] ¡R¢) Using Wiener characterization
we actually see that y ∈ Ω([0  ][] ¡R¢) (it is at this point that we
need   1 that is   ). Once again that 0[]−1 (y) = 0[]−1 (x),
and as y 6= x, 0[]−1 is not a injection from Ω([0  ] 

¡
R
¢
) into

Ω([0  ] []−1
¡
R
¢
).

(b2) It only remains to deal with the case Ω = 0-var or 01-Höl

and  =  (which implies that  ∈ {2 3    }). We aim to prove in this
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case that 0[]−1 is not a surjection or, in other words, that there exists a
path x ∈ Ω([0  ] []−1 ¡R¢) which admits no lift to Ω([0  ] [] ¡R¢).
To this end, assume  = 1 for simplicity of notation, and assume we have

a path y ∈ Ω([0 1] [] ¡R¢) that projects down onto x Let  ( ) =
kyk-var[]  which is finite by assumption. By definition of the increment
of y we have

y01 =

2−1O
=0

y 
2

 +1
2



Define x̃ 
2

 +1
2
∈ []

¡
R
¢
by 0[]−1

³
log
³
x̃ 
2

 +1
2

´´
= log

³
x 
2

 +1
2

´


and []

³
log
³
x̃ 
2

 +1
2

´´
= 0 Observe that x̃ 

2
 +1
2
are not the increments

of []
¡
R
¢
-valued path; we view x̃ as a map that associates to every dyadic

interval of form
£

2
 +1
2

¤
an element in []

¡
R
¢
. Hence, as we also have

0[]−1
³
y 
2

 +1
2

´
= x 

2
 +1
2

 a short computation gives

y01 =

2−1O
=0

x̃ 
2

 +1
2
+

2−1X
=0

[]

³
log
³
y 
2

 +1
2

´´


Then, by equivalence of homogenous norms, there exists   0 such that¯̄̄
[]

³
log
³
y 
2

 +1
2

´´¯̄̄
≤ 

°°°y 
2

 +1
2

°°°[]
≤ 

µ


2

+ 1

2

¶
by definition of 

In particular, we obtain that¯̄̄̄
¯
2−1O
=0

x̃ 
2

 +1
2

¯̄̄̄
¯ ≤  (0 1) + |y01| ∞

Therefore, we proved that a necessary condition for a path x ∈ Ω([0  ] []−1 ¡R¢)
to admit a lift y ∈ Ω([0  ] [] ¡R¢) is given by

sup
≥0

¯̄̄̄
¯
2−1O
=0

x̃ 
2

 +1
2

¯̄̄̄
¯ ∞

We therefore aim to provide a path x such that the above expression is

infinite. To this end, using  ≥ 2, we let 1 2 be the first two vectors in the
standard basis of R. Define 1 = 2 and +1 = [1 ] so that  ∈

¡
R
¢⊗
.

For two paths,  ∈ 
01-Höl
0 ([0  ] R) and  ∈ 

0 −1

-Höl

0 ([0  ] R)  we
define x ∈ Ω([0  ] []−1 ¡R¢ by

x () = 1+[−1] = 1 ⊗ [−1] ∈ []−1
¡
R
¢
.
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We note that x is indeed in Ω = 0-var, from the definition of   and

kxk =
°°1 ⊗ [−1]

°° ≤ (const)× ³||+ || 1
−1
´
.

Defining x̃ 
2

 +1
2
∈ []

¡
R
¢
as explained above, the Campbell-Baker-

Hausdorff formula yields

2−1O
=0

x̃ 
2

 +1
2
= exp

Ã
011 + 01[−1] +

2−1X
=0

³
 
2
 
2

 +1
2
−  

2
 
2

 +1
2

´
[]

!


In particular, sup

¯̄̄N2−1
=0 x̃ 

2
 +1
2

¯̄̄
∞ if and only if

sup
≥0

¯̄̄̄
¯
2−1X
=0

 
2
 
2

 +1
2
−  

2
 
2

 +1
2

¯̄̄̄
¯ ∞

which itself is equivalent to

sup
≥0

¯̄̄̄
¯
2−1X
=0

 
2
 
2

 +1
2

¯̄̄̄
¯ ∞

The following exercise 9.14 shows that for any   ≥ 1 with 1+ 1 = 1
there exist paths

 ∈ 
01-Höl
0 ([0  ] R)   ∈ 

01-Höl
0 ([0  ] R)

such that sup≥0
¯̄̄P2−1

=0  
2
 
2

 +1
2

¯̄̄
=∞. In particular, we now see that

there exists a path x ∈ Ω([0  ] [−1] ¡R¢) which does not admit a lift
to Ω([0  ] []

¡
R
¢
)

Exercise 9.14 Assume that

  : [0 1]→ [0 1] is a continuous increasing bijection such that
P∞

=1 
−1 ¡2−¢

and
P∞

=1 
−1 ¡2−¢ are convergent series. We then define the functions

 :  ∈ [0 1]→
∞X
=1

−1
¡
2−

¢
sin
¡
2+1

¢
 :  ∈ [0 1]→

∞X
=1

−1
¡
2−

¢ ¡
1− cos ¡2+1¢¢ 

(i) Prove that if  is such that lim→0  () = 0 then  and  belong

to 
01-Höl
0 ([0  ] R) 

(ii) Prove that

2−1X
=0




2



2

 +1
2
≥ 1
4

X
=1

2−1
¡
2−

¢
−1

¡
2−

¢
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(iii) Provide example of functions   ∈ 
01-Höl
0 ([0 1] R)×01-Höl0 ([0 1] R) 

for 1+ 1 = 1 such that

sup
≥0

¯̄̄̄
¯
2−1X
=0

 
2
 
2

 +1
2

¯̄̄̄
¯ =∞

Solution 9.15 (i) First case. We first assume that −1 () ≤  ||1 
Then, for all   ∈ [0 1] 
¯̄
 ()−  ()

¯̄
≤

∞X
=1

2−
¯̄
sin
¡
2+1

¢− sin ¡2+1¢¯̄

≤ 2

⎛⎝log2
1

−X
=1

−1
¡
2−

¢
2+1 |− |+

+∞X
=log2

1
−

−1
¡
2−

¢⎞⎠
≤ 2

⎛⎝ |− |
log2

1
−X

=1

2(1−1) +
+∞X

=log2
1

−

2−

⎞⎠
≤  |− |1 

Second case. Now, if lim→0 

()
= 0 −1 () = 

³
||1

´
 Hence, for all

  0 there exists  ≥ 0, such that  ≥  implies that −1
¡
2−

¢ ≤ 2−
We write

 = 0 + ∞

where  =
P

+1 
−1 ¡2−¢ sin ¡2+1¢  Clearly, as 0 is smooth,

we have

lim
→0

sup
|−|≤

¯̄
0 ()− 0 ()

¯̄
|− |1

= 0

Moreover, working as in the first case, we have¯̄
 ()−  ()

¯̄
≤  |− |1 

Hence, we proved that for all   0

lim
→0

sup
|−|≤

¯̄
 ()−  ()

¯̄
|− |1

≤ 

which concludes the proof of (i).

(ii) As cos
¡
2+1 +1

2

¢− cos ¡2+1 
2

¢
and sin

¡
2+1 

2

¢
are equal to 0

we obtain that

2−1X
=0




2



2

 +1
2
=

X
=1

−1
¡
2−

¢
−1

¡
2−

¢
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where

 =

2−1X
=0

sin
¡
22−

¢ ∙
cos

µ
2+1

+ 1

2

¶
− cos

µ
2+1



2

¶¸


Trigonometric exercises show that  = 0 if  6=  and that  ≥ 2−2 .
As −1 and −1 are positive, we therefore obtain that

2−1X
=0




2



2

 +1
2
≥ 1
4

X
=1

2−1
¡
2−

¢
−1

¡
2−

¢


(iii) Just take   =   with  () =  log 1

and  () =  log 1


.

We therefore showed that the sets -var
 ([0  ] []

¡
R
¢
) 0-var ([0  ] []

¡
R
¢
)


1-Höl
 ([0  ] []

¡
R
¢
) and 

01-Höl
 ([0  ] []

¡
R
¢
) are quite funda-

mental! We therefore give their elements names:

Definition 9.16 (i) A weak geometric -rough path is a continuous path

of finite -variation with values in the free nilpotent group of step [] over

R, i.e. an element of -var([0  ][]
¡
R
¢
)

(ii) A geometric -rough path is a continuous path with values in the free

nilpotent group of step [] over R which is in the -variation closure of the
set of bounded variation paths, i.e. an element of 0-var([0  ] []

¡
R
¢
)

(iii) A weak geometric 1-Hölder rough path is a 1-Hölder path with

values in the free nilpotent group of step [] over R, i.e. an element of
1-Höl([0  ] []

¡
R
¢
)

(iv) A geometric 1-Hölder rough path is a continuous path with values in

the free nilpotent group of step [] over R which is in the 1-Hölder closure
of the set of 1-Hölder paths, i.e. an element of 01-Höl([0  ] []

¡
R
¢
)

Recall from the interpolation results of the previous chapter that

(+)-var([0  ] []
¡
R
¢ ⊂ 0-var([0  ] []

¡
R
¢ ⊂ -var([0  ][]

¡
R
¢

and for this reason the difference between weak and genuine geometric

-rough is important only when we care about very precise results.

Exercise 9.17 Identify the 2
¡
R2
¢
with the 3-dimensional Heisenberg group

H ∼= R3. Verify that the "pure-area path"
(0 0; )

is weak geometric 2-rough path but not a genuine 2-rough path.

Exercise 9.18 Assume  ∈ g ¡R¢ ∩ ¡R¢⊗. Show that  7→ exp ( ) ⊂

¡
R
¢
is a weak Hölder geometric -rough path and compute explicitly

 (exp ( (·))) ⊂ 
¡
R
¢
  ≤  .



9. Geometric Rough Path Spaces 199

Solution 9.19 Claim that  (exp (· ))0 = exp () where we write

exp for the exp-map in  
¡
R
¢
in order to distinguish from exp and

exp . To see this, note that

 (exp ( )  exp ( )) = kexp (−)⊗ exp ()k
and from the Campbell-Baker-Hausdorff formula, this clearly equals kexp ((− ) )k 
which is bounded by a constant times (− )

1 ||1. It follows that exp (· )
is 1-Hölder and by uniqueness of the Lyons-lift the claim is proved.

9.3 Invariance under Lipschitz maps

The content of this section is not directly used in the sequel and depends

on techniques of the forthcoming section 10.6 on rough integration. The

probabilistic motivation here is the fact that Φ ◦ , the image of a semi-
martingale  under a 2-map Φ, is again a semi-martingale; a manifest

consequence of Itô’s lemma.

Having defined what we mean by a weak geometric -rough path, say

x ∈ -var
¡
[0  ]  []

¡
R
¢¢
, it is natural to ask whether the (yet to be

defined!) image of x under a sufficiently smooth map Φ : R → R is also a
weak geometric -rough path. The following result can then be summarized

in saying that the image of a weak geometric -rough path under a Lip

-

map    is indeed another weak geometric -rough path.

Theorem 9.20 Assume

(i) x ∈ -var
¡
[0  ] []

¡
R
¢¢
;

(ii) Φ ∈ Lip
¡
RR

¢
   .

Then there exists a unique continuous (in fact: uniformly continuous on

bounded sets) map

Φ∗ : -var
³
[0  ]  []

¡
R
¢´ 7→ -var

³
[0  ] [] (R)

´
with the property that, whenever x = [] () for some  ∈ 1-var

¡
[0  ] R

¢
then

Φ∗x = [] (Φ ◦ ) 
Proof. The proof relies on the forthcoming theorem 10.50 in section 10.6.

Indeed,  := Φ = (1Φ     Φ) ⊂ Lip−1

¡
RR

¢
satisfies the assump-

tion of that theorem so that

Φ∗x :=
Z ·

0

 () x (rough integral)

is a well-defined geometric -rough path; more precisely an element of

-var
¡
[0  ]  [] (R)

¢
and the rough integral Φ∗x is a (uniformly) con-

tinuous (on bounded sets) function of the integrator x in -variation met-

ric. To see that Φ∗x has the claimed "push-forward" behaviour whenever
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x = [] () for some  ∈ 1-var
¡
[0  ] R

¢
it suffices to note that, by the

fundamental theorem of calculus,

Φ ()0 =

Z 

0

 ()  (classical Riemann-Stieltjes integral).

By the basic consistency properties of rough integral Φ∗x is then precisely
then step-[] lift of the indefinite Riemann-Stieltjes integralZ ·

0

 () 

and so Φ∗x = [] (Φ ◦ ) as was claimed.

9.4 Young pairing of weak geometric rough paths

Throughout this section, we fix    ≥ 1 such that −1+−1  1 Observe
that this implies that  ∈ [1 2)

9.4.1 Motivation

Consider a path  ∈ -var
¡
[0  ] R

¢
. It is natural, e.g. in the context

of differential equations with drift term, to consider the "space-time" path

 7→ ( ()  ), plainly an element of -var
¡
[0  ] R+1

¢
. It can also be

important to replace  by  +  where  is a suitable perturbation3. Let

us now move to a genuine geometric rough path setting and consider x ∈
-var

¡
[0  ]  []

¡
R
¢¢
. Recall the intuition that x contains the apriori

information of up to [] iterated integrals which are not defined, in general,

in Riemann-Stieltjes - or Young sense; there is, however, enough regularity

built in the definition of such a geometric -rough path that higher iterated

integrals, i.e. beyond level [], are canonically defined, as was seen in our

discussion of the Lyons lifting map.

Now, even if  = 1 (x) has not sufficient regularity to form the integralR
⊗ , one surely can form the integral

R
 or

R
⊗  for sufficiently

regular , e.g. when the last integral is a well-defined Young integral as dis-

cussed in section 6.2. In particular, one would hope that, given a sufficiently

regular  : [0  ]→ R
0
there is a canonically defined geometric rough path,

say [] (x ), with values in []
³
R ⊕R0

´
which coincides with [] ()

where  = ( ) : [0  ] → R ⊕ R0 whenever x = [] () for some nice

path . By the same token, given a sufficiently regular  : [0  ]→ R one
would hope that there is a canonically defined geometric rough path, say

3E.g. when adding a Cameron—Martin path to Brownian motion.
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 (x), with values in 
[]
¡
R
¢
which coincides with [] (+ ) whenever

x = [] () for some nice path . Moreover, such constructions should be

robust e.g. so that x 7→  (x) is continuous in (e.g. -variation) rough path

distance. When  ∈ (2 3), so that x takes valued in 2
¡
R
¢
, the reader

will have no difficulties to derive such results by making use of the Young—

Lóeve estimates of section 6.1.

The remainder of this chapter is devoted to handle the general case.

9.4.2 The space ()-var
¡
[0  ] R ⊕R0

¢


We recall from section 7.5.6 that for fixed  ∈ R the dilation map  :


¡
R
¢ → 

¡
R
¢
is the unique group homomorphism which extends

scalar mutiplication  ∈ R 7→  ∈ R. Similarly, for fixed 1 2 ∈ R, the
map ( ) ∈ R ⊕ R0 7→ (1 2) ∈ R ⊕ R

0
lifts to a group homomor-

phism

12 : 

³
R ⊕R0

´
→ 

³
R ⊕R0

´


(Elements in 
³
R ⊕R0

´
arise as the step- signature of a path in

R ⊕ R0 . Scaling the first  (resp. last 0) coordinates of the path by 1
(resp. 02) gives precisely rise to the 12-dilation of the original signature.)
Observe that almost by definition of 12  we have for a path ( ) ∈
1-var

¡
[0 1] R

¢× 1-var
³
[0 1] R

0
´


12 (⊕ )01 =  (1⊕ 2)01 

Noting that -var
¡
[0  ]  

¡
R
¢¢
is the set of continuous 

¡
R
¢
-

valued path x such that for some control function  (e.g. ( ) 7→ kxk-var;[])
one has

sup
 in [0 ]

°°°° 1

()1
x

°°°° ∞

we are led to the following definition.

Definition 9.21 We say that a continuous path x ∈ 
³
[0  ]  

³
R ⊕R0

´´
is of finite mixed ( )-variation, and write x ∈ ()-var

³
[0  ]  

³
R ⊕R0

´´
if for some control 

kxk-;[0 ] := sup
 in [0 ]

°°°° 1

()1
 1

()1
(x)

°°°° ∞

(A convention of type 00 = 0 is in place, to deal with    such that

 ( ) = 0) If we can take  ( ) = |− |  we say that x is
³
1

 1


´
-

Hölder and write x ∈ (
1

 1
 )-Höl

³
[0  ]  

³
R ⊕R0

´´
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As usual, we write 
()-var


³
[0  ] 

³
R ⊕R0

´´
etc. if we only con-

sider path started at , the unit element in 
³
R ⊕R0

´
.

Definition 9.22 For a pair of controls 1 2 we also define

kxk-12;[0 ] = sup
 in [0 ]

°°°° 1

1()
1

 1

2()
1
(x)

°°°° 
and, for two paths x1x2 ∈ ()-var

³
[0  ]  

³
R ⊕R0

´´


-12; [0 ]
¡
x1x2

¢
= sup

 in [0 ]

¯̄̄̄
 1

1()
1

 1

2()
1

¡
x1

¢−  1

1()
1

 1

2()
1

¡
x2

¢¯̄̄̄


Exercise 9.23 Let x ∈ ()-var
³
[0  ]  

³
R ⊕R0

´´
and assume 1

and 2 are control functions. Show that, for all    in [0  ] 

kxk ≤  kxk-12;[0 ]
³
1 ( )

1
+ 2 ( )

1
´


9.4.3 Quantitative bounds on 

For ( ) ∈ 1-var
³
[0  ] R ⊕R0

´
, we now aim that to show that for

every  ∈ {1 2    }°°° (⊕ )

°°° ≤ (const)× ³°°[] ()°°-var;[] + ||-var;[]´ 
As in earlier chapters, the constant here depends only on the -variation of

 and the -variation of , allowing for a subsequent passage to the limit.

The argument is similar to proving the Lyons lift estimate°°° ()°°° ≤ (const)× ³°°[] ()°°-var;[]´ 
although in the latter the case  ∈ {1     []} is trivial. To start, we need
a lemma replacing the use of geodesics.

Lemma 9.24 Let  ≥ 1 and ( ) ∈ 1-var
¡
[ ] R

¢×1-var ³[ ] R0´.
There exists a path ( ) such that

(i)

 (⊕ ) = 
¡
 ⊕ 

¢


(9.8)

+1 () = +1
¡


¢

; (9.9)
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(ii) for all    0 satisfying°°°+1 ()°°°+ °°° (⊕ )

°°° ≤ 1

there exists a constant  which depends only on 1 and  such that



Z 



¯̄


¯̄
+ 

Z 



¯̄


¯̄
≤  

Proof.Observe that if  (⊕ ) =  (
 ⊕ )  then  (⊕ ) =

 (
 ⊕ ) and +1 () = +1 (

)  Hence, we can

assume without loss of generalities that  =  = 1 By definition of the

Carnot-Caratheodory homogeneous norm, there exist two paths 1 1

such that

 (⊕ ) = 
¡
1 ⊕ 1

¢




with Z 



¯̄
1

¯̄
+

Z 



¯̄
1

¯̄
≤ 1

°°° (⊕ )

°°° 
Then, define  = +1

¡
1

¢−1

⊗ +1 ()  and observe that

kk ≤ 2

Z 



¯̄
1

¯̄
+
°°°+1 ()°°°

≤ 3

³°°° (⊕ )

°°°+ °°°+1 ()°°°´
≤ 4

Define a path 2 such that

+1
¡
2

¢

= 

with Z 



¯̄
2

¯̄
= kk ≤ 4

We have

+1
¡
1

¢

⊗ +1

¡
2

¢

= +1 ()

and


¡
1 ⊕ 1

¢⊗ 
¡
2 ⊕ 0¢ =  (⊕ ) 

Therefore, concatenating 1 ⊕ 1 and 2 ⊕ 0 gives us a path that
satisfies the required conditions of the lemma.

We then need a slight generalization of lemma 9.2.



204 9. Geometric Rough Path Spaces

Lemma 9.25 Let
¡
1 ⊕ 1 2 ⊕ 2

¢
be two paths in 1-var

³
[ ] R ⊕R0

´
.

Assume that

(i) 
¡
1 ⊕ 1

¢

= 

¡
2 ⊕ 2

¢




(ii) +1
¡
1
¢

= +1

¡
2
¢




(iii)
R 


¯̄
1

¯̄
+
R 


¯̄
2

¯̄
≤ 1 and

R 


¯̄
1

¯̄
+
R 


¯̄
2

¯̄
≤ 2

Then, there exists a constant  =  () such that¯̄̄
+1

¡
1 ⊕ 1

¢

− +1

¡
2 ⊕ 2

¢


¯̄̄
≤ 

+1X
=1

+1−1 2 

Proof. Working as in lemma 9.2, we see we can assume without loss of

generalities that 2 ⊕ 2 = 0, and ( ) = (0 1)  Define for convenience

 = 1 ⊕ 1. We have, by definition of +1 and the triangle inequality¯̄̄
+1 () − 1

¯̄̄
≤

X
1+1

¯̄̄̄
¯
Z
1+1

11    
+1
+1

¯̄̄̄
¯ 

Because +1
¡
1
¢

= 1 we have

¯̄̄
+1 () − 1

¯̄̄
≤

X
1+1

{1+1}∩{+1+0}6=0

¯̄̄̄
¯
Z
1+1

11    
+1
+1

¯̄̄̄
¯ 

By (iii),
¯̄̄R
1+1

11    
+1
+1

¯̄̄
is bounded by a constant times

+1−1 2  where  is the cardinal of {1     +1} ∩ {+ 1     + 0}.
That concludes the proof.

We can now generalise lemma 9.3, to give a quantiative estimate on

k (⊕ )k-var for  ≥ 1

Lemma 9.26 Let ( ) be a path in 1-var
³
[0  ] R ⊕R0

´
, and

1 =
°°[] ()°°-var[]  2 = ||-var[] 

For all  ≥ 1 there exists a constant  =  (  ) (and not depending

on the 1-variation norm of  or ) such that

k (⊕ )k−12[0 ] ≤  (9.10)

Proof. Define (H ): for all paths  ⊕  ∈ 1-var
³
[0  ] R ⊕R0

´
with°°[] ()°°-var;[0 ] and ||-var;[0 ] bounded above by 1 we have for some

constant   for all    in [0  ] 

k (⊕ )k−12[0 ] ≤  
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First observe that, for  = 1 we have for    ∈ [0  ] ¯̄̄̄
¯ 

1 ( )
1
⊕ 

2 ( )
1

¯̄̄̄
¯ ≤ 2

i.e. (H1) is satisfied.

Then, notice it is enough to prove that (H ) implies that for all  ⊕
 ∈ 1-var

³
[0  ] R ⊕R0

´
with

°°[] ()°°−[0 ] and ||−[0 ]
bounded above by 1, we have°°° (⊕ )0

°°° ≤ +1

Indeed, for an arbitrary  ⊕  ∈ 1-var
³
[0  ] R ⊕R0

´
 applying the

above to

µ


k[]()k
- va r ;[0 ]

 
||- va r ;[0 ]

¶
would imply that

°°°°°
Ã

°°[] ()°°-var;[0 ] ⊕ 

||-var;[0 ]

!°°°°° ≤  

By time change, the above would also hold for all   when replacing [0  ]

by [ ]  This is precisely saying that

k (⊕ )k-12[0 ] ≤ 

Let us therefore fix some path  ⊕  ∈ 1-var
³
[0  ] R ⊕R0

´
with°°[] ()°°-var;[0 ] and ||-var;[0 ] less than 1 We define the control  by

 ( ) =
1

2

³°°[] ()°°-var;[0 ] + ||-var;[0 ]´ 
which satisfies  (0  ) ≤ 1. The induction hypothesis tells us that°°°°°°

Ã


 ( )
1
⊕ 

 ( )
1

!


°°°°°° ≤ 1

If  + 1 ≤ []  hypothesis tells us that

°°°°+1 ³ 

()1

´


°°°° ≤ 2 If

 + 1  []  then theorem 9.5 tells us that

°°°°+1 ³ 

()1

´


°°°° ≤ 2

Hence, following proposition 9.24, we can define the path  ⊕ , that

is such that

 (⊕ ) = 
¡
 ⊕ 

¢


+1 () = +1
¡


¢
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and such that 1

()1

R 

| |+ 1

()1

R 

| | is bounded above by a

constant 2. Define similarly the paths 
 ,  , and define 

(resp. ) to be the concatenation of  and  (resp.  and ).

Then, define

Γ = +1 (⊕ ) − +1
¡
 ⊕ 

¢




Working as in proposition 9.3,

|Γ − (Γ + Γ)| ≤
¯̄̄
+1

¡
 ⊕ 

¢

− +1 (

 ⊕ )

¯̄̄


which we bound using lemma 9.25:

|Γ − (Γ + Γ)| ≤ 3

+1X
=1

 ( )
+1−

  ( )



≤ 4 ( )


where  = min1≤≤+1
n
+1−


+ 



o
 1 Using, as in the proof of pro-

postion 9.3, that  and  are actually of bounded variation, we obtain using

the (analysis) lemma 6.2 that for all  ,

|Γ| ≤ 5 ( )



We then deduce from the triangle inequality that¯̄̄
+1

³
+1 (⊕ )0

´¯̄̄
≤ 6

which concludes the proof.

9.4.4 Definition of Young pairing map

We define

(i) p to be the extension of the projection onto the first  coordinates of

R ⊕R0 to a homomorphism from 
³
R ⊕R0

´
onto 

¡
R
¢
;

(ii) p0 to be the extension of the projection onto the last 0 coordinates of

R ⊕R0 to a homomorphism from 
³
R ⊕R0

´
onto 

³
R

0
´


Definition 9.27 Let (x ) ∈ -var


¡
[0  ]  []

¡
R
¢¢×-var



³
[0  ] R

0
´
.

A path z in -var


³
[0  ]  

³
R ⊕R0

´´
such that p (z) =  (x)

and p0 (z) =  () is said to be a ( )-Lyons lift or Young pairing of

(x ) of order  . We shall see in the following theorem that such a Young

pairing is unique and will denote it by  (x ) or  (x⊕ ).
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Theorem 9.28 Let (x ) ∈ -var


¡
[0  ]  []

¡
R
¢¢×-var



³
[0  ] R

0
´


and  ≥ 1. Then there exists a unique ( )-Lyons lift of order  of (x ).

By writing  (x ) for this path, we define the map  on 
-var


¡
[0  ]  []

¡
R
¢¢×

-var


³
[0  ] R

0
´
. Moreover, if

1 =
°°[] (x)°°-var;[]  2 = ||-var;[] 

then, for some constant  =  (  ),

k (x )k-12;[] ≤ 

Proof. The existence of such a lift follows the same line as the homogeneous

case, but using lemma 9.26 rather than lemma 9.3. Uniqueness follows from

the following lemma.

Lemma 9.29 Let y and z be two elements of -var


³
[0  ]  

³
R ⊕ R0

´´
such that p (z) = p (y) and p

0
 (z) = p

0
 (y). Then we have z = y.

Proof. Let ( ) be the induction hypothesis that the lemma holds true

for level  paths, i.e. as written in the statement. For  = 1 there is

nothing to prove, hence (1) is true. Assume now that (−1) is true, and
let us prove that ( ) is true. Define 1 = kyk-var;[]  2 = kzk-var;[]
We fix 1      a basis of R and +1     +0 a basis of R

0
 so that

1     +0 is a basis of R ⊕ R0 
Define the

³
R ⊕R0

´⊗
∩ g

³
R ⊕R0

´
-valued path  by

 () = log
¡
z−1 ⊗ y

¢
With  ( ) =  () ≡  () we have exp ( ( )) = z−1 ⊗y;we may also
write

 () =
X

1≤1≤+0
1 () 1 ⊗   ⊗ +0 

Hypothesis (−1) implies that 1 = 0 if {1     }∩{+ 1     + 0} =
∅ and from lemma 7.64,

|1 ( )| ≤ 11 ( )
−
 2 ( )


 

where  is the cardinal of the set {1     } ∩ {+ 1     + 0}  Set
 = 1 + 2 so that

|1 ( )| ≤ 1 [2 ( )]
−


+
 

But for all 1      such that the cardinal of {1     }∩{+ 1     + 0}
is greater than or equal to 1, −


+ 


 1 which implies that for the re-

spective component 1 is of finite -variation for some   1 i.e. it is

equal to 1 (0) = 0.
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9.4.5 Modulus of continuity for the map 

We go quickly in this section as there are no new ideas required. First,

we need to generalize lemmas 9.24 and 9.25 to handle the "difference of

paths".

Lemma 9.30 Let  ≥ 1 and ¡ ¢
=12

be two paths in 1-var
¡
[ ] R

¢×
1-var

³
[ ] R

0
´
. Then there exist paths

©
  :  = 1 2

ª
such that

(i) we have


¡
 ⊕ 

¢


= 
¡
 ⊕ 

¢


+1
¡

¢


= +1
¡


¢

;

(ii) for all    0 such that°°°+1 ()°°°+ °°° (⊕ )

°°° ≤ 

we have for some constant  depending only on  and 



Z 



¯̄


¯̄
+ 

Z 



¯̄


¯̄
≤  ;

(iii) with

 =
¯̄̄
+1

¡
1

¢

− +1

¡
2

¢


¯̄̄
+
¯̄̄


¡
1 ⊕ 1

¢

− 

¡
2 ⊕ 2

¢


¯̄̄


we have



Z 



¯̄
1 − 2

¯̄
+ 

Z 



¯̄
1 − 2

¯̄
≤ 

Proof. As in the proof of lemma 9.24, we can assume  =  = 1 Using

proposition 7.67, there exists two paths
¡
1 1

¢
=12

such that


¡
 ⊕ 

¢

= 

¡
1 ⊕ 1

¢




with Z 



¯̄
1

¯̄
+

Z 



¯̄
1

¯̄
≤ 1Z 



¯̄
11 − 21

¯̄
+

Z 



¯̄
11 − 21

¯̄
≤ 1

¯̄̄


¡
 ⊕ 

¢

− 

¡
 ⊕ 

¢


¯̄̄


Then, define  = +1
¡
1

¢−1

⊗+1

¡

¢


 Observe that
°°°° ≤ 2.

Then, from lemma 9.1¯̄
1 − 2

¯̄
=

¯̄̄³
+1

¡
11

¢

− +1

¡
21

¢


´
−
³
+1

¡
1
¢

− +1

¡
2
¢


´¯̄̄
≤

¯̄̄
+1

¡
1
¢

− +1

¡
2
¢


¯̄̄
+
¯̄̄
+1

¡
11

¢

− +1

¡
21

¢


¯̄̄
≤ 3
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using proposition 7.66. Using of proposition 7.67 one more time, we define

the paths
¡
2

¢
=12

by

+1
¡
2

¢

= 

with Z 



¯̄
2

¯̄
=

°°°° ≤ 2Z 



¯̄
12 − 22

¯̄
=

¯̄
1 − 2

¯̄
≤ 3

Concatenating the paths 1⊕ 1 and 2⊕ 0 gives us two paths
that satisfy the required conditions of the lemma.

We leave the proof of the next lemma, extending lemma 9.25, to the

reader.

Lemma 9.31 Let
¡
 

¢
=12


³
̃ ̃

´
=12

be four pairs in 1-var
³
[ ] R ⊕R0

´
.

Assume that

(i) 
¡
1 ⊕ 1

¢

= 

¡
2 ⊕ 2

¢

and 

³
̃1 ⊕ ̃1

´

= 

³
̃2 ⊕ ̃2

´


(ii) +1
¡
1
¢

= +1

¡
2
¢

and +1

¡
̃1
¢

= +1

¡
̃2
¢




(iii) Z 



¯̄
1

¯̄
+

Z 



¯̄
2

¯̄
≤ 1 and

Z 



¯̄
1

¯̄
+

Z 



¯̄
2

¯̄
≤ 2Z 



¯̄
̃1

¯̄
+

Z 



¯̄
̃2

¯̄
≤ 1 and

Z 



¯̄̄
̃1

¯̄̄
+

Z 



¯̄̄
̃2

¯̄̄
≤ 2

(iv)Z 



¯̄
1 − ̃1

¯̄
+

Z 



¯̄
2 − ̃2

¯̄
≤ 1 and

Z 



¯̄̄
1 − ̃1

¯̄̄
+

Z 



¯̄̄
2 − ̃2

¯̄̄
≤ 2 

Then,¯̄̄³
+1

¡
1
¢

− +1

¡
2
¢


´
−
³
+1

¡
3
¢

− +1

¡
4
¢


´¯̄̄
≤ 

+1X
=1

+1−1 2 

Similar to the proof of theorem 9.10 we are so led to

Theorem 9.32 Let 1 ≤  ≤  so that 1+1  1. Assume
¡
x 

¢
=12

are two pairs of elements in -var


¡
[0  ]  []

¡
R
¢¢×-var



³
[0  ] R

0
´
,

and  a control such that for all   ∈ [0  ]  for  = 1 2°°x°°
-var;[]

+
¯̄

¯̄
-var;[]

≤  ( )


¡
x1x2

¢
+ 

¡
1 2

¢ ≤ 
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Then, for all  ≥ 1 there exists a constant  depending only on  , 

and  such that

−
¡


¡
x1 1

¢
 

¡
x2 2

¢¢ ≤ 

Corollary 9.33 Let  is a control, 1 ≤  ≤ 0 1 ≤  ≤ 0 1 + 1 

1Then, for fixed   0 the maps4³n
kxk ≤ 

o
 0

´
×
³n
|| ≤ 

o
 0

´
→

³
−

³
[0  ]  []

³
R ⊕R0

´´
 0

´
(x ) 7→  (x )

and³n
kxk-var ≤ 

o
 0−

´
×
³n
||-var ≤ 

o
 0−

´
→

³
-var

³
[0  ]  []

³
R ⊕R0

´´
 0−

´
(x ) 7→  (x )

and³n
kxk-var ≤ 

o
 ∞

´
×
³n
||-var ≤ 

o
 ∞

´
→

³
-var

³
[0  ]  []

³
R ⊕R0

´´
 ∞

´
(x ) 7→  (x )

are uniformly continuous.

Proof. A consequence of the previous theorem and an interpolation argu-

ment.

Remark 9.34 As a typical application, we see the the Young pairing (x ) 7→
 (x ) is also continuous in the sense of "uniform convergence with uni-

form bounds". Indeed, take any sequence of path ( ) ∈ 1-var
¡
[0  ] R

¢
such that

sup


³°°[] ()°°-var;[0 ] + ||-var;[0 ]´  ∞

lim
→∞

∞
¡
[] () x

¢
+ ∞

¡
[] () h

¢
= 0

The, by theorem 9.28 and the last part of the previous corollary above it

then follows that

sup


°°[] ( ⊕ )
°°
-var;[0 ]

 ∞

lim
→∞

∞
¡
[] ( ⊕ )  [] (x⊕ )

¢
= 0

40

1 2


=
1 − 2


0 
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9.4.6 Translation of rough paths

In section 7.5.6, we defined the map plus from
¡
R ⊕R¢ to

¡
R
¢
to

be the unique homomorphism such that for all   ∈ R, plus (exp (⊕ )) =

exp (+ )  If x is a 
¡
R ⊕R¢-valued path, we can therefore define

the 
¡
R
¢
-valued path plus (x) :  ∈ [0  ] 7→ plus (x) ∈ 

¡
R
¢
.

When x is the weak geometric rough path equal to S[] (y⊕ )  where y

is a weak geometric -rough path and  a weak geometric -rough path,

plus (x) is then a canonical notion of addition of two paths.

Theorem 9.35 Let (x ) ∈ -var
¡
[0  ]  []

¡
R
¢¢×-var

¡
[0  ] R

¢


The translation of x by  denoted  (x) ∈ -var
¡
[0  ]  []

¡
R
¢¢
 is

defined by

 (x) = plus
¡
[] (x⊕ )

¢


(i) We have for some constant 1 depending only on  and 

k (x)k-var;[0 ] ≤ 1

³
kxk-var;[0 ] + ||-var;[0 ]

´
 (9.11)

(ii) Let
¡
x 

¢
=12

∈ − ¡[0  ]  [] ¡R¢¢×− ¡[0  ] R¢, and
 a control. If we have for all   ∈ [0  ],°°x°°

-var;[]
+
¯̄

¯̄
-var;[]

≤  ( ) 

then


¡
1

¡
x1
¢
 2

¡
x2
¢¢ ≤ 2

³


¡
x1x2

¢
+  (0  )

1−1


¡
1 2

¢´


for some constant 2 depending only on  and 

Remark 9.36 If x=[]
¡

¢
where  is of bounded variation and if 

is also of bounded variation, then  (x) = []
¡
 + 

¢
 i.e. 

¡
x
¢
is

just the canonical lift of the sum of the paths  and 

Proof. We first prove the quantitative bound on
°° ¡x¢°°-var;[0 ]°°° ¡x¢°°° =

°°°plus³[] ¡x ⊕ 
¢


´°°°
≤ 1

°°°[] ¡x ⊕ 
¢


°°° ;
From exercise 9.23, defining

1 =
°°[] ()°°−[]  2 = ||−[] 

we have°°°[] ¡x ⊕ 
¢


°°° ≤ 2
°°[] ¡x ⊕ 

¢°°
−12

³
1 ( )

1
+ 2 ( )

1
´
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From theorem 9.28,
°°[] ¡x ⊕ 

¢°°
−12 is bounded, which proves (9.11).

Then, for   ∈ [0  ]  defining  =  1

()1
1

¡
x1
¢

− 1

()1
2

¡
x2
¢


and using in the third line proposition 7.68, we have

|| =

¯̄̄̄
 1

()1
plus

³
[]

¡
x1 ⊕ 1

¢


´
−  1

()1
plus

³
[]

¡
x2 ⊕ 2

¢


´¯̄̄̄
=

¯̄̄̄
plus

µ
 1

()1
[]

¡
x1 ⊕ 1

¢


¶
− plus

µ
 1

()1
[]

¡
x2 ⊕ 2

¢


¶¯̄̄̄
≤ 1

¯̄̄̄
 1

()1
[]

¡
x1 ⊕ 1

¢

−  1

()1
[]

¡
x2 ⊕ 2

¢


¯̄̄̄

≤
1

¯̄̄̄
 1

()1
 1

()1
[]

³
x1 ⊕  ( )

1−1
1
´


− 1

()1
 1

()1
[]

³
x2 ⊕  ( )

1−1
2
´


¯̄̄̄ 

Using theorem 9.32, we then obtain

|| ≤ 2

³


¡
x1x2

¢
+ 

³
 ( )

1−1
1  ( )

1−1
2
´´

≤ 2

³


¡
x1x2

¢
+  ( )

1−1


¡
1 2

¢´


Hence, as    taking supremum over all   ∈ [0  ] , we have


¡
1

¡
x1
¢
 2

¡
x2
¢¢ ≤ 2

³


¡
x1x2

¢
+  (0  )

1−1


¡
1 2

¢´


As a corollary, interpolation provides to us the following uniform conti-

nuity on bounded sets result.

Corollary 9.37 The rough path translation (x ) 7→  (x) as map from

-var


³
[0  ] []

¡
R
¢´× -var



¡
[0  ] R

¢→ -var


³
[0  ] []

¡
R
¢´

is uniformly continuous on bounded sets, using the -var -metric. This is

also true as map from

1-Höl

³
[0  ]  []

¡
R
¢´×1-Höl

¡
[0  ] R

¢→ 1-Höl

³
[0  ]  []

¡
R
¢´
.

Exercise 9.38 Assume − (x) → 0 Show that this is, in general, not

equivalent to 2 (
)→ x and neither implies the other.

Exercise 9.39 The following exercise will demonstrate (again!) the power

of -variation estimates in the sense the they immediately imply non-trivial
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estimates in terms of Hölder and Besov norm. Recall from Exercise 5.18

that for  ∈ (12 1] and  = 1

||-var;[] ≤ (const)× || 2-var;[] |− |−12 

Assume x ∈ -Höl
¡
[0  ] [1]

¡
R
¢¢
,  ∈  2

¡
[0  ] R

¢
with  ∈

(14 12) and  := + 12. Show that

k (x)k-Höl;[] ≤ (const)×
³
kxk-Höl;[] + || 2;[]

´


Explain the restriction   14.

Solution 9.40 Set  = 1 = 1 (+ 12) and  = 1 so that  ∈ -var

and x ∈ -var . To apply the above corollary we need

1+ 1  1⇐⇒ + (+ 12)  1

which explains the restriction   14. The actual estimate then immedi-

ately follows from

 (x) ≤  kxk-var;[] +  ||-var[]
≤  kxk-Höl;[] |− | +  ||2;[] |− | 

9.5 Comments

The main results of this section can be found in [109], see also [113] and

[116]; although some of our proofs are new. The necessity to distinguish

between geometric rough paths and weak geometric rough paths was recog-

nized in [59]. Exercise 9.39 is taken from [60].
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10

Rough Differential Equations
(RDEs)

Our construction of Young’s integral was based on estimates for classical

Riemann-Stieltjes integrals with constants depending only on the - and

- variation of integrand and integrator respectively, followed by a limit

argument. The same approach works for ordinary differential equations: in

this section we establish estimates for ordinary differential equations with

constants only depending on a suitable -variation bound of the driving

signal. A limiting procedure then leads us naturally to "rough differential

equations".

10.1 Preliminaries

As was pointed out in section 7.1, for a fixed starting-time , a natural

step- approximation for the solution of the ODE

 =  ()  =

X
=1

 () 
  ∈ R

is given by

 ≈  + E( )
³
  ()

´
(10.1)

where

Definition 10.1 (Euler-scheme) Let  ∈ N. Given ( − 1) times con-
tinuously differentiable vector fields  = (1  ) on R, g ∈  ()

¡
R
¢

and  ∈ R we call

E( ) (g) :=
X
=1

X
1
∈{1}

1 · · · ()g1···  

the (increment of) the step- Euler scheme.

When, g =  (), the (step-) signature of a path segment |[],
we call E( )

³
  ()

´
the (increment of) the step- Euler scheme for

 =  ()  over the time-interval [ ].
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We now prove a simple error estimate for the step- scheme. To this

end, it is convenient to assume Lipschitz regularity of the vector fields in

the sense of E. Stein. To prepare for the following definition, given a real

  0, we agree that bc is the largest integer strictly smaller than  so

that

 = bc+ {} with bc ∈ N and {} ∈ (0 1]
Definition 10.2 (Lipschitz map) A map  :  →  between two normed

spaces  is called -Lipschitz (in the sense of E. Stein), in symbols

 ∈ Lip ( ) or simply  ∈ Lip () if  =  ,

if  is bc times continuously differentiable and such that there exists a
constant 0 ≤ ∞ such that the supremum norm of its -derivatives,

 = 0  bc, and the {}-Hölder norm of its bcth derivative are bounded
by  . The smallest  satisfying the above conditions is the -Lipschitz

norm of  and denoted | |Lip .

(It should be noted that Lip -maps have ( − 1) bounded derivatives,
with the ( − 1) derivative being Lipschitz, but need not be  times

continuous differentiable.) This definition applies in particular to a collec-

tion of vector fields  = (1     ) on R, which we can view as a map
 7→ { = ¡1     ¢ 7→P

=1  () 
} from R into  ¡RR¢, equipped

with operator norm. Saying that  ∈ Lip ¡R  ¡RR¢¢ is equivalent
to 1      ∈ Lip (R) but it usually the -Lipschitz norm of  which

comes up naturally in estimates.

We are now ready to state a first error estimate for the Euler approxi-

mation in (10.1).

Proposition 10.3 (Euler ODE estimate) Let   1,  = ()1≤≤ be
a collection of vector fields in Lip−1 (R) and  ∈ 1-var

¡
[ ] R

¢
. Then

there exists a constant  =  () such that,¯̄̄
( ) ( ;) − E( )

³
 bc ()

´¯̄̄
≤ 

µ
| |Lip−1

Z 



||
¶



(10.2)

Proof. At the cost of replacing  by | |Lip−1  and  by
1

| |
Lip−1

 we

can and will assume that | |Lip−1 = 1 We set  := bc and first show
that

 − E( )
³
  ()

´
=

X
1
∈{1}

Z
1

[1 · · · (1)− 1 · · · ()] 11 · · ·  
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To this end, consider a smooth function  and note that for any  ≤ − 1
1 · · · ∈ 1. By iterated use of the change-of-variable formula (cf.

exercise 3.17)

 () =  () +

−1X
=1

X
1
∈{1}

Z
1

1 · · · () 11 · · · 

+
X

1
∈{1}

Z
1

1 · · · (1) 11 · · ·  

and the claim follows from specializing to  = , the identity function.

Clearly,

|| =
¯̄̄̄Z 



 () 

¯̄̄̄
≤ 1

Z 



|| 

Lip−1-regularity of the vector fields implies that 1  (·) is Hölder
continuous with exponent {} ≡  − . Hence, for all  ∈ [ ],

|1  ()− 1  ()| ≤ 2

µZ 



||
¶{}



and after integration, using  = + {},¯̄̄̄Z
1

[1  (1)− 1  ()] 
1
1
· · · 

¯̄̄̄
≤ 3

µZ 



||
¶



Summation over the indices finishes the estimate.

Remark 10.4 The proof also showed that, keeping that notation  = bc,

( ) (0 0;)0 − E( )
³
0 bc ()0

´
=

X
1
∈{1}

Z
01

[1  (1)− 1  (0)] 
1
1
· · · 

=
X

1
∈{1}

Z
0

[1  ()− 1  (0)] 
1


Z
2

22 · · · | {z }
≡(x;1 )

(we underlined integration variables here)

≡
Z
0

[  ()−   (0)] 
¡
x

¢
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10.2 Davie’s estimate

The main result in this section will require a quantitative understanding of

(A) the difference of ODE solutions started at the same point, with dif-

ferent driving signals (but with common iterated integrals up to a

given order);

(B) the difference of ODE solutions started at different points but with

identical driving signals.

This is the content of the following two lemmas.

Lemma 10.5 (Lemma ) Assume that

(i)  = ()1≤≤ is a collection of vector fields in Lip
−1 (R), with   1,

(ii)    are some elements in [0  ],

(iii)  ∈ R (thought of as a "time−" initial condition)
(iv)  and ̃ are some paths in 1-var

¡
[ ] R

¢
such that bc () =

bc (̃),
(v)  ≥ 0 is a bound on | |Lip−1

¡R 

||+ R 


|̃|¢ 

Then, we have for some constant  =  () ¯̄
( )( ;) − ( )( ; ̃)

¯̄
≤  

Proof. We do not give the most straightforward proof (which would be to

insert the Euler approximation of order bc and use the triangle inequality),
but provide a (still simple) proof that will be more instructive later on.

By reparametrisation of time, we can assume ( ) = (0 1)  Define the

concatenation of ̃ (1− ·) and  (·), in symbols

 :=
←−̃
 t 

reparametrized so that  : [0 1]→ R. Then,

( )(0 0;)01 − ( )(0 0; ̃)01 = ( )(0 0;)1 − ( )(0 0; ̃)1

= ( )(0 ( )(0 0; ̃)1; )1 − ( )(0 0; ̃)1

= ( )(0 ( )(0 0; ̃)1; )01

By assumption (iv) and Chen’s theorem,

bc ()01 = bc (̃)
−1
01 ⊗ bc ()01 = 1

Hence E( )
³
· bc ()01

´
≡ 0 and the proof is finished with the ODE Euler
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estimates from proposition 10.3,¯̄
( )(0 ·; )01

¯̄
=

¯̄̄
( )(0 ·; )01 − E( )

³
· bc ()01

´¯̄̄
≤ 1

∙
| |Lip−1

Z 1

0

||
¸

= 1

µ
| |Lip−1

µZ 1

0

||+
Z 1

0

|̃|
¶¶

≤ 1
 .

Lemma 10.6 (Lemma ) Assume that

(i)  = ()1≤≤ is a collection of vector fields in Lip
1 (R),

(ii)    are some element of [0  ],

(iii)  ̃ ∈ R (thought of as "time−" initial conditions)
(iv)  is a path in 1-var

¡
[ ] R

¢
,

(v)  ≥ 0 is a bound on | |Lip1
R 

||

Then, if ( ) ( ·;) denotes the unique solution to  =  ()  from

some time- initial condition, we have¯̄̄
( ) ( ;) − ( ) ( ̃;)

¯̄̄
≤ | − ̃|  exp () 

In particular, the flow associated to  =  ()  is Lipschitz continuous.

Proof. This is precisely Lemma 3.8.

Equipped with these two simple lemmas, and the technical proposition

10.65 in appendix 10.8, we are now ready to provide the crucial -variation

estimate of ODE solution in terms of the -variation of the driving signal.

Lemma 10.7 (Davie’s lemma) Let    ≥ 1. Assume that
(i)  = ()1≤≤ is a collection of vector fields in Lip

−1 (R),
(ii)  is a path in 1-var

¡
[0  ] R

¢
, and x := []() is its canonical lift

to a []
¡
R
¢
-valued path,

(iii) 0 ∈ R is an initial condition.
Then there exists a constant 1 depending on ,  (and not depending on

the 1-variation norm of ) such that for all    in [0  ] ¯̄
( ) (0 0;)

¯̄
-var;[]

≤ 1

³
| |Lip−1 kxk-var;[] ∨ | |Lip−1 kxk



-var;[]

´


(10.3)

Moreover, if  ∈ 1-var
¡
[ ] R

¢
is a path such that

bc
¡


¢

= bc () and

Z 



¯̄


¯̄
≤  kxk-var;[] (10.4)

for some  ≥ 1 then, for any time− initial condition  ∈ R,¯̄̄
( ) ( ;) − ( )

¡
 ;


¢


¯̄̄
≤ 2

³
 | |Lip−1 kxk-var;[]

´
(10.5)
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where 2 depends on  and .

Remark 10.8 In case of non-uniqueness we abuse notation in the sense

that ( ) (0 0;) resp. ( ) ( ;) in the above estimates stands for any

choice of ODE solution to  =  ()  with the indicated initial conditions

at times 0  respectively.

Remark 10.9 From proposition 10.3, inequality (10.5) is equivalent to the

Euler estimate¯̄̄
( ) ( ;) − E( )

³
 ;bc

¡


¢


´¯̄̄
≤ 3

³
| |Lip−1 kxk-var;[]

´


(10.6)

Remark 10.10 A finite variation path (and even Lipschitz continuous)

with the properties (10.4) always exists. Indeed, it suffices to take  as

geodesic associated to the element g = bc () ∈ bc
¡
R
¢
, parame-

trized on the interval [ ]. The length of this curve is precisely equal to

kgk, the Carnot-Caratheodory norm of g ∈ bc
¡
R
¢
, and soZ 



¯̄


¯̄
=

°°°bc ()°°° ≤ °°bc ()°°-var;[]
≤ ()

°°[] ()°°-var;[] 
where in the last step used the estimates for the Lyons-lift map, proposition

9.3, applicable as    and so bc ≥ []. Let us also note thatZ 



¯̄


¯̄
≤ 

Z 



|| (10.7)

since
R 

|| ≤  kxk-var;[] ≤  kxk1-var;[] =  ||1-var;[] 

Proof. The case     2 is discussed in exercises 10.12, 10.14. We assume

here  ≥ 2 so that  =  ()  with time- initial condition  has a

unique solution, denoted as usual by  ( ;). We define x = [] (),

and

 ( ) =
³
 | |Lip−1 kxk-var;[]

´


Thanks to
R 

|| ≤  kxk-var;[] and an elementary ODE estimate

(theorem 3.4) we have¯̄̄
( )

¡
 ;


¢


¯̄̄
≤ 1 ( )

1
  (10.8)

Then, for all    in [0  ] we define,

Γ =  − 
¡
 ;


¢

=  − 

¡
 ;


¢
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Then, for fixed      in [0  ], we have

Γ − Γ − Γ = − ( ;) + 
¡
 ;


¢

+ 

¡
 ;


¢




Define  to be the concatenation of  and  and set, for better

readability,

 : = 
¡
 ;


¢

−  ( ;

)

 : = 
¡
 ;


¢

− 

¡
 

¡
 ;


¢

;

¢


= 
¡
 ;


¢

− 

¡
  + Γ;


¢


which then allows to write

Γ − Γ − Γ = + (10.9)

The term  is estimated by - nomen est omen - lemma , noting thatZ 



¯̄


¯̄
=

Z 



¯̄


¯̄
+

Z 



¯̄


¯̄
≤ 2 kxk-var;[] 

Similarly, lemma  was tailor-made to estimate  and we are led to

|Γ − Γ − Γ| ≤ 1 ( )


+ 2
¯̄

¡
 ;


¢

− 

¯̄
 ( )

1
exp

³
2 ( )

1
´

≤ 1 ( )


+ 1 |Γ| ( )1 exp
³
2 ( )

1
´

The elementary inequality

1 + 2 ( )
1
exp

³
2 ( )

1
´
≤ exp

³
22 ( )

1
´


combined with the triangle inequality, then gives

|Γ| ≤ |Γ| exp
³
22 ( )

1
´
+ |Γ|+ 2 ( )


  (10.10)

On the other hand, using again Lemma ,

|Γ| =
¯̄̄
 − 

¡
 ;


¢


¯̄̄
≤ 3

∙
| |Lip−1

Z 



||+ | |Lip−1
Z 



¯̄


¯̄¸
≤ 3

∙
| |Lip−1 ( + 1)

Z 



||
¸

| {z }
=:̃()



thanks to (10.7).

Obviously, ̃ is a control function whose finiteness depends crucially on

the apriori assumption that  has finite 1-variation and we summarize the

previous estimte in writing

|Γ| =  (̃ ( )

) where   1 (10.11)
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The two estimates (10.10), (10.11) are precisely what is needed to apply

(the elementary analysis) lemma 10.65 (found in the appendix of this chap-

ter): it follows that, for all    in [0  ],

|Γ| ≤ 4 ( )

exp

³
4 ( )

1
´

and we emphasize that 4 does not depend on ̃ and in particular not on

the 1-variation of . From (10.8) and the triangle inequality, we therefore

have for all    in [0  ] 

|| ≤ 1 ( )
1
+ 4 ( )


exp

³
4 ( )

1
´

and if attention is restricted to   such that  ( ) ≤ 1 we obviously have

|| ≤ (1 + 4
4) ( )

1


But then it follows from proposition 5.10 that for all    in [0  ],

||-var;[] ≤ 5

³
 ( )

1 ∨  ( )
´


That also leads to

|Γ| =
¯̄̄
 − 

¡
 ;


¢


¯̄̄
≤ 5

³
 ( )

1 ∨  ( )
´
+ 1 ( )

1

and hence

|Γ| ≤ min
n
4 ( )


exp

³
4 ( )

1
´
 5

³
 ( )

1 ∨  ( )
´
+ 1 ( )

1
o

≤ 6 ( )




The proof is now finished.

Exercise 10.11 Prove that we can take the constant 1 and 2 in lemma

10.7 to be continuous in , for  ∈ [1 )
The following exercise deals with the case     2 in lemma 10.7.

Exercise 10.12 (i) for 1    2 and    0 prove that

−1 ≤ ( − 1) −1 + (2− )   (10.12)

(ii) Under the assumption of lemma 10.7 for     2 prove that if

Γ =  −  () and  ( ) = | |Lip−1 ||−[]  we have for
    

|Γ − Γ − Γ| ≤  ( − 1) |Γ| ( )
−1
 +  (2− ) ( )




(iii) Prove lemma 10.7 in the case   2
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Solution 10.13 (i) Write  =  and dividing by   we see that (10.12)

is equivalent to

−1 ≤ ( − 1)+ (2− ) for   0,

which is checked by basic calculus.

(ii) for     

|Γ − Γ − Γ| = |[ ()−  ()]|
≤  |Γ|−1  ( )1

≤  ( − 1) |Γ| ( )
−1
 +  (2− ) ( )


using (i).

(iii) Exactly the same argument as in the proof of lemma 10.7.

Exercise 10.14 (i) Under the assumption of lemma 10.7 for     2

prove using Young estimates that for all  

||-var;[] ≤ 1 | |Lip−1 ||-var;[]
n
1 + ||-var;[]

o


(ii) Using proposition 5.10, prove inequality (10.3) of lemma 10.7.

Solution 10.15 From Young’s inequality,

|| =

¯̄̄̄Z 



 () 

¯̄̄̄
≤ 1 ||-var;[]

n
| |∞ + | |Lip−1 ||−1-var;[]

o
≤ 1 | |Lip−1 ||-var;[]

n
1 + ||−1-var;[]

o
≤ 2 | |Lip−1 ||-var;[]

n
1 + ||-var;[]

o
≤ 3 | |Lip−1 ||-var;[]

n
1 + ||-var;[]

o1
The -variation of  is controlled by ; ≡ ||-var;[··]. Using similar nota-
tion for  we see that || is estimated by a constant times ;+;;
which is a control (cf. exercise 1.10) and from the basic super-additivity

property of controls,

||-var;[] ≤ 3 | |Lip−1 ||-var;[]
n
1 + ||-var;[]

o1
≤ 3 | |Lip−1 ||-var;[]

n
1 + ||-var;[]

o
(ii) For   such that 22 | |Lip−1 ||−;[]  1, we obtain

||−[] ≤
2 | |Lip−1 ||−;[]³

1− 2 | |Lip−1 ||−;[]
´

≤ 22 | |Lip−1 ||−;[] 
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We then obtain estimates on ||−[] for   such that 22 | |Lip−1 ||−;[] ≥
1 using proposition 5.10.

10.3 RDE solutions

Davie’s lemma gives us uniform estimates for ODE solutions which depend

only on the rough path regularity (e.g. -variation or 1-Hölder) of the

canonical lift of a "nice" driving signal  ∈ 1-var
¡
[0  ] R

¢
. It should

therefore come as no surprise that a careful passage to the limit will yield

a sensible notion of differential equations driven by a "generalized" driving

signals, given as limit of nice driving signals (in -variation or 1-Hölder

rough path sense ...) . This class of generalized driving signals is precisely

the class of weak geometric -rough paths introduced in the previous chap-

ter. Indeed, we saw in section 8.2 that for any x ∈ -var
¡
[0  ] []

¡
R
¢¢
,

there exist () ⊂ 1-var
¡
[0  ] R

¢
which approximate x uniformly with

uniform -variation bounds,

lim
→∞

0;[0 ]
¡
[] () x

¢
= 0 and sup



°°[] ()°°-var;[0 ] ∞. (10.13)
10.3.1 Passage to the limit with uniform estimates

Our aim is now to make precise the meaning of the rough differential equa-

tion (RDE)

 =  () x  (0) = 0 ∈ R (10.14)

where  = ()1≤≤ is a family of sufficienly nice vector fields and x :
[0  ] → []

¡
R
¢
is a weak geometric -rough path. The following is es-

sentially an existence result for such RDEs; since our precise definition is

very much motivated by this result, the precise definition of an RDE so-

lution (together with remarks on alternative definitions) is postponed til

next section.

Theorem 10.16 (Existence) Assume that

(i)  = ()1≤≤ is collection of vector fields in Lip
−1 (R), where   ,

(ii) () is a sequence in 1-var
¡
[0  ] R

¢
, and x is a weak geometric

-rough path such that

lim
→∞

0;[0 ]
¡
[] () x

¢
and sup



°°[] ()°°-var;[0 ] ∞.
(iii) 0 ∈ R is a sequence converging to some 0.
Then, at least along a subsequence ( ) (0 


0 ;) converges in uniform

topology to some limit, say  ∈ 
¡
[0  ] R

¢
. Any such limit point satisfies
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the following estimates:there exists a constant  depending on  , such

that for all    in [0  ],

||-var;[] ≤ 
³
| |Lip−1 kxk-var;[] ∨ | |Lip−1 kxk



-var;[]

´
 (10.15)

Moreover, if  : [ ] → R is any continuous bounded variation path
such that

bc
¡


¢

= bc (x) and

Z 



¯̄


¯̄
≤  kxk-var;[]

for some constant  ≥ 1, then, again for all    in [0  ],¯̄̄
 − ( )

¡
 ;


¢


¯̄̄
≤  0

³
 | |Lip−1 kxk-var;[]

´
 (10.16)

where  0 depends on  .

Proof. Let   0 be small enough such that  +    and let us define

for convenience the function  () = ∨ By Davie’s lemma (i.e. lemma
10.7) for all   ∈ [0  ],¯̄̄

( ) (0 

0 ;)

¯̄̄
≤ 1++

³
| |Lip−1

°°[] ()°°(+)-var;[]´
(10.17)

where 1 is independent of . From corollary 5.31,
°°[] ()°°(+)-var;[] is

equicontinuous in the sense that for all   0 there exists  such that for

all   with |− |   °°[] ()°°(+)-var;[]  

This implies that ( ) (0 

0 ;) is equicontinuous and hence converges

(along a subsequence) to a path . We therefore obtain that

|| ≤ 1++

³
| |Lip−1 lim→∞

°°[] ()°°(+)-var;[]´
≤ 1++

³
| |Lip−1 kxk(+)-var;[]

´
By exercise 10.11, lim→0 1+ = 1 and by lemma 5.14, lim→0 kxk(+)-var;[] =
kxk-var;[]  Hence, for all   ∈ [0  ] 

|| ≤ 1

³
| |Lip−1 kxk-var;[]

´


The right hand side of the last expression defines a control, hence we obtain

(10.15).

From remark 10.9, proving inequality (10.16) is equivalent to the proof

of the following inequality:¯̄̄
 − E( )

³
 ;bc

¡


¢


´¯̄̄
≤ 10162

³
| |Lip−1 kxk-var;[]

´




226 10. Rough Differential Equations (RDEs)

By Davie’s lemma (i.e. lemma 10.7) for all   ∈ [0  ],¯̄̄
( ) (0 


0 ;) − E( )

³
 ;bc

¡


¢


´¯̄̄
≤ 1+

³
| |Lip−1

°°[] ()°°(+)-var;[]´ 
where 1 is independent of . Letting  tends to infinity (along the sub-

sequence that allows us to have convergence of ( ) (0 

0 ;) to ), we

obtain¯̄̄
 − E( )

³
 ;bc (x)

´¯̄̄
≤ 1+

³
| |Lip−1 kxk(+)-var;[]

´


Letting  converge to 0 finishes the proof.

Let us point out explicitly the error estimate for the Euler scheme, which

was established in the final step of the previous proof.

Corollary 10.17 (Euler RDE estimates) Under the assumptions of the

Theorem 10.16 (in particular x ∈ -var
¡
[0  ]  []

¡
R
¢¢
,  ∈ Lip−1 (R)   

) we have¯̄̄
 − E( )

³
 bc (x)

´¯̄̄
≤ 

³
| |Lip−1 kxk-var;[]

´
where  only depends on  . If x is 1-Hölder,¯̄̄
 − E( )

³
 bc (x)

´¯̄̄
≤
³
 | |

Lip−1 kxk


1-Höl;[0 ]

´
× |− | 

Remark 10.18 Note bc ≥ [] so that bc (x) is the Lyons-lift of x. For
 close enough to , bc (x) ≡ x.

10.3.2 Definition of RDE solution and existence

The perhaps simplest way to turn theorem 10.16 into a sensible definition

of what we mean by

 =  () x (10.18)

started at 0 ∈ R, is the following
Definition 10.19 Let x ∈ -var

¡
[0  ]  []

¡
R
¢¢
be a weak geometric

-rough path. We say that  ∈  ([0  ] R) is a solution to the rough
differential equation (short: a RDE solution) driven by x along the collec-

tion of R-vector fields  = ()=1 and started at 0 if there exists

a sequence () in 1-var
¡
[0  ] R

¢
such that (10.13) holds, and ODE

solutions  ∈ ( ) (0 0;
) such that

 →  uniformly on [0  ] as →∞ .

The (formal) equation (10.18) is referred to as rough differential equation

(short: RDE).
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This definition generalizes immediately to other time intervals such as

[ ] and we define ( ) ( ;x) ⊂  ([ ] R) to be the set of all solutions
to the above RDE starting at  at time  driven by x ∈ -var

¡
[ ] []

¡
R
¢¢
.

In case of uniqueness, ( ) ( ;x) is the solution of the RDE.

Let us note that theorem 10.16 is now indeed an existence result for RDE

solutions. That said, there are some possible variations on the theme of

RDE definition on which we wish to comment.

Remark 10.20 (RDE, Davie-definition) Theorem 10.16 and corollary

10.17 allow to pick other "defining" properties of RDE solutions. For in-

stance, A. M. Davie [33] defines  to be an RDE solution if there exists a

control function ̃ and a function  () =  () as  → 0 such that for all

   in [0  ], ¯̄
 − E( ) (x)

¯̄
≤  (̃ ( ))  (10.19)

(Note that (10.19) contains implicit regularity assumption on  so that the

Euler scheme E is well-defined.) Applying corollary 10.17 (take  small

enough so that bc ≥ []  hence bc (x) ≡ x, then  () =  and

̃ ( ) = (const)×kxk-var;[]) shows that any RDE solution in the sense
of definition 10.19 is also a solution in Davie’s sense. With either defin-

ition, let us note that (10.19) leads immediately to the statement that 

satisfies some sort of compensated Riemann-Stieltjes integral equation,

 − 0 = lim
→∞

X
∈

E( )
¡
 x+1

¢


for any sequence of dissection () of [0 ] with mesh tending to zero.

Remark 10.21 (RDE, Lyons-definition) As one expects, RDE solu-

tions can also be defined as solution to a "rough" integral equation and this

is Lyons’ original approach [109, 113, 116]. To this end, one first needs a

notion of rough integration (cf. section 10.6) which allows, for sufficiently

smooth  = (1     ), defined on R
, the definition of an (indefinite)

rough integral Z ·

0

 () z with  = 1 (z)

such that, in the case when z = [] () for some  ∈ 1-var
¡
[0  ] R

¢
,

it coincides with [] () where  is the classical Riemann-Stieltjes integralR ·
0
 () .

Note that (10.18) cannot be rewritten as integral equation of the above form

(for  is not part of the integrating signal x). Nonetheless, the "enhanced"

differential equation (in which the input signal is carried along to the out-

put)

 = 

 =  () 
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can be written in the desired form

0· =
Z ·

0

 () 

provided we set  = ( ) and

 () =

µ
1

 ()

0

0

¶


The above integral equation indeed makes sense as rough integral equation

(with implicit regularity assumption on  so the rough integral is well-

defined) replacing  by a genuine geometric -rough path z ∈ -var
¡
[0  ]  []

¡
R ⊕R¢¢

and solutions can be constructed, for instance, by a Picard-iteration [109,

113, 116]. An R-valued solution is then recovered by projection

z 7→ π1 (z) =  = ( ) 7→ 

and again one can see that a RDE solution in the sense definition 10.19 is

also a solution in this sense.

10.3.3 Local existence

As in ODE theory, if the vector fields have only locally the necessary reg-

ularity for existence, we get local solutions.

Exercise 10.22 We keep the notation of theorem 10.16. Fix    in [0  ]

and assume that for some open set Ω we have for all  ∈ [ ]   ∈ Ω
Prove that

||-var;[] ≤ 
³
| |Lip−1(Ω) kxk-var;[] ∨ | |Lip−1(Ω) kxk



-var;[]

´
where  =  ( ).

As a consequence of this result, we obtain the following:

Theorem 10.23 (Local existence) Asssume that

(i)  = ()1≤≤ is a collection of vector fields Lip
−1
 (R

)  with   ;

(ii) x : [0  ]→ []
¡
R
¢
is a weak geometric -rough path,

(iii) 0 ∈ R is an initial condition.
Then either there exists a (global) solution  : [0  ]→ R to  =  () x

with initial condition 0, or there exists  ∈ [0  ] and a (local) solution
 : [0 )→ R such that  is a solution on [0 ] for any  ∈ (0 ) and

lim
%

| ()| = +∞
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Proof. In simplifies the argument to have unique ODE solutions, we thus

assume  ≥ 2. (Otherwise     2 and some care, similar to the proof

of theorem 3.6, is needed; we leave this extension to the reader.) Without

loss of generality 0 = 0. Pick (
) ⊂ 1-var

¡
[0  ] R

¢
so that

[] ()→ x uniformly

with sup
°°[] ()°°-var;[0 ]  ∞. Replace  by compactly supported

Lip−1-vector fields   which coincide with  on the ball { : || ≤ }.
From the preceding existence theorem,

( (1)) (0 0;
)→ (1) ∈ ( 1) (0 0;x) 

where strictly speaking we have replaced  by a subsequence along which

this convergence holds. If ¯̄̄
(1)

¯̄̄
∞;[0 ]

≤ 1

then we can replace 1 by  and hence found a global solution in which

case we are done. Otherwise,

1 = inf
n
 ≥ 0 :

¯̄̄

(1)


¯̄̄
≥ 1

o
∈ [0  ]

and we switch to another subsequence so that

( (2)) (0 0;
)→ (2);

observing that (1) ≡ (2) on [0 1]. Again, if
¯̄
(2)

¯̄
∞;[0 ] ≤ 2 we found a

global solution, otherwise we define another 2 ≥ 1 by

2 = inf
n
 ≥ 0 :

¯̄̄
(2)

¯̄̄
≥ 2

o
∈ [0  ]

and so on. Iterating this either yields a global solution or a family of RDE

solutions

() ∈ ( ) (0 0;x) 

consistent in the sense that () ≡ (+1) on [0 ] Moreover, be definition

of  we see that | ()| = →∞ as →∞ and the proof is finished.

10.3.4 Uniqueness and continuity

For ordinary differential equations, we saw that existence is guaranteed for

continuous vector fields, while uniqueness requires Lipschitz vector fields,

that is one additional degree of smoothness. In essence, this remains true

for RDEs driven by -rough paths: we saw that RDE solutions exist for
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Lip−1-vector fields when    and we will now see that uniqueness holds,

still assuming   , for Lip-vector fields (or Lip

 since uniqueness is a

local issue!).

We will show uniqueness by establishing Lipschitz regularity of the RDE

flows. Later, we will see that uniqueness also holds for  =  (in this case,

we will only prove uniform continuity on bounded set of the RDE flow

rather than Lipschitzness), and that uniqueness still holds when we relax

the rough path regularity of the driving signal in a way that gives unique-

ness under optimal regularity assumption for RDEs driven by Brownian

motion and Lévy’s area.

The reader may find it useful to quickly revise the proof of Davie’s lemma

which is similar to arguments in this section. In particular, the following

lemma  and  are essentially straight-forward generalizations of what we

called lemma  and  in section 10.2. We start with the elementary yet

useful

Lemma 10.24 Let  ̃ ∈ Lip
¡
RR

¢
with  ∈ [1 2], and   ̃ ̃ :

[0 1]→ 
¡
RR

¢
 and  ̃ ∈ 1-var ([0 1] R). Then, with

∆ ≡
Z 1

0

( ()−  ())  −
Z 1

0

³
̃ (̃)− ̃

³
̃

´´
̃

we have1

|∆| ≤ ||
Lip

Z 1

0

¯̄̄
( − )−

³
̃ − ̃

´¯̄̄
 ||

+

µ
|− |∞[01] +

¯̄̄
̃− ̃

¯̄̄
∞[01]

¶−1
||1-var;[01]

×
µ
||

Lip

¯̄̄
− ̃

¯̄̄
∞[01]

+ | − ̃|Lip−1
¶

+ |̃|
Lip


¯̄̄
̃− ̃

¯̄̄
∞[01]

|− ̃|1-var;[01] 

Proof. Step 1: Fix   ̃ ̃ ∈ R. When   1  ∈ 1 and we can write

 ()−  (̃)−
³
 ()− 

³
̃
´´

asZ 1

0

0 (+ (1− ) ̃) (− ̃) −
Z 1

0

0
³
+ (1− ) ̃

´³
− ̃

´


=

Z 1

0

0 (+ (1− ) ̃)
³
− ̃−

³
− ̃

´´


+

Z 1

0

h
0 (+ (1− ) ̃)− 0

³
+ (1− ) ̃

´i³
− ̃

´


1 In the case  = 1, | − ̃|Lip−1 has to replaced by 2 | − ̃|∞.
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to obtain, using |0|∞ ≤ ||
Lip

for   1,¯̄̄
( ()−  ())−

³
 (̃)− 

³
̃
´´¯̄̄

≤ ||
Lip

¯̄̄
(− )−

³
̃− ̃

´¯̄̄
+ ||

Lip

³
|− |+

¯̄̄
̃− ̃

¯̄̄´−1 ¯̄̄
− ̃

¯̄̄


In fact, this argument remains valid for  = 1 since  ∈ Lip1 implies implies
absolute continuity of  7→  (+ (1− ) ̃).

Step 2: Obviously
¯̄̄³
̃ (̃)− ̃

³
̃
´´
−
³
 (̃)− 

³
̃
´´¯̄̄
≤ | − ̃|Lip−1

¯̄̄
̃− ̃

¯̄̄−1
so that, by the triangle inequality,¯̄̄
( ()−  ())−

³
̃ (̃)− ̃

³
̃
´´¯̄̄
≤ ||

Lip

¯̄̄
(− )−

³
̃− ̃

´¯̄̄
+
³
|− |+

¯̄̄
̃− ̃

¯̄̄´−1 ³
||

Lip

¯̄̄
− ̃

¯̄̄
+ | − ̃|Lip−1

´


Step 3: At last, we write ∆ = ∆1 +∆2 where

∆1 =

Z 1

0

h
 ()−  ()−

³
̃ (̃)− ̃

³
̃

´´i


∆2 =

Z 1

0

h
̃ (̃)− ̃

³
̃

´i
 ( − ̃) 

Using the elementary
¯̄R

   
¯̄
≤ R |   | || ≤ |   |∞ ||1-var we bound

∆1 using the step-2 estimate, while
¯̄̄
̃ (̃)− ̃

³
̃

´¯̄̄
∞
≤ |̃|

Lip

¯̄̄
̃− ̃

¯̄̄
∞[01]

allows to bound ∆2. Together, they imply the claimed estimate.

We now turn to Lemma  and note the assumption of Lip-regularity,

 ≥ 1, in contrast to Lemma  which was formulated for Lip−1 vector
fields,   1.

Lemma 10.25 (Lemma ) Assume that

(i)
¡
 1


¢
1≤≤ and

¡
 2


¢
1≤≤ two collections of vector fields in Lip

 (R)
vector fields, with  ≥ 1;
(ii)    are two elements of [0  ];

(iii) 1  
2
 ∈ R (thought of as a "time−" initial conditions);

(iv) 1 ̃1and 2 ̃2 are driving signals in 1-var
¡
[ ] R

¢
such that

[]
¡
1
¢


= []
¡
̃1
¢




[]
¡
2
¢


= []
¡
̃2
¢

;

(v)  ≥ 0   0 are such that

max

½Z 



|1|+
Z 



|̃1|
Z 



|2|+
Z 



|̃2|
¾
≤ 

max

½Z 



¯̄
1 − 2

¯̄


Z 



¯̄
̃1 − ̃2

¯̄¾
≤ ;
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(vi)  ≥ 0 is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

.

Then, for some constant  depending only on  we have2 ,¯̄̄³
( 1)

¡
 1 ;

1
¢

− ( 1)

¡
 1 ; ̃

1
¢


´
−
³
( 2)

¡
 2 ;

2
¢

− ( 2)

¡
 2 ; ̃

2
¢


´¯̄̄
≤ 

³¯̄
1 − 2

¯̄
+ 1



¯̄
 1 −  2

¯̄
Lip−1

´
 ()


exp ()

+  ()
[]
exp ()

Proof. First, as in the proof of Lemma A, we take ( ) = (0 1) and

observe

( )

¡
0 0;


¢
01
−( )

¡
0 0; ̃


¢
01
= ( )

¡
0 ( )

¡
0 0; ̃


¢
1
; 
¢
01
;  = 1 2

where 1 =
←−̃
1 t 1 and 2 =

←−̃
2 t 2 are reparametrized in the same way

to a path from [0 1] to R By assumption (iv) and Chen’s theorem 1 has

trivial step-[] signature, i.e.

[]
¡
1
¢
01
= []

¡
̃1
¢−1
01
⊗ []

¡
1
¢
01
= 1, (10.20)

and similarly for 2. Next, by assumption (v) we have
R 1
0

¯̄
1 − 2

¯̄
≤ 2

Using the Lispchitzness of the flow of ODEs, in the quantitative form of

theorem 3.8, we see that it is enough to prove the above lemma with ̃2 =

̃1 = 0. We can thus assume 1 = 1 and 2 = 2. To simplify notation,

define

 = ( )

¡
0 0;


¢

  = 1 2

and, for  := [],

x

1 =

Z
11

1 ⊗   ⊗  ∈
¡
R
¢⊗

  = 1 2

Observe that

max
=12

µZ 1

0

¯̄̄
x


1

¯̄̄¶
≤  

From (10.20) and remark 10.4 concerning the remainder representation

of an Euler approximation3, we have

01 = 01−E( )

³
0 

¡

¢
01

´
=

Z 1

0

£
 

¡

¢−  

¡
0
¢¤
x


1   = 1 2

2For  = 1,
 1 −  2


Lip−1 is replaced by 2

 1 −  2

∞.

3 If  = (1     ) we think of 
 ≡ 1     1∈{1} as an element

of the the (Euclidean) space

R
⊗

which contracts naturally with elements of form

x

1 ∈


R
⊗

.
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and so we have

101 − 201 =

Z 1

0

£
 1

¡
1
¢−  1

¡
10
¢¤
x

1
1 

−
Z 1

0

£
 2

¡
2
¢−  2

¡
20
¢¤
x

2
1 

Note that   ∈ Lip where  :=  −  + 1 ∈ [1 2) since  = [].

Using lemma 10.24 to the paths  7→ 1 
1
0 

2
 

2
0 , we then obtain, using

the bound max=12

³¯̄
 

¯̄
Lip−+1

´
≤ 1

 ¯̄
101 − 201

¯̄
≤ 1


¯̄
10 − 20

¯̄
∞[01]

¯̄̄
x
1
1

¯̄̄
1-var;[01]

+1

³¯̄
10
¯̄
∞[01]

+
¯̄
20
¯̄
∞[01]

´−1 ¯̄̄
x
1
1

¯̄̄
1-var;[01]

×
³

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−

´
+1

 
¯̄
20
¯̄
∞[01]

¯̄̄
x
1
1 − x21

¯̄̄
1-var;[01]



We first observe, by theorem 3.19,¯̄
101 − 201

¯̄
∞[01]

≤ 2
¡¯̄
10 − 20

¯̄
+  +

¯̄
 1 −  2

¯̄
∞ 
¢
2

and the ODE estimate of theorem 3.4 gives¯̄
10
¯̄
∞[01]

+
¯̄
20
¯̄
∞[01]

≤ 3

Moreover, we easily see that¯̄
 1 −  2

¯̄
Lip− ≤ 4

−1 ¯̄ 1 −  2
¯̄
Lip−1

and, from proposition 7.66, we have
¯̄̄
x
1
1 − x21

¯̄̄
1-var;[01]

≤ 5
−1. We

also have
¯̄
x1

¯̄
1-var;[01]

≤  of course. Putting all these inequality together

gives the desired estimate.

Exercise 10.26 In the final step of the proof of Lemma ̄, detail how all

estimates are put together.

Solution 10.27 Assume  1 =  2 at first. Using¯̄
10 − 20

¯̄
∞[01]

≤ 2
¡¯̄
10 − 20

¯̄
+ 

¢
2

get ¯̄
101 − 201

¯̄
. 

¡¯̄
10 − 20

¯̄
+ 

¢


+()
−1


¯̄
10 − 20

¯̄
+ 

¡
−1

¢
≡

¯̄
10 − 20

¯̄
∆1 + ∆2
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with

∆1 =  + ()
−1



≤ (const)×
h
()

+1
+ ()

+−1
i


From  = [] it is clear that min ( + 1  +  − 1) ≥  and so

∆1 ≤ (const)× () 

Similarly,

∆2 = +1 + +1 .  ()



When  1 6=  2 we have¯̄
101 − 201

¯̄
≤
¯̄
10 − 20

¯̄
∆1 + ∆2 +

¯̄
 1 −  2

¯̄
Lip−1 ∆3

with

∆3 = ()
−1

 ≤ ()−1 

. ()
−1

1 =
1


()




Lemma 10.28 (Lemma ) Assume that

(i)
¡
 1


¢
1≤≤ and

¡
 2


¢
1≤≤ are two collections of vector fields in Lip

 (R)
vector fields, with  ≥ 1,
(ii)    are some elements of [0  ],

(iii) 1  
2
  ̃

1
  ̃

2
 ∈ R(thought of as a "time−" initial conditions)

(iv) 1 2 two driving signals in 1-var
¡
[ ] R

¢
,

(v)  ≥ 0   0 are such that

max

½Z 



|1|
Z 



|2|
¾
≤  and

Z 



¯̄
1 − 2

¯̄
≤ 

(vi)  is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

.

Then, we have for some constant  =  (),¯̄̄n
( 1)

¡
 1 ;

1
¢

− ( 1)

¡
 ̃1 ;

1
¢


o
−
n
( 2)

¡
 2 ;

2
¢

− ( 2)

¡
 ̃2 ;

2
¢


o¯̄̄
≤  exp ()

¯̄¡
1 − ̃1

¢− ¡2 − ̃2
¢¯̄

+  exp ()
¡¯̄
1 − ̃1

¯̄
+
¯̄
2 − ̃2

¯̄¢min(2)−1 ³¯̄
̃1 − ̃2

¯̄
+ 1



¯̄
 1 −  2

¯̄
Lip−1 + 

´
+  exp ()

¯̄
2 − ̃2

¯̄


Proof. At the price of replacing  by min (2 ) ∈ [1 2] we can and will
assume that  ∈ [1 2]. Define for  ∈ [ ] 

 = ( )

¡
 ;


¢


and ̃ = ( )

¡
 ̃;


¢


with  = 1 2
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We define

 =
¯̄©
1 − ̃1

ª− ©2 − ̃2
ª¯̄

with  ∈ [ ],

and have to estimate . Fom lemma 10.24, applied with  ∈ [1 2], we see
for all  ∈ [ ]

 =

¯̄̄̄Z 



¡
 1
¡
1
¢− 

¡
̃1
¢¢
1 −

Z 



¡
 2
¡
2
¢−  2

¡
̃2
¢¢
2

¯̄̄̄

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R 


¯̄©
1 − ̃1

ª− ©2 − ̃2
ª¯̄

¯̄
1

¯̄
+
³¯̄
1 − ̃1

¯̄
∞[]

+
¯̄
2 − ̃2

¯̄
∞[]

´−1
×
¯̄
1
¯̄
1-var;[]

³

¯̄
1 − 2

¯̄
∞[]

+
¯̄
 1 −  2

¯̄
Lip−1

´
+

¯̄
2 − ̃2

¯̄
∞[]

¯̄
1 − 2

¯̄
1-var;[]



From theorem 3.15 we have¯̄
 − ̃

¯̄
∞[]

≤ 1
¯̄
 − ̃

¯̄
exp (1)   = 1 2¯̄

̃1 − ̃2
¯̄
∞[]

≤ 1
¯̄
̃1 − ̃2

¯̄
exp (1)

+1
¯̄
 1 −  2

¯̄
Lip−1  exp (1)

+1 exp (1) 

Hence, we obtain

 ≤ 

Z 




¯̄
1

¯̄
+ 

¯̄©
1 − ̃1

ª− ©2 − ̃2
ª¯̄

+2
¡¯̄
1 − ̃1

¯̄
+
¯̄
2 − ̃2

¯̄¢−1
 exp (2)

µ¯̄
̃1 − ̃2

¯̄
+
1



¯̄
 1 −  2

¯̄
Lip−1 + 

¶
+1

¯̄
2 − ̃2

¯̄
 exp (1) 

The proof is then finished by an application of (Gronwall’s) lemma 3.2.

Equipped with these two lemmas, we can prove (under some regularity

assumptions) that the map x 7→ ( ) (0 0;x) is well defined and locally

Lipschitz continuous in all its parameters (vector fields, initial condition,

and driving signal).

Theorem 10.29 (Davie) 4Assume that

(i)  1 =
¡
 1


¢
1≤≤ and  2 =

¡
 2


¢
1≤≤ two collections of Lip

-vector

fields on R for    ≥ 1;
(ii)  a fixed control5 ,

4The present theorem stands in a similar relation to Davie’s lemma as Lemma ̄ to

, or lemma ̄ to .
5 In view of (iii) one can take  ( ) =


=12

x
-var;[]

.
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(iii) x1x2 two weak-geometric -rough path in -var
¡
[0  ]  []

¡
R
¢¢
,

with
°°x°°

− ≤ 1
(iv) 10  

2
0 ∈ R thought of time-0 initial conditions,

(v)  is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

.

Then there exists a unique RDE solution starting at 0 along 
 driven by

x denoted by

 ≡ ( )

¡
0 0;x


¢


for  = 1 2. Moreover, there exists  =  ( ) such that6

;[0 ]
¡
1 2

¢ ≤ 
h

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + ;[0 ]

¡
x1x2

¢i
· exp ( (0  )) 

Proof. The present regularity assumptions on the vector fields, Lip with

  , are more than enough to guarantee existence of RDE solutions.

More precisely, let us pick solutions

 ∈ ( )

¡
0 0;x


¢
  = 1 2

We may assume, without loss of generality,     []+1 so that [] = []

and also set

 := ;[0 ]
¡
x1x2

¢


For all    in [0  ] we can find paths 1 and 2 such that

[]
¡


¢

= x  = 1 2

and such that, for a constant 1 = 1 (),Z 



¯̄


¯̄
≤ 1 ( )

1
Z 



¯̄
1 − 2

¯̄
≤ 1 ( )

1
;

indeed, this is possible thanks to propostion 7.67 applied to

 :=  1

()1
x ∈ []

¡
R
¢
  = 1 2

noting that k1k  k2k ≤ 1 and |1 − 2| [](R) ≤ . After these prelimi-

naries, let us now fix      in [0  ] and define

 :=  t 

6Here: ;[0 ]

1 2


=
1 − 2


;[0 ]
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the concatenation of  and . Following Davie’s lemma, we define

Γ =  − ( )

¡
 ;


¢


  = 1 2

and set Γ := Γ
1
 − Γ2 From the estimates in (the existence) theorem

10.16, using that the vector fields are [] -Lipschitz, we have¯̄
Γ

¯̄
≤ 1
2
1

³
 ( )

1
´[]+1

  = 1 2 (10.21)

and hence ¯̄
Γ

¯̄
≤ 1

³
 ( )

1
´[]+1



We now proceed similarly as in the proof of Davie’s lemma, cf. (10.9).

Namely, for  = 1 2, we define

 ≡ ( )

¡
 ;


¢

− ( )

¡
 ;


¢




noting that []
¡


¢
= []

¡


¢
, and

 ≡ ( )

¡
 ;


¢

− ( )

¡
 ( )

¡
 ;


¢

;

¢


= ( )

¡
 ;


¢

− ( )

¡
  − Γ;

¢




We also set ̄ := 1−2 ̄ := 1−2 so that Γ−Γ−Γ = ̄+ ̄

and hence ¯̄
Γ − Γ − Γ

¯̄
≤
¯̄
̄
¯̄
+
¯̄
̄
¯̄


We now apply lemma  and  with parameters  := 1 ( )
1

  := .

Lemma  was tailormade to give the estimate¯̄
̄
¯̄
≤ 2

µ¯̄
1 − 2

¯̄
+
1



¯̄
 1 −  2

¯̄
Lip−1

¶h
 ( )

1
i
exp

³
2 ( )

1
´

+2
h
 ( )

1
i[]+1

exp
³
2 ( )

1
´


Reobserving that

max
=12

¯̄
( )

¡
 ;


¢

− 

¯̄
≤ 1

³
 ( )

1
´[]+1

 (10.22)

lemma  tells us that¯̄
̄
¯̄
=

¯̄
1 −2

¯̄
≤ 3

¯̄
Γ

¯̄
 ( )

1
 exp

³
3 ( )

1
´

+3

µ¯̄
1 − 2

¯̄
+
1



¯̄
 1 −  2

¯̄
Lip−1 +  ( )

1

¶
·
½h

 ( )
1
i1+([]+1)(min(2)−1)

exp
³
3 ( )

1
´¾

+3
h
 ( )

1
i[]+2

exp
³
3 ( )

1
´
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Observe that 1+([] + 1) (min (2 )− 1) ≥ min ([] + 2 1 +  ( − 1)) ≥ 

and obviously [] + 2 ≥  Putting things together, we obtain¯̄
Γ

¯̄
≤

¯̄
Γ

¯̄
exp

³
4 ( )

1
´
+
¯̄
Γ

¯̄
(10.23)

+4

µ
max
∈{}

¯̄
1 − 2

¯̄
+ +

1



¯̄
 1 −  2

¯̄
Lip−1

¶
·
nh

 ( )
1
i
exp

³
4 ( )

1
´o

We also have, from theorem 3.19, that¯̄̄¡
1 − 2

¢

− Γ

¯̄̄
=
¯̄̄
( 1)

¡
 1 ;

1
¢

− ( 2)

¡
 2 ;

2
¢


¯̄̄
is bounded above by

5

µ¯̄
1 − 2

¯̄
+
1



¯̄
 1 −  2

¯̄
Lip−1 + 

¶
 ( )

1
exp

³
5 ( )

1
´


(10.24)

Thanks to estimates (10.23), (10.24) and (10.21), we can apply lemma 10.69

to ( ) 7→ Γ and  7→ ¡
1 − 2

¢
with the  parameter in that lemma set

to 1


¯̄
 1 −  2

¯̄
Lip−1 +  We therefore see that

¯̄
1 − 2

¯̄
∞;[0 ] ≤ 6

µ¯̄
10 − 20

¯̄
+
1



¯̄
 1 −  2

¯̄
Lip−1 + 

¶
exp (6

 (0  )) 

and that for all    in [0  ] , with  =   1,

¯̄
Γ

¯̄
≤ 7

µ¯̄
10 − 20

¯̄
+ +

1



¯̄
 1 −  2

¯̄
Lip−1

¶
 ( )


exp (7

 (0  )) 

These estimates plus (10.24) easily give that, for all    in [0  ] ¯̄
1 − 2

¯̄
≤ 8

³

¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 

´
 ( )

1
exp (8

 (0  ))

and this implies the claimed Lipschitz estimate. Obtaining uniqueness of

RDE is then easy: take two solutions in ( 1)

¡
0 10x

1
¢
 The above es-

timate tells us the supremum distance between these two solutions is 0.

We now discuss some corollaries. First observe that a locally Lipschitz

estimate in 1-Höl;[0 ]-metric follows immediately from setting  ( )

proportional to (− ). The corresponding result for -var;[0 ]-metric is

the content of

Corollary 10.30 Assume that

(i)  1 =
¡
 1


¢
1≤≤ and  2 =

¡
 2


¢
1≤≤ two collections of Lip

-vector
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fields on R for    ≥ 1;
(ii) x1x2 two weak-geometric -rough paths in -var

¡
[0  ]  []

¡
R
¢¢
;

(iii) 10 
2
0 ∈ R thought of time-0 initial conditions;

(iv)  is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

and  a bound on
°°x1°°

-var;[0 ]

and
°°x2°°

-var;[0 ]


Then, if  = ( )

¡
0 0;x


¢
, we have for some constant  depending only

on  and 

-var;[0 ]
¡
1 2

¢
≤ 

h³

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1

´
+ -var;[0 ]

¡
x1x2

¢i
exp

¡


¢


Proof. Follows from theorem 10.29 and corollary 8.8.

Thanks to theorem 8.10 we can "locally uniformly" switch from the

inhomogenous path-space metrics (,-var) to the homogenous ones

( -var). In fact, we can state the following.

Corollary 10.31 Let  = ()1≤≤ a collection of Lip
-vector fields on

R for    ≥ 1;
If  is a control, 0 ≥  and   0 the maps7

R ×
³n
kxk ≤ 

o
 0

´
→ ¡

− ([0  ] R)  0
¢

(0x) 7→ ( ) (0 0;x)

and

R ×
³n
kxk-var ≤ 

o
 0-var

´
→ (-var ([0  ] R)  0-var)

(0x) 7→ ( ) (0 0;x) 

and

R ×
³n
kxk-var ≤ 

o
 ∞

´
→ ¡

− ([0  ] R)  ∞
¢

(0x) 7→ ( ) (0 0;x) 

are also uniformly continuous.

Proof. For 0 =  this follows from the above theorem 10.29/corollary

10.30 combined with the remark that inhomgoenous "" path space metrics

are "Hölder equivalent" on bounded sets to the homogenous ones (theorem

8.10). Recalling the 0∞-estimate (proposition 8.15) we only have to
consider the metrics 0-var for 

0   and 0 and since

0
¡
x1x2

¢ ≤ 0-var
¡
x1x2

¢
7All sets refering to x are subsets of -var


[0  ]  []


R
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it suffices to consider the 0-case. But this is easy: take ̃ ∈ ( ) and
consider two paths x1 and x2 in

n
kxk ≤ 

o
such that 0

¡
x1x2

¢
 .

From interpolation

̃−
¡
x1x2

¢ ≤ 1−
0
(2)

0

and noting kxk̃− ≤  where  may depend on  (0  ) it only remains to

use (uniform) continuity (on bounded sets) of the Itô-Lyons map, applied

with ̃ instead of .

10.3.5 Convergence of Euler Scheme

Consider a RDE of the form

 =  () x (10.25)

As usual, x denotes a geometric -rough path and we assume sufficient

regularity on the collection of vector fields  (i.e. that they are Lip−1,
  ) to ensure existence of a solution . An Euler scheme of order ≥ []
is a natural way to approximate such solutions, at least locally on some

(small) time interval [ ] and we have already seen the error estimate (cf.

corollary 10.17)¯̄
 − E( ) (x)

¯̄
.  ( )


with  ( ) = kxk-var;[] ;

which was closely related to our existence proof of RDE solutions. We may

rewrite the above as

 =  +  ≈  + E( ) (x)

Iteration of this leads to an approximate solution over the entire time hori-

zon [0  ]. We formalize this in

Definition 10.32 (Euler scheme for RDEs) Given g ∈ 
¡
R
¢
and

( − 1) times continuously differentiable vector fields  , we write

Eg =  + E( ) (g) 

Then, given  = {0 = 0  1  · · ·   = } and x ∈ -var


¡
[0  ]  []

¡
R
¢¢

and a fixed integer  ≥  we define the "step- Euler approximation" to

(10.25) at time  ∈  by8


Euler;


:= E←−00 := E
 (x)−1 ◦ · · · ◦ E(x)100

8x is a geometric -rough path and  (x) its unique step- Lyons lift.
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Theorem 10.33 Assume x ∈ -var
¡
[0  ]  []

¡
R
¢¢
and  ∈ Lip;  

. Set  := bc ≥ [] and define the control

 ( ) = | |Lip kxk-var;[] .

Then there exists  =  (     ) so that

¯̄̄
 − 

Euler;


¯̄̄
≤ (0 )

X
=1

 (−1 )

  = ( + 1)   1.

If x ∈ 1-Höl
¡
[0  ]  []

¡
R
¢¢
and +1 −  ≡ || for all  then¯̄̄

 − 
Euler;


¯̄̄
≤  ×  | |+1Lip kxk+11-Höl;[0 ] ||−1

∼ ||−1 

The proof of theorem 10.33 will be an immediate consequence of the

forthcoming lemma 10.35 and proposition 10.36. As for most results in

this chapter, the proof relies on, essentially equivalent but easier-to-handle,

geodesic error estimates. We thus prepare the proof of theorem 10.33 with

another definition.

Definition 10.34 (Geodesic scheme for RDEs) Given = {0 = 0  1  · · ·   = },
x ∈ -var



¡
[0  ] []

¡
R
¢¢
  a collection of Lip-vector fields, and

a fixed integer  ≥  we define the "step- geodesic approximation" to

(10.25) via any  ∈ 1-var
¡
[0  ] R

¢
such that9


¡

¢
−1

= x−1 for all  = 1     ;

sup
∈D[0 ]

°° ¡¢°°-var;[0 ] ≤  kxk-var;[0 ] 

The "step- geodesic approximation" to (10.25) at time  ∈ [0  ] is then
simply defined as


geo;
 := ( )

¡
0 0;


¢



Lemma 10.35 Under the assumptions of theorem 10.33, there exists  =

 ( ) such that the

¯̄̄

Euler;
 − 

geo;


¯̄̄
≤ (0 )

#X
=1

 (−1 )
(+1)

9 Such  always exist and can be constructed as concatenations of geodesics asso-

ciated to  (x)−1 ∈ 

R

. From k (x)k-var;[0 ] ≤  kxk-var;[0 ] we

can then take  = 31−1 .
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Proof. Step 1: From the geodesic error estimates of section 10.3.4,  ∈
Lip̃−1 (R)  any ̃  , entails¯̄̄
( )

¡
 ;


¢

− E( )

³
 b̃c

¡


¢


´¯̄̄
≤ 2

µ
| |Lip̃−1

Z 



¯̄


¯̄¶̃


By assumption,    and  ∈ Lip ⊂ Lipbc = Lip(+1)−1. Since +1 =
bc+ 1 ≥    we see that¯̄̄
( )

¡
 ;


¢

− E( )

³
  (x)

´¯̄̄
≤ 

³
| |Lip kxk-var;[]

´(+1)


Step 2: From Lipschitzness of the RDE flow (implied a fortiori by theorem

10.29) we have¯̄
( )

¡
0 1;x

¢− ( )
¡
0 2;x

¢¯̄
∞;[+1] ≤ 1

¯̄
1 − 2

¯̄
exp (1 (0 +1))

(10.26)

For  ∈ {1     } where  = # we have

∆() : =
¯̄̄

Euler;


− 
geo;


¯̄̄
=
¯̄̄
E←−00 − ( )

¡
0 0;


¢


¯̄̄
=

¯̄̄̄
E←−−1

¡
E−1←−00

¢− ( )

³
−1 ( )

¡
0 0;


¢
−1

;
´


¯̄̄̄
≤

¯̄̄
E←−−1

¡
E−1←−00

¢− ( )
¡
−1E−1←−00;

¢


¯̄̄
(10.27)

+

¯̄̄̄
( )

¡
−1E−1←−0 ;

¢

− ( )

³
−1 ( )

¡
0 0;


¢
−1

;
´


¯̄̄̄
(10.28)

Using step 1 we have can bound (10.27) from above by 1 ( +1)

where

 = ( + 1) . On the other hand, Lipschitzness of the RDE flow (implied

a fortiori by theorem 10.29) gives that (10.28) is bounded from above by

2∆
(−1) exp ( ( +1)). This gives a recursion for ∆ and together with

∆0 = 0 and super-additivitiy of  we get

∆ ≤ ∆−1 exp ( (0 )) + 1 (−1 )


≤ 1

h
(1) (0 1)


+ · · ·+ (−1) (−2 −1)


+  (−1 )


i

≤ 1
(0)

X
=1

 (−1 )

.

The proof is then finished upon setting  = #.

Proposition 10.36 Under the assumptions of theorem 10.33, there exists

 =  ( ) such that we have we have the error estimate (for the step-

geodesic approximation),¯̄̄
 − 

geo;


¯̄̄
≤  exp ( (0  ))

#X
=1

 (−1 )
(+1)
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Proof. With  = () define 
 : [  ] → R by  = 

¡
   


¢


Observe that ¯̄̄
 − 

geo;


¯̄̄
≤

X
=1

¯̄
+1 − 

¯̄


Since +1 = 
¡
+1 +1  


¢

and  = 

³
+1 

¡
   


¢
+1

 
´


we can use the RDE Lipschitz flow estimate to see that, with  ( ) =

| |Lip kxk-var;[] as earlier,¯̄
+1 − 

¯̄
≤ 1 exp (1 (+1  ))

³
+1 − ( )

¡
   


¢
+1

´
= 1 exp (1 (+1  ))

³
+1 − ( )

¡
   


¢
+1

´
with 1 = 1 ( ) uniformly over simply because

°° ¡¢°°-var;[+1 ] ≤
 kxk-var;[+1 ] for all . From the geodesic error estimate it is clear that¯̄

+1 − 
¯̄
≤ 2 exp (2 (0  ))×  ( +1)



for   1. In fact, the same argument as in step 1 of the previous lemma,

shows that  can be taken to be ( + 1)  and with

¯̄̄
 − 

geo;


¯̄̄
≤

−1X
=0

¯̄
+1 − 

¯̄
≤ 2 exp (2 (0  ))×1

#X
=1

 (−1 )
(+1)

the proof is finished.

10.4 Full RDE solutions

The RDEs we considered in the previous subsection map weak geometric

-rough paths to R-valued paths of bounded -variation. We shall now see
that one can construct a "full" solution as a weak geometric -rough paths

in its own right. This will allow to use a solution to a first RDE to be the

driving signal for a second RDE. Relatedly, RDE solution can then be used

(as integrators) in rough integrals, cf. section 10.6 below. This is not only

for a "functorial" beauty of the theory! It is precisely this reasoning that

will enable us later to deal with various derivatives of RDEs such as the

Jacobian of an RDE flow. Let us also remark that in Lyons’ orginal work

[109] existence and uniqueness was established by Picard iteration and so

it was a necessity to work with "full" RDE solutions throughout.
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10.4.1 Definition

Definition 10.37 Let x ∈ -var
¡
[0  ]  []

¡
R
¢¢
be a weak geometric

-rough path. We say that y ∈ 
¡
[0  ]  [] (R)

¢
is a solution to the

full rough differential equation (short: a full RDE solution) driven by x

along the vector fields () and started at y0 ∈ [] (R) if there exists
a sequence () in 1-var

¡
[0  ] R

¢
such that (10.13) holds, and ODE

solutions  ∈ ( ) (0 1 (y0) ;
) such that

y0 ⊗ [] (
) converges uniformly to y when →∞.

The (formal) equation y =  () x is referred to as full rough differential

equation (short: full RDE).

This definition generalizes immediately to time intervals [  ] and we

define π( ) (y;x) ⊂ 
¡
[  ]  [] (R)

¢
to be the set of all solutions to

the above full RDE starting at y at time , and in case of uniqueness,

π( ) (y;x) is the solution of the full RDE
10.

A key remark about full RDEs (driven by x along vector fields  ) is that

they are just RDEs (in the sense of the previous section) driven by the x

but along different vector fields as made precise in the next theorem. We

have

Theorem 10.38 Assume that

(i)  = ()1≤≤ is collection of vector fields in Lip
−1 (R), where   ,

(ii) x : [0  ]→ []
¡
R
¢
is a weak geometric -rough path

(iii) y0 ∈ [] (R) ⊂  [] (R) ∼= R1++···+[] is an initial condition,
(iv) y is a solution of the full RDE driven by x, along ( )  started at y0

Then,  7→  := y ∈ [] (R) ⊂  [] (R) ∼= R1++···+[] is a solution to
the RDE

 = () x

driven by x along Lip
−1
 (R

)-vector fields on  [] (R) ∼= R1++···+
[]

given by

 () =  ⊗  (1 ())   = 1     

Proof. By definition of full RDEs and RDEs, we can assume that x =[] ()

where  is of bounded variation. Then, if  = ( ) (0 0;) 

y = 
³
y0 ⊗ [] ()0

´
= y0 ⊗ [] ()0 ⊗ 0

= y ⊗  () 

10Make sure to distinguish between R-valued RDE solutions denoted by  () and

[] (R)-valued full RDE solutions denoted by the bold greek letter  () 
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10.4.2 Existence

Theorem 10.38 is useful as it immediately implies a local existence theorem

for full RDEs. For global existence we need to rule out explosion and we

do this via the following quantitative estimates for full RDEs.

Theorem 10.39 Assume that

(i)  = ()1≤≤ is collection of vector fields in Lip
−1 (R), where   ;

(ii) () is a sequence in 1-var
¡
[0  ] R

¢
, and x is a weak geometric

-rough path such that

lim
→∞

0;[0 ]
¡
[] () x

¢
= 0 and sup



°°[] ()°°-var;[0 ] ∞;
(iii) y0 ∈ [] (R) is a sequence converging to some y0.
Then, at least along a subsequence y0⊗[]

¡
( ) (0 1 (y


0 ) ;)

¢
converges

in uniform topology. Moreover, there exists a constant 1 depending on 

, such that for any such limit point y, we have

kyk-var[] ≤ 1

³
| |Lip−1 kxk-var;[] ∨ | |Lip−1 kxk



-var;[]

´
.

(10.29)

Then, if  : [ ] → R is any continuous bounded variation path such
that

bc
¡


¢

= bc (x) and

Z 



¯̄


¯̄
≤  kxk−[]

for some constant  ≥ 1, we have for all    in [0  ] and all  ∈
{1     bc} ¯̄̄



³
bc (y) − bc

¡
( )

¡
 1 (y) ;


¢¢



´¯̄̄
(10.30)

≤ 2

¯̄̄̄³
 | |Lip−1 kxk-var;[]

´+−1
∨
³
 | |Lip−1 kxk-var;[]

´ ¯̄̄̄
where 2 depends on  and . (For −  small, the term (   )

+−1
dom-

inates.)

Proof. Observe first it is enough to prove the quantitative estimates for

x = [] ()  where  is a bounded variation path, so that y = y0 ⊗
[]

¡
( ) (0 1 (y0) ;)

¢
. Define the control  by11

 ( )
1

=  | |Lip−1 kxk-var;[] 
and consider the hypothesis (H ) :

∃1  0 : ∀    in [0  ] : k ()k-var;[] ≤ 1 ( )
1 ∨  ( ) 

11For the proof of the first estimate, (10.29), we take  = 1.
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We aim to prove by induction that (H ) holds for all  = 1     [].

For  = 1 (H ) follows from (Davie’s) lemma 10.7. We now assume

(H ) for a fixed   []  and aim to prove (H+1)  Fix  and  in

[0  ]  define  :=  ( )
1 ∨ ( ) and observe that k ()k-var;[] ≤

1 ( )
1 ∨  ( ) = 1 is equivalent to

°° ¡ ¢°°-var;[] ≤ 1 

For  ∈ [0 − ], define

 = +1

µ
1




¶
+

so that (we could write + instead of x+ in the next line)

 = () x+ 0 = ( 0     0) ∈ +1 (R) (10.31)

with vector fields  on +1 (R) given by (cf. notation of theorem
10.38)

 () =

⎛⎝ 1

⊗1 ( + 1 ())

  
1

⊗ ( + 1 ())

⎞⎠ for  ∈ +1 (R) 

Observe that  () only depends of  through 0 ()  that is, it

does not depend on +1 ()  Then, for  = 0     

sup
∈[0−]

| ()|


= sup
∈[0−]

¯̄̄̄
¯ ◦ 

µ
1




¶
+

¯̄̄̄
¯

≤ 2 sup
∈[0−]

°°°°°
µ
1




¶
+

°°°°°


≤ 3 from the induction hypothesis.

Define Ω =
©
 ∈ +1 (R)  1


|0 ()|  3 + 1

ª
and observe that

{ :  ∈ [0 − ]} ⊂ Ω

On the other hand, for  ∈ Ω¯̄̄̄
1


⊗ (   )

¯̄̄̄
!
=

¯̄̄̄
1


0 ()⊗ (   )

¯̄̄̄
≤ (3 + 1) | (   )|

so that | |Lip−1(Ω) ≤ 5 | |Lip−1  We can then find compactly
supported vector fields ̃ which coincide with  on Ω and such

that ¯̄̄
̃

¯̄̄
Lip−1

≤ 4 | |Lip−1(Ω) ≤ 5 | |Lip−1 
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Moreover, since |[0−] remains in Ω, we see that  actually solves

 = ̃ () x+ 0 = ( 0     0) 

From lemma 10.7, we have

|− − | ≤ 6

µ¯̄̄
̃

¯̄̄
Lip−1(Ω)

kxk-var;[] ∨
¯̄̄
̃

¯̄̄
Lip−1(Ω)

kxk-var;[]
¶

≤ 7

³
| |Lip−1 kxk-var;[] ∨ | |Lip−1 kxk



-var;[]

´
= 7 

This reads 
¯̄̄
 1

+1 () − 1

¯̄̄
≤ 7and, using proposition 7.45, we

have °°° 1

+1 ()

°°° ≤ 7 

which is equivalent to°°°+1 ()°°° ≤ 7 = 1+1 ( )
1 ∨  ( ) 

This finishes the induction step and thus the proof of (10.29).

For the proof of (10.30) we proceed similarly. We first write bc
¡
1


¢ |[0−]

as solution to a differential equation of form (10.31), but now with vector

fields  on  bc (R). Applying the "geodesic approximation" error
estimate from (Davie’s) lemma 10.7 we see that,¯̄̄̄

¯bc
µ
1




¶


− bc

µ
1


( )

¡
 ;


¢¶



¯̄̄̄
¯ ≤ 1 ( )




which means that for all  ∈ {1     bc} ¯̄̄


³
bc () − bc

¡
( )

¡
 ;


¢¢



´¯̄̄
≤ 1

−1 ( ) 

(10.32)

Recalling that, by definition,  =  ( )
1 ∨  ( ) leads to an estimate

of the form (10.30) with right hand side given by a constant timesh
 ( )

1
i+−1

∨
h
 ( )

1
i+(−1)



Obviously, the term
h
 ( )

1
i+−1

dominates for  ( ) ≤ 1. For  ( ) ≥
1 it is in fact better to estimate each term on the left hand side of (10.32)

separately, using in particular¯̄̄


³
bc ()

´¯̄̄
≤
°°°bc (y)°°° ≤ kyk-var[] 

thanks to estimates for the Lyons-lift and (10.29).
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Remark 10.40 Observe that the (first part of the) above proof shows that

for any fixed   , and  ≥  ( )
1∨ ( ) with  ( )1 = | |Lip−1 kxk-var;[]

 ∈ [0 − ] 7→  = 
¡
1y

¢
+

∈  []
¡
R
¢

satisfies  = ̃ () x+ started from 0 = ( 0     0) along com-

pactly supported vector fields ̃ on  [] (R) which satisfy¯̄̄
̃

¯̄̄
Lip−1

≤ 5 | |Lip−1

and ̃ () ≡
¡
1

⊗ ( + 1 ())

¢
=1

on
©
 ∈  [] (R)  1


||  

ª
for some  dependent on .

10.4.3 Uniqueness and continuity

Theorem 10.29 states uniqueness of RDE solution, but ignored full RDEs.

We observed that full RDE solutions are RDE solutions driven by differ-

ent vector fields. In particular, if we put ourselves under the same condi-

tion than theorem 10.29, we automatically obtain uniqueness of full RDEs.

What is less obvious is that we have a similar Lipschitz bound for the (full)

Itô-Lyons map. Just as in the existence discussion, this estimate on full

RDE solutions is actually a consequence of our earlier estimate on RDE

solutions.

Theorem 10.41 Assume that

(i)  1 =
¡
 1


¢
1≤≤ and 

2 =
¡
 2


¢
1≤≤ are two collections of Lip

-vector

fields on R for    ≥ 1;
(ii)  is a fixed control,

(iii) x1x2 ∈ -var
¡
[0  ] []

¡
R
¢¢
, with

°°x°°
− ≤ 1

(iv) y10y
2
0 ∈ [] (R) thought of as time-0 initial conditions,

(v)  is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

.

For  = 1 2 we set y = π( )

¡
0y0;x


¢
; that is, the full RDE solutions

driven by x starting at 0 along the vector fields 

1     


 . Then we have

the following Lipschitz estimate on the (full) Itô-Lyons map12


¡
y1y2

¢
≤ 

h

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 

¡
x1x2

¢i
exp ( (0  )) 

where  =  ( ) and 0 = 1
¡
y0
¢ ∈ R.

12By definition of a full RDE solution y, any increment y depends on the starting

point y0 only through 0 = 1 (y0). This explains why we don’t have
y10 − y20 =y10 − y20 [](R) on the right hand side.
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Proof. Fix    in [0  ]  and define  = 2 ( )
1
exp (2 (0  )) ∈ R.

Define for  = 1 2 and  ∈ [0 − ]   = 
¡
1y


+

¢
 As noticed in

remark 10.40,  is the solution of the RDE

 = ̃ 


¡

¢
x+ 0 = 

where
¯̄̄
̃ 



¯̄̄
Lip
≤ , and ̃ 


() ≡ ¡ 1


⊗ 

 ( + 1 ())
¢
=1

on©
 ∈  [] (R) : 1


||  

ª
for some  dependent on . Writing  = 1

¡
y
¢

it is also easy to see that¯̄̄
̃ 2

2
− ̃ 1

1

¯̄̄
Lip−1

≤ 1
¯̄
 2
¡
2 + 

¢−  1
¡
1 + 

¢¯̄
Lip−1

≤ 1
¯̄
 2 −  1

¯̄
Lip−1

+1
¯̄
 1
¡
2 + 

¢−  1
¡
1 + 

¢¯̄
Lip−1

≤ 2

³¯̄
 2 −  1

¯̄
Lip−1 +

¯̄
2 − 1

¯̄
 (́10.33)

where we used crucially  1 ∈ Lip in the last estimate. Therefore, we
obtain from theorem 10.29 that, with  := ;[0 ]

¡
x1x2

¢
,¯̄

1− − 2−
¯̄
≤ 3

³

¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 

´
 ( )

1
 exp (3

 (0  )) 

But this says precisely that for all  = 1     [] and    in [0  ] ¯̄

¡
y1 − y2

¢¯̄ ≤ 3

³

¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 

´
 ( )


 exp (3

 (0  )) 

(10.34)

[We insist that one does not have the norm of y1−y2 ∈ +1 (R) on the
right hand side above, but

¯̄
1 − 2

¯̄
coming from (10.33).] But from theo-

rem 10.29, noting that  (0 )
1
exp ( (0  )) . −1 exp (4 (0  )),

we have


¯̄
1 − 2

¯̄
≤ 4

h

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 

i
exp (4

 (0  )) 

Plugging this inequality into (10.34) gives us the desired result.

The following corollaries can then be proved with almost identical argu-

ments as in to the RDE case.

Corollary 10.42 Assume that

(i)  1 =
¡
 1


¢
1≤≤ and 

2 =
¡
 2


¢
1≤≤ are two collections of Lip

-vector

fields on R for    ≥ 1;
(ii) x1x2 ∈ -var

¡
[0  ]  []

¡
R
¢¢
,

(iii) y10y
2
0 ∈ [] (R) thought of time-0 initial conditions,

(iv)  is a bound on
¯̄
 1
¯̄
Lip

and
¯̄
 2
¯̄
Lip

and  a bound on
°°x1°°

-var;[0 ]
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and
°°x2°°

-var;[0 ]


Then, if y = π( )

¡
0y0;x


¢
, we have

-var;[0 ]
¡
y1y2

¢ ≤ 
h³

¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1

´
+ -var;[0 ]

¡
x1x2

¢i
exp () 

where  =  ( ) and 0 = 1
¡
y0
¢ ∈ R.

For simplicity of the statement, we once again remove the dependency

in the vector fields

Corollary 10.43 Let  = ()1≤≤ be a collection of Lip
-vector fields

on R for    ≥ 1;
If  is a control, 0 ≥  and   0 the maps

R ×
³n
kxk ≤ 

o
 0

´
→

³
−

³
[0  ]  [] (R)

´
 0

´
(0x) 7→ π( ) (0 0;x)

and

R ×
³n
kxk-var ≤ 

o
 0-var

´
→

³
-var

³
[0  ] [] (R)

´
 0-var

´
(0x) 7→ π( ) (0 0;x)

and

R ×
³n
kxk-var ≤ 

o
 ∞

´
→

³
-var

³
[0  ] [] (R)

´
 ∞

´
(0x) 7→ π( ) (0 0;x) 

are also uniformly continuous.

10.5 RDEs under minimal regularity of coefficients

We now show that uniqueness of solutions to RDEs driven by geometric

-rough paths along Lip-vector fields. In fact, the driving signal only needs

to be of finite 1-variation where we recall from section 5.4 that

1 () =  (ln∗ ln∗ 1) where ln∗ ≡ max (1 ln) 

For instance, with probability one (enhanced) Brownian sample paths have

finite 21-variation but are not geometric 2-rough paths (i.e. don’t have

finite 2 variation), as will be discussed in the later sections 13.2 and 13.9.

The main interest in the refined regularity assumption is that it shows

that RDE solutions driven by (enhanced) Brownian motion have unique

solutions under Lip2-regularity assumptions.)
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Theorem 10.44 Assume that  ≥ 1 and that
(i)  1 =

¡
 1


¢
1≤≤ and 

2 =
¡
 2


¢
1≤≤ are two collections of Lip

-vector

fields on R;
(ii) x1x2 ∈ 1-var

¡
[0  ] []

¡
R
¢¢
;

(iii) y10y
2
0 ∈ [] (R) thought of time-0 initial conditions;

(iv) y ∈ π( )

¡
0y0;x


¢
for  = 1 2; (that is they are full RDE solutions

driven by x starting at y0 along the vector fields 
);

(v) assume
¯̄
 
¯̄
Lip
≤  and

°°x°°
1-var;[0 ]

≤  for  = 1 2

Then, π( )

¡
0y0;x


¢
is a singleton; that is, there exists a unique full RDE

solution y = π( )

¡
0y0;x


¢
starting at y0 driven by x

 along  . More-

over, for all   0 there exists  =  (;  )  0 such that13¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + ∞

¡
x1x2

¢
 

implies ∞
¡
y1y2

¢
 .

Remark 10.45 The theorem applies in particular to geometric -rough

paths, i.e. when x1x2 ∈ -var
¡
[0  ]  []

¡
R
¢¢
. It is also clear that un-

der Lip-regularity, existence of (full) RDE solutions is not an issue here

so that the set of RDE solutions π( )

¡
0y0;x


¢
is not empty.

Proof. Since we only deal with supremum distance ∞ and without quan-

titative estimates, it is enough to prove the above result for RDE rather

than full RDE. Running constants 1 2    may depend on   which

are kept fixed in this proof. We show that  =  ()→ 0 as → 0.

Construction of : For  = 1 2 we define

 ( ) = sup
∈D([])

X
∈

1

⎡⎣
°°°x+1°°°

kxk1-var;[0 ]

⎤⎦ ;
from proposition 5.41,  is a control with  (0  ) ≤ 1 Define  =¡
1 + 2

¢


Using the fact that −11 (·) ≤ 11−1 (·) = 1 (·)1 with  () =

 ln∗ ln∗ 1

(see lemma 5.52), it follows (again using proposition 5.41) that

for all    in [0  ] °°x°° ≤ 2 ( ( ))
1



As  ()
1 ≤ 1

0
for all 0   we see that

°°x°°
0-var;[] ≤ 3 ( )

10
.

By interpolation, we obtain that for all 00  0, there exists 1 a continuous
function 0 at 0 such that, for all    in [0  ] and  = 1     [] ¯̄


¡
x1 − x2

¢¯̄ ≤ 1() ( )
00



13For  = 1,
 1 −  2


Lip−1 is replaced by 2

 1 −  2

∞.
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This immediately implies that for   1, (that we can take as close to 1 as

we want, and in particular we take it greater than {} ) and for all   

in [0  ]  and for  = 1     [] ¯̄

¡
x1 − x2

¢¯̄ ≤ 31 () ( )
+−1



≤ 31 ()  ( ( ))
+−1

 

As
°°°(())−1x°°° ≤ 2 and¯̄̄
(())−1x

1
 − (())−1x

2


¯̄̄
≤ 31 ()  ( ( ))

(−1)


proposition 7.67 provides us with two paths 1 and 2 such that

[]
¡


¢

= x

and Z 




¯̄


¯̄
≤ 4 ( ( ))

1
Z 




¯̄
1 − 2

¯̄
≤ 41 ()  ( ( ))




We define similarly,  and  and then  to be the concatena-

tion of  and 

Estimates on Γ: Following closely the pattern of proof of theorem 10.29,

we set for   ,

Γ =  − 
¡
 ;


¢


  = 1 2

and Γ := Γ
1
 − Γ2 Theorem 10.16 gives us for 0 ∈ ( [] + 1)that¯̄

Γ
¯̄
≤ 5

°°x°°[]+1
0-var;[] 

Using proposition 5.53 and theorem 5.45, we see that°°x°°
0-var;[] ≤ 6

−1
1

¡
 ( )

¢
≤ 7 ( ( ))

1


In particular, we have with  = ([] + 1)   1,¯̄
Γ

¯̄
≤ 7 ( ( ))

 ≤ 8 ( ( ))  (10.35)

Define for  = 1 2

 : = ( )

¡
 ;


¢

− ( )

¡
 ;


¢


 : = ( )

¡
 ;


¢

− ( )

¡
 ( )

¡
 ;


¢

;

¢
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and ̄ := 1 −2 ̄ := 1 −2 we obtain Γ − Γ − Γ = ̄+ ̃ so

that ¯̄
Γ − Γ − Γ

¯̄
≤
¯̄
̄
¯̄
+
¯̄
̄
¯̄


From lemma  applied with parameters  := 4 ( ( ))
1

  :=

41 ()  ( ( ))

, it follows that¯̄

̄
¯̄
≤ 9

³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1

´
 ( ( )) + 91 ()  ( ( ))


 ( ( ))

[]+



≤ 9

³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 1 ()

´
 ( ( )) 

On the other hand, max=12
¯̄
( )

¡
 ;


¢

− 

¯̄
= max=12

¯̄
Γ

¯̄
and with (10.35), ¯̄

Γ
¯̄
≤ 8 ( ( ))

 ≤ 8 ( ( ))  (10.36)

From lemma  it then follows that¯̄
̄
¯̄
≤ 3

¯̄
Γ

¯̄
 ( ( ))

1
 + 31 ()  ( ( ))

1+

+3

³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 1 ()  ( ( ))


´

· ( ( )) 1 (1+(min(2)−1))

Observe that 1

(1 +  (min (2 )− 1)) ≥ 1


min

¡
+ 1 2 − 2+ 1 + 

¢ ≥
1 and obviously 1 +  ≥ 1 Putting things together, we obtain¯̄
̄
¯̄
≤ 12

¯̄
Γ

¯̄
 ( ( ))

1
+12

³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 1 ()

´
 ( ( ))

Adding the inequalities on
¯̄
̄
¯̄
and

¯̄
̄
¯̄
 we obtain that¯̄

Γ − Γ − Γ
¯̄
≤ 13

¯̄
Γ

¯̄
 ( ( ))

1
 (10.37)

+13

µ
max
∈{}

¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 1 ()

¶
 ( ( )) 

We also have, from theorem 3.19, that¯̄
( 1)

¡
 1 ;

1
¢− ( 2)

¡
 2 ;

2
¢¯̄

≤ 14

³³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1

´
 ( ( ))

1
+ 1 () ( )


´

≤ 14

³¯̄
1 − 2

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 + 1 ()

´
 ( )


 (10.38)

Conclusion: Thanks to estimates (10.37), (10.38) and (10.36), we can apply

corollary 10.76 to obtain our result.

By interpolation, we obtain the following corollary.
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Corollary 10.46 Let  = (1     ) be collection of Lip
-vector fields

on R. Fix 00  0    1 a control   ∈ (0∞] and set14

Ω0- () =
n
x : kxk0   and kxk1-var  

o


Ω () =
n
x : kxk1-var  

o


Then the maps

R × (Ω0- ()  00) →
³
1-var ∩ 0-

³
[0  ]  [] (R)

´
 00

´
(0x) 7→ π( ) (0 0;x)

and

R × (Ω ()  0-var) →
³
1-var

³
[0  ]  [] (R)

´
 0-var

´
(0x) 7→ π( ) (0 0;x) 

are uniformly continuous for  ∈ (0∞) and continuous for  = +∞

(This also holds when 0-var is replaced by ∞.)

Proof. Since continuity is a local property and it suffices to consider the

case  ∞. Observe that for all x ∈ Ω (), we have°°π( ) (0 0;x)°°1-var  ()

as follows from corollary 5.46 and proposition 5.53. Then, we know from

theorem 10.44 that

R × (Ω ()  ∞) →
³
1-var

³
[0  ]  [] (R)

´
 ∞

´
(0x) 7→ π( ) (0 0;x)

is uniformly continuous. In particular, this implies that for some fixed

  0, there exists   0 such that if
¯̄
10 − 20

¯̄
+ 0-var

¡
x1x2

¢
 ,

with x1x2 ∈ Ω (), then
∞

¡
π( )

¡
0 10;x

1
¢
π( )

¡
0 20;x

2
¢¢

 

Using
°°π( ) ¡0 0;x¢°°1-var  () we can use interpolation to obtain

uniform continuity of

R × (Ω ()  0-var) →
³
1-var

³
[0  ]  [] (R)

´
 0-var

´
(0x) 7→ π( ) (0 0;x) 

The modulus  case follows from the same argument, except that for the

interpolation step, we need to assume that the 0- norm of x,  = 1 2

is bounded by  (since, for a given , we cannot be sure that the 1-

variation of x is controlled by this ).

14 In general, 1-var Ã 0- 
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10.6 Integration along rough paths

With our main interest in (rough) differential equations we constructed

RDEs directly as limits of ODEs. In the same spirit, we now define "rough

integrals" as limit of Riemann—Stieltjes integration. Given the work al-

ready done, we can take a shortcut and derive existence, uniqueness and

continuity properties quickly from the previous RDE results.

Definition 10.47 (Rough integrals) Let x ∈ -var
¡
[0  ] []

¡
R
¢¢

be a weak geometric -rough path, and  = ()=1 a collection of maps

from R to R. We say that y ∈ 
¡
[0  ] [] (R)

¢
is a rough path integral

of  along x if there exists a sequence () in 1-var
¡
[0  ] R

¢
such that

∀ : 0 = 1 (x0)

lim
→∞

0;[0 ]
¡
[] (

) x
¢
= 0 ,

sup


°°[] ()°°-var;[0 ] ∞
and

lim
→∞

∞

µ
[]

µZ 

0

 () 



¶
y

¶
= 0.

We will write
R
 () x for the set of rough path integrals of  along x. If

this set is a singleton, it will denote the rough path integral of  along x.

We first note that a classical indefinite Riemann—Stieltjes integral
R ·
0
 () 

can be written as (projection to the -component of the) ODE solution to

 = 

 =  () 

( ) = (0 0)

This leads to the key remark that rough integrals can be viewed as (pro-

jections of) solution to (full) RDEs driven by x along vector fields  =

(1     ) given by

 ( ) = (  ())  (10.39)

where (1     ) is the standard basis of R. Obviously  has the same

amount of Lip-regularity as  = ()=1, viewed as map

 : R → 
¡
RR

¢
;

in fact, | |Lip−1 . 1 + ||Lip−1 . Thus, if one is happy with rough inte-
gration under Lip-regularity,   , existence, uniqueness and uniform

continuity on bounded sets (in fact: Lipschitz continuity on bounded sets
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with respect to the correct rough path metric -var) of

Lip × -var
³
[0  ] []

¡
R
¢´ → -var

³
[0  ] [] (R)

´
(x) 7→

Z
 () x

is immediate from the corresponding results on full RDEs in section 10.4.

The point of the forthcoming theorem is that is for rough path inte-

gration, one gets away with Lip−1 regularity. As can be seen already
from the the next lemma, there is no hope for local Lipschitz continuity

of (x) 7→ R
 () x but uniqueness and uniform continuity on bounded

sets hold true.

Lemma 10.48 Let

(i)
¡
1
¢
=1


¡
2
¢
=1

be two collections of Lip
¡
RR

¢
-maps,  ∈

(0 1] so that max=12
¯̄

¯̄
Lip
≤ 1

(ii)  ∈ 1-var
¡
[ ] R

¢
such that, for some  ≥ 0 and  ∈ [0 1] ¯̄


¯̄
1-var;[]

≤ ¯̄
2 − 1

¯̄
1-var;[]

≤  and
¯̄
2 − 1

¯̄
≤ 

Then, for  ∈ {1 2    } ¯̄̄̄
¯

Ã


µZ
2
¡
2
¢
2

¶


!
− 

Ã


µZ
1
¡
1
¢
1

¶


!¯̄̄̄
¯

≤ ¡¯̄
2 − 1

¯̄
∞ + 

¢


Proof. From proposition 2.9, we easily see that¯̄̄̄Z
2
¡
2
¢
2 −

Z
1
¡
1
¢
1

¯̄̄̄
1-var;[]

≤ ¡¯̄2 − 1
¯̄
∞ + 

¢


The conclusion follows then from proposition 7.66.

Lemma 10.49 (Lemma integral) Assume that

(i)
¡

¢
=1

is a collection of Lip−1
¡
RR

¢
-maps where   1;

(ii)    are some elements in [0  ] ;

(iii)  and ̃ are some paths in 1-var
¡
[ ] R

¢
such that bc () =

bc (̃) and  = ̃;

(iv)  ≥ 0 is a bound on R 

||+ R 


|̃|

Then, we have for some constant  =  () and for all  ∈ {1     bc} ¯̄̄̄
¯ ◦ 

µZ
 () 

¶


−  ◦ 
µZ

 (̃) ̃

¶


¯̄̄̄
¯ ≤  kkLip−1 +−1
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Proof. The indefinite R-valued integral
R ·

 ()  is also (projection of

the) solution to the ODE · = ( ) ( ( 0) ;) with  given by (10.39).By

homogeneity, we may assume kkLip−1 = 1 so that | |Lip−1 ≤ 1. We

leave it to the reader to provide a self-contained "Riemann-Stieltjes/ODE"

proof of the claimed estimate. Somewhat shorter, if fancyful, we can think

of  as solution (again, strictly speaking, a projection thereof) of an RDE

driven by a weak geometric 1-rough path x. The claimed estimate is now a

consequence of the "geodesics error-estimate" of theorem 10.39 with  = 1

and  = 1. Indeed, we take a geodesic  associated to bc () such
that

bc (
) = bc () = bc (̃) andZ 



|| ≤
°°bc ()°°1-var;[] = ||1-var;[] 

Since  = ̃ we see that both · = ( ) ( ( 0) ;) and ̃· = ( ) ( (̃ 0) ; ̃)

have the same geodesic approximation given by ( ) ( ( 0) ;
). On

the "projected" level of the integral this amount to consider
R ·

 ( + 


· ) 


· )

and so, for all    in [0  ] and for all  ∈ {1     bc} ¯̄̄̄
¯

Ã
bc

µZ ·



 () 

¶


− bc

µZ ·




¡
 + ·

¢
·

¶


!¯̄̄̄
¯

≤ 2

³
||1-var;[]

´+−1
≤ 2

+−1

The same estimate holds with  replaced by ̃ and an application of the

triangle inequality finishes the proof.

Theorem 10.50 Existence: Assume that

(i)  =
¡

¢
=1

is a collection of Lip−1
¡
RR

¢
-maps where    ≥

1;

(ii) x is a geometric -rough path in -var
¡
[0  ]  []

¡
R
¢¢
.

Then, for all    ∈ [0  ]  there exists a unique rough path integral of 
along x. The indefinite integral

R
 () x is a geometric rough path: there

exists a constant 1 depending only on  and  such that for all    in

[0  ],°°°°Z  () x

°°°°
-var;[]

≤ 1 kkLip−1
³
kxk-var;[] ∨ kxk-var;[]

´
Also, if  : [ ] → R is any continuous bounded variation path such
that

 = 1 (x)  bc
¡


¢

= bc (x) and

Z 



¯̄


¯̄
≤  kxk-var;[]
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for some constant , we have for all    in [0  ] with  kxk-var;[] 
1 and all  ∈ {1     bc} ¯̄̄̄
¯

(µZ
 () x

¶


− bc

µZ

¡


¢


¶


)¯̄̄̄
¯ ≤ 2 kkLip−1

³
 kxk-var;[]

´+−1


(10.40)

where 2 depends on  and .

Uniqueness, Continuity: There exists a unique element in
R
 () x More

precisely, if  is a fixed control,

max
=12

n¯̄

¯̄
Lip−1 

°°x°°
;[0 ]

o
 

and

 =
¯̄
10 − 20

¯̄
+ ;[0 ]

¡
x1x2

¢
+
¯̄
2 − 1

¯̄
Lip−1 

then for some constant  =  ( )  0 and  =  (  ) ≥ 0

;[0 ]

µZ
1
¡
1
¢
x1

Z
2
¡
2
¢
x2

¶
≤ 

Proof. Existence, first proof: For some fixed   0 consider the collection

of vector fields  () defined by


()
 ( ) = (  ()) for   ∈ R ×R

where  is the 
 standard basis vector of R. Observe that  () is ( − 1)-

Lipschitz, and that for a bounded variation path, we

( ()) (0 (0 0) ;) =

µ


Z 

0

 () 

¶


In view of ( − 1)-Lipschitz regularity of the vector fields we can apply
theorem 10.39, we obtain existence of a rough integral of x along  and

that every element y() of
R
 () x satisfy°°°y()°°°

-var;[]
≤ 1

µ¯̄̄
 ()

¯̄̄
Lip−1

kxk-var;[] ∨
¯̄̄
 ()

¯̄̄
Lip−1

kxk-var;[]
¶


Now, setting y = y(1) it is easy to see that y() = y and
¯̄
 ()

¯̄
Lip−1 ≤

2

³
1 +  ||Lip−1

´
; thus, picking  = 1 ||Lip−1  we obtain

kyk-var;[] ≤ 3 ||Lip−1
³
kxk-var;[] ∨ kxk-var;[]

´


The error estimate (10.40) is also a consequence of the corresponding esti-

mate in theorem 10.39, again applied to full RDEs along vector fields  ()

with  = 1 ||Lip−1 .



10. Rough Differential Equations (RDEs) 259

Existence, second proof: We provide a second existence proof, based on

by now standard arguments, which is (notationally) helpful for the forth-

coming uniquess proof. Similar to the proof of RDE existence, it suffices

to establish uniform estimates for x of the form x = [] (), followed by

a straight-forward limiting argument. Let us thus assume x = [] () and

kxk ≤  ( )
1

for some control . By assumption, there exists ,

which we think of as an "almost" geodesic paths associated to x, and we

define

Γ = bc

µZ
 () 

¶


− bc

µZ

¡


¢


¶




Then, for      we have

Γ = ∆1 −∆2 +∆3
where

∆1 = bc

µZ
 () 

¶


⊗ bc

µZ
 () 

¶




∆2 = bc

µZ

¡


¢


¶


⊗ bc

µZ

¡


¢


¶




∆3 = bc

µZ

¡


¢


¶


− bc

µZ
 () 

¶




First, using lemma integral (lemma 10.49), we obtain that for all  ∈
{1     bc}

| (∆3)| ≤ 1 ( )
+−1

  (10.41)

We also see that

∆1 −∆2 = bc

µZ
 () 

¶


⊗ Γ + Γ ⊗ bc

µZ

¡


¢


¶


so that Γ − Γ ⊗ Γ equals

bc

µZ

¡


¢


¶


⊗ Γ + Γ ⊗ bc

µZ

¡


¢


¶


+∆3

(10.42)

We now prove by induction in  ∈ {1     bc} that

∀   in [0  ] : | (Γ)| ≤ 2 ( )
+−1

 exp
³
2 ( )

1
´


For  = 0 this is obvious as 0 (Γ) = 0. Assume now that

∀   in [0  ] : | (Γ)| ≤ 2 ( )
+−1

 exp
³
2 ( )

1
´
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holds for all    . Then, from (10.42), we have

 (Γ)−  (Γ)−  (Γ) (10.43)

=  (∆3) +

−1X
=1

 (Γ)⊗ − (Γ)

+

−1X
=1

 ◦ bc
µZ


¡


¢


¶


⊗ − (Γ)

+

−1X
=1

 (Γ)⊗ − ◦ bc
µZ


¡


¢


¶




so that, using the induction hypothesis, 10.41 and bounds of the type¯̄̄̄
¯ ◦ bc

µZ

¡


¢


¶


¯̄̄̄
¯ ≤ 2 ( )




we have15

| (Γ)−  (Γ)−  (Γ)| ≤ 3 ( )
+−1

 exp
³
2 ( )

1
´


(10.44)

We can then classically use lemma 10.65 to obtain that

| (Γ)| ≤ 4 ( )
+−1

 exp
³
4 ( )

1
´


which concludes the induction proof. The triangle inequality then leads to,

for  ∈ {1     bc},¯̄̄̄
¯

Ã
bc

µZ
 () 

¶


!¯̄̄̄
¯ ≤ 4 ( )


exp

³
4 ( )

1
´


which is equivalent to saying°°°°°bc
µZ

 () 

¶


°°°°° ≤ 5 ( )
1
exp

³
5 ( )

1
´


An application of proposition 5.10 then gives°°°°°bc
µZ

 () 

¶


°°°°° ≤ 6 ( )
1 ∨  ( ) 

15As we shall need (10.44) in the uniqueness/continuity part below, let us point out

that (10.44) also follows from the "first" existence proof, namely from the error estimate

(10.40).
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Continuity/Uniqueness: Without loss of generality, we assume bc = [] 
and also, by simple scaling, that max=12

¯̄

¯̄
Lip−1 ≤ 1 (so that we can

use lemma 10.48). We set

 =
¯̄
10 − 20

¯̄
+ ;[0 ]

¡
x1x2

¢
+
¯̄
2 − 1

¯̄
Lip−1 

and agree that, in this part of the proof, constants may depend on  (0  )

and . Then we define (exactly as in the proof of theorem 10.29) two paths

1 and 2 such that

[]
¡


¢

= x  = 1 2

and such that Z 



¯̄


¯̄
≤ 7 ( )

1
  = 1 2Z 



¯̄
1 − 2

¯̄
≤ 7 ( )

1


We also define (as usual!)

Γ =

µZ

¡

¢
x

¶


− []

µZ

¡


¢


¶


  = 1 2

and set Γ := Γ1 − Γ2 From the existence part, we have
¯̄
Γ

¯̄
≤

8 ( )

. Define

∆3 =

(
bc

µZ
1
¡
1

¢
1

¶


− bc

µZ
1
¡
1

¢
1

¶


)

−
(
bc

µZ
2
¡
2

¢
2

¶


− bc

µZ
2
¡
2

¢
2

¶


)


Observe that by continuity of the Riemann-Stieljes integral and the map

bc we have for all integer  ∈ {1     []}¯̄

¡
∆3
¢¯̄

≤
¯̄̄̄
¯ ◦ bc

µZ
2
¡
2

¢
2

¶


−  ◦ bc
µZ

1
¡
1

¢
1

¶


¯̄̄̄
¯

+

¯̄̄̄
¯ ◦ bc

µZ
2
¡
2

¢
2

¶


−  ◦ bc
µZ

1
¡
1

¢
1

¶


¯̄̄̄
¯ 

≤ 2
³¯̄
2 − 1

¯̄
Lip−1 + 

¡
x1x2

¢min{−11}´
 ( )


using lemma 10.48

≤  ( )


for some  ∈ (0 1] (10.46)
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We now prove by induction on  ≤ [] that
∀ ∈ {1    } : ∃  0 :

¯̄

¡
Γ

¢¯̄ ≤  ( ) 

For  = 0 it is obvious, as 0
¡
Γ

¢
= 0. Assume now the induction

hypothesis is true for all    From equation (10.43), we see that


¡
Γ

¢− 
¡
Γ

¢− 
¡
Γ

¢
is equal to ∆3 +1 +2 +3 where

1 =

−1X
=1


¡
Γ

¢⊗ −
¡
Γ2

¢− −1X
=1


¡
Γ1

¢⊗ −
¡
Γ

¢
2 =

−1X
=1



Ã
bc

µZ

¡
2

¢
2

¶


− bc

µZ

¡
1

¢
1

¶


!
⊗ −

¡
Γ2

¢
+

−1X
=1



Ã
bc

µZ

¡
1

¢
1

¶


!
⊗ −

¡
Γ

¢
3 =

−1X
=1


¡
Γ

¢⊗ − ◦ bc
µZ


¡
2

¢
2

¶


−
−1X
=1


¡
Γ1

¢⊗ −

Ã
bc

µZ

¡
2

¢
2

¶


− bc

µZ

¡
1

¢
1

¶


!


We easily see from the induction hypothesis and lemma 10.48, that

|1|+ |2|+ |3| ≤ 9
 ( )


 for some  ∈ (0 ]

In particular, with (10.46), we obtain that¯̄


¡
Γ − Γ − Γ

¢¯̄ ≤ 10
 ( )




From the existence part, equation (10.44), we also have¯̄


¡
Γ − Γ − Γ

¢¯̄ ≤ ¯̄


¡
Γ2 − Γ2 − Γ2

¢¯̄
+
¯̄


¡
Γ1 − Γ1 − Γ1

¢¯̄
≤ 11 ( )

+−1
 ≤ 12 ( )


with  =   1.

These estimates show that assumption (ii) of lemma 10.67 are satisfied

(checking assumption (i) is easy and left to the reader); it then follows that

for some  ∈ (0 1] ¯̄


¡
Γ

¢¯̄ ≤  ( )

and so the induction step is completed. Putting this last inequality and

lemma 10.48 together, we see that for  ≤ []  we have from the triangle

inequality¯̄̄̄
¯

ÃµZ
2
¡
2
¢
x2

¶


−
µZ

1
¡
1
¢
x1

¶


!¯̄̄̄
¯ ≤ min( −1) ( ) 
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The proof is now finished.

As a consequence of theorem 10.50 we have

Corollary 10.51 Let  : R
 → R  = 1      some ( − 1)-Lipschitz

maps where    For any fixed control ,   0 and  ≤ 0 the maps

Lip−1 ×
³n
kxk ≤ 

o
 0

´
→

³
−

³
[0  ]  [] (R)

´
 0

´
(x) 7→

Z
 (x) x

and

Lip−1 ×
³n
kxk-var ≤ 

o
 0-var

´
→

³
-var

³
[0  ]  [] (R)

´
 0-var

´
(x) 7→

Z
 (x) x

and

Lip−1 ×
³n
kxk-var ≤ 

o
 ∞

´
→

³
-var

³
[0  ] [] (R)

´
 ∞

´
(x) 7→

Z
 (x) x

are uniformly continuous.

Exercise 10.52 Extend theorem 10.50 to  ∈ Lip−1

¡
RR

¢
  = 1     .

Solution 10.53 It suffices to replace  by ̃ ∈ Lip−1
¡
RR

¢
such that

 ≡ ̃ on a ball with radius

||∞;[0 ] + 1

10.7 RDEs driven along linear vector fields

In various applications, for instance when studying the "Jacobian of the

flow", one encouters RDEs driven along linear vector fields. Since linear

vector fields are unbounded, we can, at this stage, only assert uniqueness

and local existence (cf. theorem 10.23). The aim of the present section is

then to establish global existence with some precise quantitative estimates.

Exercise 10.54 (Linear Vector Fields) Let us consider a collection  =

()=1 of linear vector fields of the form

 () =  + 

for ×  matrices  and elements  of R. Prove (by induction) that

  ;0 () ≡ 0     () =     0 +    10 
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Lemma 10.55 (Lemma linear) Assume that

(i)  = ()1≤≤ with  () =  are a collection of linear vector fields,

and fix  ∈ N
(ii)   are some elements of [0  ] 

(iii)  ̃ are some paths in 1-var
¡
[ ] R

¢
such that  () =  (̃),

(iv)  is a bound on
R 

|| and

R 

|̃| and  is a bound on max (||) 

Then, ¯̄
( )(  ) − ( )(  ̃)

¯̄
≤  []

+1
exp () 

Proof. Define for all  ∈ [ ]   = ( )(  ); we saw in theorem

3.7 that

|| ≤  (1 + ||) exp () 
From proposition 10.3, we have¯̄̄

( )(  ) − E( )
³
  ()

´¯̄̄
≤

X
1
∈{1}

¯̄̄̄Z 



(1      ()− 1      ()) 
1
    

¯̄̄̄

≤
¯̄̄̄
    1

Z 




1
    

¯̄̄̄
≤  (1 + ||) []+1 exp () 

As ( )(  ̃) and ( )(  ) share the same Euler approximation,

the triangle inequality finishes the proof.

Equipped with this result and the Lipschitzness of the flow for ordinary

differential equations (lemma 12.5), we are ready to obtain a version of

lemma 10.7 for linear vector fields.

Lemma 10.56 (Davielinear) Let  ≥ 1. Assume that
(i)  = ()1≤≤ is a collection of linear vector fields defined by  () =
 +  for some ×  matrices  and elements of R ,
(ii)  is a path in 1-var

¡
[0  ] R

¢
, and x := []() its canonical lift to

a []
¡
R
¢
-valued path,

(iii) 0 ∈ R is a initial condition
(iv)  is a bound on max (||+ ||).
Then there exists a constant  depending on  (but not on the 1-variation

norm of ) such that for all    in [0  ] ¯̄̄
( ) (0 0;)

¯̄̄
≤  (1 + |0|) kxk-var;[] exp

³
 kxk-var;[0 ]

´
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Proof. To simplify notation we set  = ( ) (0 0;) and  := [], a

control function on [0  ] is defined by

 ( ) :=  kxk-var;[] 

For every    in [0  ] we define  as a geodesic path associated to

x =  () i.e.


¡


¢

=  () and

Z 



¯̄


¯̄
= kxk-var;[]

and we note that, as in (10.7), we haveZ 



¯̄


¯̄
≤
Z 



||  (10.48)

(Let us now fix      in [0  ] and define  :=  t , the

concatenation of  and . Following the by now classical pattern of

proof, first seen in (Davie’s) lemma 10.7,we set

Γ = ( ) ( ;) − ( )
¡
 ;


¢


and observe Γ − Γ − Γ = + where

 = 
¡
 ;


¢

−  ( ;

)

 = 
¡
 ;


¢

− 

¡
  + Γ;


¢


Lemma 10.55 (a.k.a. lemma linear) was tailor-made to estimate  and

gives

|| ≤ 1 (1 + ||) ( )(+1) exp
³
1 ( )

1
´


On the other hand, from theorem 3.8, we have

|| ≤ 2 |Γ| ( )1 exp
³
2 ( )

1
´

and so

|Γ| ≤ |Γ| 22()
1

+ |Γ|+ 1 (1 + ||) ( )(+1) 1()
1



(10.49)

Another application of lemma linear combined with (10.48) shows that

with ̃ ( ) := ||1-var;[] we have

lim
→0

sup
 s.t ̃()≤

|Γ|


= 0 (10.50)

Also, ODE estimates give that for all   ∈ [0  ]  we have
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¯̄̄
( )

¡
 ;


¢


¯̄̄
≤ 3 (1 + ||) ( )1 2()

1

 (10.51)

Inequalities (10.49), (10.50) and (10.51) allow us to use (the analysis)

lemma 10.69 (from the appendix to this chapter) to see that

||∞[0 ] ≤ 4 (1 + |0|) exp (4 (0  ))  (10.52)

and that for all   ∈ [0  ],

|Γ| ≤ 4 (1 + |0|) ( ) exp (4 (0  )) 
The triangle inequality then provide that for all   ∈ [0  ]

|| ≤ 5 (1 + |0|) ( )1 exp (5 (0  )) 

We now give the appropriate extension to (full) RDEs.

Theorem 10.57 Assume that

(i)  = ()1≤≤ is a collection of linear vector fields defined by  () =
 +  for some ×  matrices  and elements of R 
(ii) x is a weak geometric rough path in -var

¡
[0  ]  []

¡
R
¢¢
,

(iii) y0 ∈ [] (R) is a initial condition
(iv)  is a bound on max (||+ ||).

Then there exists a unique full RDE solution π( ) (0 0;x) on [0  ]. More-

over, there exists a constant  depending on  such that for all    in

[0  ]  we have°°°π( ) (0 0;x)°°° ≤  (1 + |0|) kxk-var;[] exp
³
 kxk-var;[0 ]

´


Proof.We only to prove the above estimate for a bounded variation path,

the final result following a now classical limiting procedure.

Write 0 = 1 (y0)  and define ̃ = 1
1+|0|( ) (0 0;). Observe that

using the linearity of the vector fields, we have

̃ = ( )

µ
0

0

1 + |0| ;
¶

= ( ) (0 ̃0;)

From (the proof of) lemma 10.56 it follows that

|̃|∞;[0 ] ≤ 1 (1 + |̃0|) exp
³
1

 kxk-var;[0 ]
´

≤ 21 exp
³
1

 kxk-var;[0 ]
´
≡ 
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For any vector field ̃ such that  ≡ ̃ on Ω = { ∈ R : ||  + 1} we
have

( ) (0 ̃0;) ≡ (̃ ) (0 ̃0;) 

Moreover, we can (and will) take ̃ such that¯̄̄
̃
¯̄̄
Lip
≤ 1 | |Lip(Ω) ≤ | |∞;Ω + | 0|∞;Ω ≤  (+ 2) 

It then suffices to use the estimate of theorem 10.39, applied to the full

RDE with vector fields ̃ driven by [] (), to see that°°°[] ¡( ) (0 ̃0;)¢°°° ≤ 2

µ¯̄̄
̃
¯̄̄
Lip−1

kxk-var;[] ∨
¯̄̄
̃
¯̄̄
Lip−1

kxk-var;[]
¶

≤ 3 kxk-var;[] exp
³
3

 kxk-var;[0 ]
´


This implies that°°°[] ¡( ) (0 0;)¢°°° = (1 + |0|)
°°°[] ¡( ) (0 ̃0;)¢°°°

≤  (1 + |0|) kxk-var;[] exp
³
 kxk-var;[0 ]

´


Remark 10.58 This estimate shows in particular that (full) solutions to

linear RDE have growth controlled by

exp
³
(const)× kxk-var;[0 ]

´
which has implications on the integrability of such solution when the driving

signal x is random. It is therefore interesting to know that this estimate

cannot be improved and the reader can find a construction of the relevant

examples in [54].

Exercise 10.59 Assume x ∈ -var
¡
[0  ]  []

¡
R
¢¢
drives linear vector

fields as in theorem 10.57 above. If x is controlled by a fixed control  in

the sense that

∀0 ≤    ≤  :  kxk-var;[] ≤  ( )
1

the conclusion of theorem 10.57 can be written as°°°π( ) (0 0;x)°°° ≤  (1 + |0|) ( )1 exp ( (0  )) 

valid for all    in [0  ], where any dependence on   has been included

into the constant . Show that an estimate of this exact form remains valid,

if the assumption on x is relaxed to

∀0 ≤    ≤  :  kxk-var;[] ≤  ( )
1 ∨  ( )  (10.53)
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The importance of this exercise comes from the fact (cf. theorem 10.39)

that (10.53) is a typical estimate for solutions of full RDEs, i.e. when x

itself arises as the solution to a full RDE along Lip-vector fields,   .

Solution 10.60 Assume (10.53) and write ̃ ( )
1

=  ( )
1∨ ( ).

For   :  ( ) ≤ 1, theorem 10.57 then gives°°°π( ) (0 0;x)°°° ≤  (1 + ||) ( )1 exp ( ( ))

≤ 
³
1 + ||∞;[0 ]

´
 ( )

1
exp ( (0  ))

and we are done if we can show that

||∞;[0 ] ≤  (1 + |0|) exp ( (0  )) 

From equation (10.52) (now applied with ̃!) this estimate follows from (the

analysis) lemma 10.69 but since ̃ (0  ) =  (0  )

for large  (0  ) this

is not good enough. However, from remark 10.70 we can do a little better

and get

||∞;[0 ] ≤  (|0|+ ) exp

⎛⎜⎝ sup
=()⊂[0 ] such that
(+1)≤1 for al l 

X


̃ ( +1)

⎞⎟⎠
But since ̃ ≡  when  ≤ 1 we can replace ̃ by , and by super-addivity,

||∞;[0 ] ≤  (|0|+ ) exp ( (0  ))

as required.

Exercise 10.61 (Non-explosion) Consider  = ()1≤≤, a collection
of locally Lip−1-vector fields on R for  ∈ ( [] + 1) such that
(i)  are Lipschitz continuous;

(ii) the vector fields  [] =
¡
1    []

¢
1[]∈{1}

are ( − [])-Hölder
continuous for some   0

Show that if x is a geometric -rough path, and if 0 then ( ) (0 0;x)

does not explode. Provide a quantitative bound.

Solution 10.62 The argument is the same as for linear RDEs. We only

need to extend lemma Alinear , i.e. we need to prove the following: if

(a)   are some elements of [0  ] ;

(b)  ̃ are some paths in 1-var
¡
[ ] R

¢
such that  () =  (̃);

(c)  is a bound on
R 

|| and

R 

|̃| and  is a bound on

¯̄
 []

¯̄1[]
(−[])-Höl

and sup | ()−  ()|  | − | 
Then, ¯̄

( )(  ) − ( )(  ̃)
¯̄
≤  []


exp () 
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To do so, define for all  ∈ [ ]   = ( )(  ); as the vector fields

 are Liscphitz continuous, theorem 3.7 gives

|| ≤ 1 (1 + ||)  exp () 
From proposition 10.3,¯̄̄

( )(  ) − E( )
³
  ()

´¯̄̄
≤

X
1
∈{1}

¯̄̄̄Z 



¡
1    [] ()− 1    [] ()

¢
1    

[]


¯̄̄̄

≤
X

1
∈{1}

[]
Z 



||−[]
¯̄
1

¯̄
  
¯̄


¯̄
≤ 2 (1 + ||)−[] [] exp ()
≤ 2 (1 + ||) [] exp () 

As ( )(  ̃) and ( )(  ) share the same Euler approxima-

tion, the triangle inequality finishes the proof.

Equipped with this result, we then prove the exercise by going through the

proof of theorem 10.57.

10.8 Appendix: -variation estimates via
approximations

Our discussion of the Young-Lóeve inequality was based on some elemen-

tary analysis considerations; lemmas 6.1 and 6.2. We now give the appro-

priate extensions, still elementary, upon which we base our discussion of

rough differential equations.

Lemma 10.63 Let   1  ≥ 0   0. Assume  : [0 ] → R+

satisfies

(i)

lim
→0

 ()


= 0;

(ii) for all  ∈ [0 ] 

 () ≤
n
2
³
2

´
+ 

o
exp () 

Then, for all  ∈ [0 ],

 () ≤ 

1− 21− exp
µ

2

1− 2− 


¶
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Proof. Note that it is enough to prove the final estimate for  = ; indeed,

given any other  ∈ [0 ], it suffices to replace the interval [0 ] by [0 ].
Assumption (ii) implies that for all  ∈ [0 ]

 () ≤ 2
³
2

´
exp () + ̂

with ̂ =  exp (). By induction, we obtain that

 () ≤ 2
³ 

2

´
exp

Ã


−1X
=0

2−
!
+̂

−1X
=0

2(1−) exp

⎛⎝
−1X
=0

2−

⎞⎠ 

We bound exp
³


P−1
=0 2

−
´
≤ exp ( (1− 2−)) and so obtain

 () exp

µ −

1− 2−
¶
≤ 2

³ 

2

´
+ ̂

−1X
=0

2(1−)

By assumption (i), sending  to ∞ yields

 () ≤ ̂

1− 21− exp
µ



1− 2−
¶


As ̂ =  exp () ≤  exp ( (1− 2−)), we then obtain

 () ≤ 

1− 21− exp
µ
2

1− 2−
¶


As a variation on the theme, let us give

Lemma 10.64 Let   1  ≥ 0   0 and  ∈ [0 1). Assume  :

[0 ]→ R+ satisfies
(i)

lim
→0

 ()


= 0;

(ii) for all  ∈ [0 ] 

 () ≤
n
2
³
2

´
+  ∧ 

o
exp () 

Then, for all  ∈ [0 ], for some constant  depending on  and  we

have

 () ≤ 
−1
− 

1−
− exp

µ
2

1− 2− 


¶
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Proof. Just as in the previous proof, we only prove the estimate for  = 

Defining ̂ =  exp () and ̂ =  exp (), we have for all  ∈ [0 ]

 () ≤ 2
³
2

´
exp () + ̂ ∧ ̂

By induction, we obtain that

 () ≤ 2
³ 

2

´
exp

Ã


−1X
=0

2−
!

+

−1X
=0

³
̂2(1−) ∧ ̂2(1−)

´
exp

⎛⎝
−1X
=0

2−

⎞⎠ 

We bound exp
³


P−1
=0 2

−
´
≤ exp ( (1− 2−)) and then let 

tends to ∞ to obtain

 () exp

µ −

1− 2−
¶
≤

∞X
=0

³
̂2(1−) ∧ ̂2(1−)

´
≤ ̂

X
0≤≤ 1

− ln2

̂
̂


+ln2 

2(1−) + ̂
X

 1
− ln2


̂
̂


+ln2 

2(1−)

≤ 1

µ
̂2


1

− ln2

̂
̂


+ln2 


(1−)

+ ̂2


1

− ln2

̂
̂


+ln2 


(1−)

¶
≤ 2̂

−1
− ̂

1−
−

where 1 2 are constants which depend on  and . This estimate finishes

the proof.

An important consequence of lemma 10.63 is the following estimate. Typ-

ically, (e.g. in the proof of Davie’s estimate, lemma 10.7) Γ is the difference

between a path  (for which we are trying to bound its -variation) and a

"local" approximation of  which is easier to control.

Lemma 10.65 Let   0   1 ≥ 0   0 and

Γ : {0 ≤    ≤ } ≡ ∆ → R

be such that:

(i) for some control ̂

lim
→0

sup
()∈∆ : ̂()≤

|Γ|


= 0; (10.54)

(ii) for some control  we have that, for all      in [0  ],

|Γ| ≤
n
|Γ|+ |Γ|+  ( )


o
exp ( ( )


)  (10.55)
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Then, for all    in [0  ] 

|Γ| ≤  ( )


1− 21− exp
µ

2

1− 2− ( )


¶


Remark 10.66 It is important to notice that the control ̂ is not used in

the final estimate.

Proof. We assume that ̂ ≤ 1

 for some   0; otherwise we can replace

 by  + ̂ and let  tend to 0 at the end. Define for all  ∈ [0  (0  )] 
 () = sup

()∈∆ :()≤
|Γ| 

Consider any fixed pair ( ) with 0 ≤    ≤  such that  ( ) ≤ .

From basic properties of control functions we can then pick  such that

 ( ) and  ( ) is bounded above by  ( ) 2. It follows that

|Γ| ≤  (2)  |Γ| ≤  (2) 

and by assumption (ii)

|Γ| ≤
n
2
³
2

´
+ 

o
exp () 

Taking the supremum over all    in [0  ] for which  ( ) ≤  yields

that for all  ∈ [0  (0  )]

 () ≤
n
2
³
2

´
+ 

o
exp () 

Assumption (i) implies that lim→0  ()  = 0 and by the (previous)

lemma 10.63, we see that for all  ∈ [0  (0  )] 

 () ≤ 

1− 21− exp
µ

2

1− 2− 


¶


Obviously, |Γ| ≤  () for  =  ( ) and so the proof is finished.

The same argument, but using lemma 10.64 instead of lemma 10.63,

leads to the following estimate which we use in the proof of theorem 10.50

where we establish continuity of rough integration.

Lemma 10.67 Let   1  ≥ 0   0,  ∈ [0 1). and
Γ : {0 ≤    ≤ } ≡ ∆ → R

be such that:

(i) for some control ̂

lim
→0

sup
()∈∆ : ̂()≤

|Γ|


= 0;
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(ii) for some control  we have that, for all      in [0  ],

|Γ| ≤
n
|Γ|+ |Γ|+  ( )

 ∧  ( )
o
exp ( ( )


) 

Then, for all    in [0  ]  for some constant  depending on  and 

we have

|Γ| ≤  ( ) 
−1
− 

1−
− exp

µ
2

1− 2− ( )


¶


Remark 10.68 It is worth noting that (ii) is equivalent to saying that, for

all  ∈ [0 1],

|Γ| ≤
n
|Γ|+ |Γ|+ 1− ( )(1−)+

o
exp ( ( )


) 

using |(∗)| ≤  ∧  ⇔ |(∗)| ≤ 1− ∀ ∈ [0 1], and thus renders lemma
10.65 applicable. In fact, for any 0 ≤   ( − 1)  ( − ) we have ̃ =

 +  (1− )  1; setting also ̃ = 1−, we can apply lemma 10.65 to
get

|Γ| ≤ 1

1− 21−̃  ( )
̃
1− exp

µ
2

1− 2− ( )


¶


Although this would be sufficient for our application (namely, the proof of

theorem 10.50) we see that our direct analysis showed that we can take

 = ( − 1)  ( − ) in the above estimate.

As mentioned right above lemma 10.65, such estimates are typically used

when Γ is the difference between a path  and a "local" approximation

of  which is easier to control. Sometimes (e.g. in the proof of unique-

ness/continuity result for RDEs, theorem 10.29) the path  itself comes

into play; in the sense that (10.55) above has to be replaced by (10.56) be-

low. With some extra information, such as (10.57) below, a similar analysis

is possible.

Lemma 10.69 Let  ≥ 0   0   1 1  0 and

Γ : {0 ≤    ≤ } ≡ ∆ → R

 : [0  ]→ R

be such that:

(i) for some control ̂

lim
→0

sup
()∈∆ : ̂()≤

|Γ|


= 0;
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(ii) for some control  we have that, for all      in [0  ],

|Γ| ≤
½
|Γ|+ |Γ|+

µ
+ sup

0≤≤
||
¶
 ( )



¾
exp

³
 ( )

1
´
;

(10.56)

(iii) for all    in [0  ] 

| − Γ| ≤ 

µ
+ sup

≤
||
¶
 ( )

1
 exp

³
 ( )

1
´
 (10.57)

Then, we have for some constant  depending only on   and ,

||∞;[0 ] ≤  exp ( (0  )) (|0|+ ) 

and for all    in [0  ] 

|Γ| ≤  (|0|+ ) ( )

exp ( (0  )) 

Proof. Fix   0 in [0  ] and      ∈ [0 0]. By assumption (ii) we
have,

|Γ| ≤
n
|Γ|+ |Γ|+

³
+ ||∞[00]

´
 ( )


o
exp

³
 ( )

1
´


We may thus apply lemma 10.65 (on the interval [0 0] rather than [0  ]

and with parameters  = 
³
+ ||∞[00]

´
and  = 1). It follows that

for all    in [0 0] 

|Γ| ≤ 1

³
+ ||∞[00]

´
 ( )


exp

³
1 ( )

1
´


and together with assumption (iii) we see that

sup
∈[0]

|| ≤ 2

³
+ ||∞[00]

´
 ( 0)1 exp

³
2 ( )

1
´


This in turn implies

||∞[00] ≤ ||∞[0] + sup
∈[0]

||

≤ ||∞[0] +
³
+ ||∞[00]

´
2 ( )

1
exp

³
2 ( 

0)1
´


We now pick 0 = 0 and set for  ∈ {0 1 2    },

+1 = sup


½
2 ( )

1
exp

³
2 ( )

1
´
≤ 1
2

¾
∧ 

= sup


½
 ( ) ≤ 1

3

¾
∧ 
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where 3 was determined from 2 (13)
1
exp

³
2 (13)

1
´
= 12. It

follows that

||∞[0+1]
≤ ||∞[0]

+
1

2

³
+ ||∞[0+1]

´


which implies ||∞[0+1]
≤ 2 ||∞[0]

+  and then, by induction,

||∞[0]
≤ 2 (|0|+ ) 

We claim that  =  where  = [3 (0  )]+1, the first integer strictly

greater than 3 (0  )  Indeed,    would imply  ( +1) = 13
for all    , and hence lead to the contradiction

3 (0  ) ≥ 3

−1X
=0

 ( +1) = 

We are now able to say that

||∞;[0 ] ≤ 23(0 )+1 (|0|+ )

≤ 4 exp (4 (0  )) (|0|+ ) 

Coming back to inequality (10.56), we obtain that for all    in [0  ] 

|Γ| ≤
n
(|Γ|+ |Γ|) + exp (5 (0  )) (|0|+ ) ( )


o
exp

³
 ( )

1
´

We may thus apply lemma 10.65 (with parameters  = 5(0 ) (|0|+ )

and  = 1) once again to obtain that, for all    in [0  ] 

|Γ| ≤ 6 (|0|+ ) ( )

exp (6 (0  )) 

The proof is now finished.

Remark 10.70 The conclusion of the above lemma can be slightly sharp-

ened to16

||∞;[0 ] ≤  (|0|+ ) exp

⎛⎜⎝ sup
=()⊂[0 ] such that
(+1)≤1 for al l 

X


 ( +1)

⎞⎟⎠
≤  (|0|+ ) exp ( (0  )) ... by super-addivity of controls.

To see this, the above arguments remains unchanged until the definition

+1 = sup


½
 ( ) ≤ 1

3

¾
∧ 

16The interest in the sharpening is explained in exercise 10.59.
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with 3 determined from 2 (13)
1
exp

³
2 (13)

1
´
= 12. Clearly then,

by making the preceding constant 2 bigger if necessary, we may assume that

13 ≤ 1. As in the original proof we have ||∞[0]
≤ 2 (|0|+ ) and for

what  we can check that  =  our conclusion is

||∞;[0 ] ≤ 2 (|0|+ ) 

We claim that

 = 3

⎛⎜⎝ sup
=()⊂[0 ] such that
(+1)≤1 for al l 

X


 ( +1)

⎞⎟⎠+ 1
is a valid choice. Assume    . Then  ( +1) = 13 ≤ 1 for all

   and so

 = 3

−1X
=0

 ( +1) ≤ 3 sup
=()⊂[0 ] such that
(+1)≤1 for al l 

X


 ( +1) =  − 1

which is a contradiction.

In the remainder of this appendix we make the appropriate extensions

which are used in section 10.5 to establish uniqueness of RDE solution

under minimal regularity assumptions.

Condition 10.71 (Ψ ( )) We say that an increasing function  : R+ →
R+ belongs to the class Ψ ( ) if
(i) for all   0 we have

P
≥0  () =∞ where

 () = inf

(
  0

Z 2

1


³ 


´
 ≥ 

)
;

(ii) there exists   0  ∈ (0 1) such that  () ≤  for all  ∈ [0 1]
Exercise 10.72 Prove that  ∈ Ψ ( ) for
(i)  () =  for   1

(ii)  () = 

(iii)  () =  ln∗ ln∗ 1



Exercise 10.73 Prove that  ∈ Ψ ( ) for
(i)  () =  ln∗ 1



(ii)  () =  for   1.

Lemma 10.74 Let   0   0. Assume  : [0 ]→ R+ satisfies for all
 ∈ [0 ] 

 () ≤ 2
³
2

´
exp ( ()


) +  () 
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where  ∈ Ψ ( ) for some constants    0 and   0Then, for all

 ≥ 0 for some constant 1 depending on   and 

 () ≤
"
2

³ 

2

´
+

Z 2

1


³ 


´


#
exp

¡
1


¢


Proof. By induction, we obtain that

 () ≤ 2
³ 

2

´
exp

Ã


−1X
=0


³ 

2

´!
+

−1X
=0

2 exp

⎛⎝

−1X
=0


³ 

2

´⎞⎠ 
³ 

2

´


We then bound exp
³

P−1

=0 
¡

2

¢´
by exp

¡


P∞
=0 2

−¢ =
exp

¡


¢
to obtain

 () exp
¡−¢ ≤ 2³ 

2

´
+

−1X
=0

2
³ 

2

´


By assumption, → 
¡



¢
is a non-increasing function , hence for all  we

have

2
³ 

2

´
≤
Z 2+1

2

³ 


´


Summing up over  we obtain that for all  ≥ 0 we have

 () exp
¡−¢ ≤ 2³ 

2

´
+

Z 2

1


³ 


´


Lemma 10.75 Let  be a control,   0   1 and Γ : {0 ≤    ≤ }→
R a continuous map such that
(i) for all    in [0  ] 

|Γ| ≤  ( ( ))

 (10.58)

(ii) for all      in [0  ]  and some  ∈ Ψ ( ) with constants
   0,

|Γ| ≤ (|Γ|+ |Γ|) exp
³
 ( )

1
´
+  ( ( )) 

Then, for all    in [0  ]  and some constant 1 depending on   and

 (0  )  we have

|Γ| ≤ 1 inf
≥0

"
2

µ
 ( )

2

¶
+

Z 2

1



µ
 ( )



¶


#
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Proof. Define

 () = sup
 such that ()≤

|Γ| 

and observe that, as in the proof of lemma 10.65, we have

 () ≤ 2
³
2

´
exp

³
 ()

1
´
+  () 

We conclude using lemma 10.74 and (10.58).

Proposition 10.76 Let  be a control,   0   0,   1  ∈ (0 1)  ∈¡
1

 1
¢
and assume that  ∈ Ψ ( )  Let  : [0  ] → R be a continuous

path, and Γ : {0 ≤    ≤ }→ R a continuous map such that
(i) for some   1 for all    in [0  ] 

|Γ| ≤  ( ( ))

 (10.59)

(ii) for all      in [0  ] 

|Γ| ≤ (|Γ|+ |Γ|) exp
³
 ( ( ))

1
´
+

µ
+ sup

≤
||
¶
 ( ( )) 

(10.60)

(iii) for all    in [0  ] 

| − Γ| ≤ 

µ
+ sup

≤
||
¶
 ( ( ))




Then, for all   0, there exists  =  ( (0  )     )  0 such that

|0|+  ≤  implies

||∞[0 ]   and ||;[0 ]  

Proof. At the price of replacing  by  we can and will assume  = 1

We allow the constant in this proof to depend on  (0  )      and

 Define  = inf
n
  0 ||∞[0]  

o
 Using lemma 10.75, we have for

all     and all  ≥ 0

|Γ| ≤ 1

"
2

µ
 ( )

2

¶
+ (+ )

Z 2

1



µ
 ( )



¶


#

≤ 1

"
2(1−) ( ) + (+ )

Z 2

1



µ
 ( )



¶


#
From the triangle inequality, we therefore obtain that for all    

and all  ≥ 0

|| ≤ 2 (+ )

Ã
 ( ( ))

1
+

Z 2

1



µ
 ( )



¶


!
+2 ( )


2(1−)
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As ||∞[0]−||∞[0] ≤ sup∈[] ||  we have that ||∞[0]−||∞[0]

is less equal to

2

³
+ ||∞[0]

´Ã
 ( ( ))

1
+

Z 2

1



µ
 ( )



¶


!
+2 ( )


2(1−)

(10.61)

Fix  ∈ ¡1 2−1¢  and define
 := inf

(
  0 2

Ã
 ()

1
+

Z 2

1


³


´


!
= 1− 1



)
∧  (0  ) 

By assumption on ,
P∞

=0
 = +∞ In particular, for a fixed 0 that

will be chosen later, we can define 1 to be the first integer such that

0+1X
=0

 ≥  (0  ) 

We then define the times ()=01 by 0 = 0 and

+1 = inf {    ( +1) = 0+1−} ∧ 

Observe that by construction, 1 =  Also, inequality (10.61) gives for

all  ≥ 0

||∞[0+1]
≤ ||∞[0]

+ 2

0+1−2

(1−)

+
³
+ ||∞[0+1]

´
2

Ã
 (0+1−)

1
+

Z 2

1


³0+1−



´


!

We will take  = 0 + 1 −  By definition of 0+1−,

2

Ã
 (0+1−)

1
+

Z 20+1−

1


³0+1−



´


!
= 1− 1




so that

||∞[0+1]
≤  ||∞[0]

+ (− 1)+ 2

0+1−2

(1−)(0+1−)

As all  are bounded by  (0  ), we obtain

||∞[0+1]
≤ 

µ
||∞[0]

+
(− 1)


+ 32

(1−)(0+1−)
¶
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An easy induction then gives us that

||∞[0]
≤  |0|+

−1X
=0

−
µ
(− 1)


+ 32

(1−)(0+1−)
¶

≤
µ
 |0|+  − 1

− 1 
¶

+32
(1−)0

−1X
=0

2(1−)(1−)− 

Applying this to  = 1 we see that

||∞[0 ] ≤
µ
1 |0|+ 1 − 1

− 1 

¶
+32

(1−)0
1−1X
=0

³
2(1−)

´(1−)
≤

µ
1 |0|+ 1 − 1

− 1 

¶
+

3

1− 2(1−)
2(1−)0 

For a given   0 we pick 0 large enough so that
3

1−2(1−) 2
(1−)0 ≤ 

to obtain that

||∞[0 ] ≤
µ
1 |0|+ 1 − 1

− 1 

¶
+ 

Observe that 1 depends on 0 which depends on  Nonetheless, we see

that for   0 there exists   0 such that for |0| +  ≤  implies³
1 |0|+ 1−1

−1 
´
  and hence

||∞[0 ] ≤ 2

That concludes the proof.



10. Rough Differential Equations (RDEs) 281

10.9 Comments

The main result of this chapter, the continuity of the RDE solutions as

function of the driving signal, also known as universal limit theorem, is due

to T. Lyons [109, 113], nicely summarized in [97] and the St. Flour notes

[116]. There have been a number of (re)formulations of rough path theory

by other authors including [33], [71], [46] and [82]. Our presentation builds

on [63] and combines Davie’s approach [33] with geometric ideas. It seems

to lead to essentially sharp estimates. In particular, we can extend Davie’s

uniqueness result under Lip-regularity,   3 (compared to Lip+ in

Lyons’ uniqueness proof via Picard iteration) to the case of arbitrary  ≥ 1.
In this case, the flow need not be Lipschitz continuous17. Convergence

of Euler schemes for rough differential equations is established in [33] for

[] = 1 2; the general case, section 10.3.5, is new.

Some of our estimates appear as special case in previous works, for in-

stance in [131] in the "Young" case of 1-Hölder paths with  ∈ [1 2).
Lipschitz estimates for rough integration or differential equations, at least

for  ∈ [2 3), appear in [113] and [82].

17 [A.M.Davie, personal communication]
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11

RDEs: Smoothness

We remain in the RDE setting of the previous chapter; that is, we consider

rough differential equations of the form

 =  () x  (0) = 0

where x = x () is a weak geometric -rough path. In the present chapter

we investigate various smoothness properties of the solution, in particular

as a function of 0 and x. In particular, we shall see that RDE solutions

induce flows of diffeomorphisms which depends continuously on x. As an

application, we consider a class of parabolic partial differential equations

with "rough" coefficients in a transport term.

11.1 Smoothness of the Itô-Lyons map

Assuming  ∈ 1-var
¡
[0  ] R

¢
we saw in the ODE section (cf. remark

4.5) that the R-valued ODE solution  = ( ) (0 0 ) together with

its directional derivative  = 


©
( ) (0 0 + ;+ )

ª
=0

satisfies the

system

 =  ()   = ( () ) ·  +  () 

started at (0 ) ∈ R⊕R. In particular, we may write ( ) = ( ) (0 (0 ) ; ( ))

where ( ) are the induced vector fields on R⊕R. In this formulation, the
extension to a rough path setting is easy. Assume at first that  ∈ Lip+1
with    so  ∈ Lip, and assume furthermore that there exists a
[]

¡
R ⊕R¢-valued geometric -rough path χ which projects onto the

[] (R)-valued geometric -rough paths x and h. After a localization ar-
gument (exploiting the structure of ( ) and in particular the fact that

linear RDEs do not explode; cf. the argument in section 11.1.1 below) we

may assume  ∈ Lip and have existence/uniqueness/continuity proper-
ties of the RDE ( ) (0 (0 ) ;χ) with values in R⊕R. Projection to the
second component gives (at least a candidate) for the directional derivative

 =




©
( ) (0 0 + ;plus ◦ 1 (χ))

ª
=0



(Recall from section 7.5.6 that plus resp. 1 is defined as the unique

extension of

( ) ∈ R2 7→ (+ ) ∈ R resp. ( ) ∈ R2 7→ ( ) ∈ R2
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to a homomorphism between the respective free nilpotent groups.) When

 enjoys complementary Young regularity to x, say  ∈ -var
¡
[0  ] R

¢
with 1+ 1  1, we naturally take χ =[] (x ), the Young-pairing of

x and  in which case

plus ◦ 1 (χ) = x

(The translation operator  was introduced in section 9.4.6). The proof

that  is not only a candidate but indeed is the directional derivative can

then be done by passing to limit in the corresponding ODE statements, us-

ing both continuity of the Lyons-Itô maps and "closedness of the derivative

operator" (Proposition B.7). Unfortunately, this reasoning requires one de-

gree too much regularity (our discussion above started with  ∈ Lip+1).
With a little extra effort we can prove differentiability for  ∈ Lip    .

The argument exploits, of course, the specific structure of ( ) and in

particular the fact that

 ∈ Lip−1

only appears in a rough integration procedure. (Recall from section 10.6

that existence/uniqueness/continuity for rough integrals holds under Lip−1-
regularity,  .)

11.1.1 Directional derivatives

All smoothness properties under consideration will be local. On the other

hand, the differential equation satisfied by these derivatives (and higher

derivatives) naturally exhibit growth beyond the standard conditions for

global existence. To make (iterated) localization arguments transparent we

make the following

Definition 11.1 Let  = (1  ) be a collection of vector fields on

R. We say that  satisfies the  non-explosion condition if for all   0

there exists   0 such that if (0x) ∈ R×-var
¡
[0  ] ;[]

¡
R
¢¢
with

kxk-var;[0 ] + |0|  °°π( ) (0 0x)°°∞;[0 ]  

Following our usual convention, we agree that, in the case of non-uniqueness,

π( ) (0 0;x) stands for any full RDE solutions driven by x along vector

fields  started at 0. For example, a collection of Lip
−1 (R)-vector fields,

with   , satisfies the  non explosion condition.

In what follows, we fix a collection  = (1  ) of Lip

 (R

)-vector

fields that satisfies the  non-explosion condition. Motivated by the presen-

tation of directional derivatives of ODE solutions established in theorem

4.4 we make the following definitions.
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1. Consider the ODE



⎛⎝ 





⎞⎠ =

⎛⎝ 



 () 

⎞⎠ ≡ ̃

⎛⎝ 





⎞⎠ (11.1)

where  = ( ) ∈ R ⊕ R and ̃ ∈ Lip is defined by the last
equality. We then define the map

1( ) : R
×-var

¡
[0  ] 

¡
R ⊕R¢¢→ -var

³
[0  ] []

¡
R ⊕R ⊕R¢´

by1

1( ) : (0χ) 7→ π(̃ ) (0 exp ((0 0 0)) ;χ) 

2. Consider the (Riemann-Stieltjes) integralµ




¶
=

Z ·

0

µ




¶
() 

µ



¶
≡
Z ·

0

 ()  (11.2)

where the  = (  ) ∈ R⊕R⊕R and  ∈ Lip−1 is defined by

the last equality. We then define the map

2( ) : 
-var

³
[0  ]  []

¡
R ⊕R ⊕R¢´→ -var

³
[0  ]  []

¡
R× ⊕R¢´

as the rough integral

2( ) : w 7→
Z ·

0

 (w) w

3. Consider the linear ODE

 =  ·  +  ≡  () 

µ




¶
(11.3)

where  is a collection of linear (strictly speaking: affine-linear) vector

fields. We then define the map

3( ) : R
 × -var

³
[0  ] []

¡
R× ⊕R¢´→ -var ([0  ] R)

as solution to the corresponding (linear) RDE, namely

3( ) : (0 ξ) 7→ () (0 0; ξ) 

1There is some irrelevant freedom how to choose the starting point. Any y0 ∈
[]


R ⊕ R ⊕ R with the property that the last component of 1 (y0) ∈ R⊕R⊕R

is equal to 0 ∈ R will do.
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Remark 11.2 Observe that if (0 )  ( ) ∈ R × 1-var
¡
[0  ] R

¢
,

then we proved in theorem 4.4 that the derivative of the ODE map ( ) (0 0;)

in (0 ) is given by

()( ) (0 0 ) = 3( )
¡
 2( ) ◦ 1( )

¡
0 [] (⊕ )

¢¢


We are now ready for our main theorem:

Theorem 11.3 (Directional Derivaties in starting point and perturbation)

(i)   , and  = (1  ) is a collection of Lip

 (R

)-vector fields

that satisfies the  non-explosion condition,

(ii) x ∈ -var
¡
[0  ]  []

¡
R
¢¢
is a weak geometric -rough path,

(iii)  ∈ R and  ∈ -var
¡
[0  ] R

¢
with 1+ 1  1 and  ≤ ,

Then  7→ ( ) (0 0 +   (x)) is differentiable in -var ([0  ] R),
and its derivative at 0 is given by

3( )
¡
 2( ) ◦ 1( )

¡
0 [] (x⊕ )

¢¢


Proof.Without loss of generality, we can assume that the vector fields are

in Lip (R) We then consider any sequence of paths ( ) ∈ 1-var
¡
[0  ] R

¢
such that

sup


³°°[] ()°°-var;[0 ] + kk-var;[0 ]´  ∞

lim
→∞

∞
¡
[] () x

¢
+ ∞

¡
[] () h

¢
= 0

From basic continuity properties of the Young-pairing of such rough paths

(cf. remark 9.34) this implies that

sup


°°[] ( ⊕ )
°°
-var;[0 ]

 ∞

lim
→∞

∞
¡
[] ( ⊕ )  [] (x⊕ )

¢
= 0

Let us use the notations Y ≡ -var
¡
[0  ] R

¢
and Y∞ ≡ 

¡
[0  ] R

¢
;

they are Banach spaces when equipped with -variation and ∞-norm. For
any fixed  ∈ N, the map  ∈ R 7→ ( )

¡
0 0 +  [] ( + )

¢ ∈ Y1
is continuously differentiable in Y1 with derivative given by

 () ≡ 3( )
¡
 2( ) ◦ 1( )

¡
0 +  [] ( + )

¢¢


a consequence from our smoothness results on ODE solution maps, theo-

rem 4.4.) By the fundamental theorem of calculus (in a Banach setting, cf

section B.1 in the appendix) for all  ∈ [0 1] and  ∈ N we then have

( )
¡
0 0 +  [] ( + )

¢− ( )
¡
0 0 [] ()

¢
=

Z 

0

 () 

(11.4)
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as equation in Y1 (by which we mean in particular that the integral ap-
pearing on the right-hand-side is the limit in Y1 of its Riemann-sum ap-

proximations). From the continuous embedding Y1 → Y∞ we can view

(11.4) as equation in Y∞ and as such we now try to send →∞ in (11.4).

By continuity of the translation operator and the Itô-Lyons map (theorem

9.35) we have

( )
¡
0 0 +  [] ( + )

¢→ ( ) (0 0 +   (x)) in Y∞

(even with uniform -variation bounds) for any  (including  = 0) which

justifies the passage to the limit in the left-hand-side of (11.4) to

( ) (0 0 +   (x))− ( ) (0 0x)

(which is actually an element of Y ≡ -var
¡
[0  ] R

¢
 not only Y∞).

On the other hand, from theorem 10.50, we see that

sup
∈[01]

| ()−  ()|Y∞ → 0 as →∞

where  () ≡ 3( )
¡
 2( ) ◦ 1( ) (0 +   (x))

¢
. Clearly then¯̄̄̄Z 

0

( ()−  ()) 

¯̄̄̄
Y∞
≤
Z 

0

| ()−  ()|Y∞ → 0 as →∞

which justifies the passage to the limit in the right-hand-side of (11.4) and

we obtain

( ) (0 0 +   (x))− ( ) (0 0x) =

Z 

0

 () 

as equation in Y∞. Now, ( ) (0 0x)  ( ) (0 0 +   (x)) ∈ Y (
Y∞ and for the integrand on the right-hand-side we even have

{ 7→  ()} ∈  ([0 1] Y) 

To prove this, from the continuity of the Ito map (theorem 10.29 and its

corollaries), it is enough to prove that

→  (x) = plus ◦ 1
¡
[] (x⊕ )

¢
is a continuous function from [0 1] into Y But this is easily implied by
proposition 8.11. By a simple fact of Banach calculus (proposition B.1 in the

appendix) it then follows that  7→ ( ) (0 0 +   (x)) is continuously

differentiable in Y and the proof is then finished.
We can generalize the previous theorem by perturbing the driving rough

path in a more general way. Indeed, after replacing in the proof above

 (x) by plus◦1
¡
[] (x )

¢
(the two are equal), we observe that all we

need to translate a rough path x is a path χ ∈ − ¡[0  ]  [] ¡R ⊕R¢¢
that projects onto x, i.e. such that plus ◦ 10 (χ) = x. We obtain the fol-
lowing result.
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Proposition 11.4 (i)   , and  = (1  ) is a collection of locally

Lip (R)-vector fields that satisfies the  non-explosion condition,
(ii) χ ∈ -var

¡
[0  ]  []

¡
R ⊕R¢¢,

(iii)  ∈ R
Then  7→ ( ) (0 0 + plus ◦ 1 (χ)) is differentiable in -var ([0  ] R),
and its derivative at 0 is given 3( )

¡
 2( ) ◦ 1( ) (0χ)

¢


If χ = [] (x )  the proposition is exactly the previous theorem. If

we want to differentiate ( ) (0 0;x) in the direction of a path h ∈
-var

¡
[0  ]  []

¡
R
¢¢
which is not of finite -variation with −1+−1 

1 then the previous proposition tells us to construct a rough path χ

∈ -var
¡
[0  ]  []

¡
R ⊕R¢¢ that projects on both x and h (in the

sense that plus ◦ 10 (χ) = x and plus ◦ 01 (χ) = h). This would allow,
for instance, to differentiate the solution of a SDE in the direction of an-

other Brownian motion, or in the direction of (Lévy-)area perturbations.

That said, we shall not pursue these directions here and do return to the

Young perturbation setting of theorem 11.3.

We now address the question of higher directional derivatives.

Proposition 11.5 Assume that

(i)   ,  ≥ 1 and  = (1  ) is a collection of Lip
−1+
 (R)-

vector fields that satisfies the  non-explosion condition,

(ii) x ∈ -var
¡
[0  ]  []

¡
R
¢¢
is a weak geometric -rough path,

(iii) 1     ∈ R and 1      ∈ -var
¡
[0  ] R

¢
with 1+ 1  1

and  ≤ ,

Then the following directional derivatives exist in -var ([0  ] R) for all
 ∈ {1     } 

(1 ;1)( ) (0 0x)

=

(


1    
( )

Ã
0 0 +

X
=1

 (


=1 )
(x)

!)
1==0

and the ensemble of these derivatives satisfies the RDE obtained by formal

differentiation.

Proof. The argument is the same as in the ODE case (cf. proposition 4.6).

All we need to observe is that 3( )
¡
 2( ) ◦ 1( )

¡
0 [] (x )

¢¢
can

be obtained by the projection of the solution of an RDE driven along locally

Lip−2+ vector fields satisfying the  non explosion condition.

11.1.2 Fréchet differentiability

Theorem 11.6 Assume that

(i)   ,  ≥ 1 and  = (1  ) is a collection of Lip
−1+ (R)-

vector fields that satisfies the  non-explosion condition,



11. RDEs: Smoothness 289

(ii) x ∈ -var
¡
[0  ]  []

¡
R
¢¢
is a geometric -rough path.

Then, the map

(0 ) ∈ R × -var
¡
[0  ] R

¢ 7→ ( ) (0 0  (x)) ∈ -var ([0  ] R)

is -Fréchet.

Proof. Once again, the proof is identical to the ODE case (cf. propo-

sition 4.8). The map (0x)  ( )1≤≤ 7→ 
()1≤≤

( ) (0 0x) is

uniformly continuous on bounded sets because of (i) uniform continuity

on bounded sets of the Itô-Lyons map and (ii) of uniform continuity on

bounded sets of rough integration. We can now appeal to corollary B.11 in

the appendix. The proof is then finished.

Corollary 11.7 (Li-Lyons) Let  ∈ {1 2    } and  ∈ [1 2) and con-
sider the (Young) differential equation

 =  () 

along Lip-vector fields on R for    − 1 +  with (unique) solution

 = ( ) (0 0 ). Then

(0 ) ∈ R × -var
¡
[0  ] R

¢ 7→ ( ) (0 0 ) ∈ -var ([0  ] R)

is  in Fréchet sense.

Proof. Apply the previous theorem with  =  ∈ [1 2) In this case, the
driving signal is R-valued, say , and since then  () =  +  we can

take  ≡ 0. The previous theorem shows -Fréchetness of the map from

(0 ) to the 
-var ([0  ] R)-valued solution of

 =  ()  (0 + ) 

Replacing the letter  by  leads to the claimed statement.

Exercise 11.8 (Kusuoka) (i) Assume that  ∈ (14 12) and set  =
1. Let   ,  ≥ 1 and  = (1  ) is a collection of Lip

−1+ (R)-
vector fields that satisfies the  non-explosion condition,

(ii) x ∈ -Höl
¡
[0  ]  []

¡
R
¢¢
is a geometric —Hölder rough path.

Take  ∈ (12 12 + ) and let us consider the fractional Sobolev (or

Besov) space 
2
0 (which is strictly bigger than usual Cameron-Martin

space 
12
0 ). Show that the map

(0 ) ∈ R ×
2
0

¡
[0  ] R

¢ 7→ ( ) (0 0  (x)) ∈ -Höl ([0  ] R)

is -Fréchet.
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Solution 11.9 Using the -variation properties of Besov spaces, as dis-

cussed in exercise 5.18, the Young pairing

(x ) 7→ [] (x⊕ )

is continuous from -Höl× 2
0 → -Höl and this is the only modification

needed in the arguments of this section.

Exercise 11.10 (Duhamel’s Principle) Write 
x
← for the derivative

("Jacobian") of  ≡ ( ) ( ·x) : R → R at some point  ∈ R.
Establish the formula

()( ) (0 0x) = 
0x
←0 · 

+

X
=1

Z 

0


x
← · 

¡
( ) (0 0x)

¢


Detail all assumptions.

Exercise 11.11 Assume  ∈ Lip (R) and write 0x·←0 for the (Fréchet)
derivative of  ≡ ( ) (0 ·x) : R → -var

¡
[0  ] R

¢
at some point

0 ∈ R. Noting that 0x·←0 can be viewed as element in 
-var ([0  ] R×),

show that

|0x·←0 |-var;[0 ] ≤  exp
³
 kxk-var;[0 ]

´
with a suitable constant  depending on   and | |Lip .

Solution 11.12 One proceeds as in exercise 10.59, noting that 
0x
·←0 sat-

isfies a linear RDE starting at , the identity map in R. Note the constant
 can be chosen independent of 0 thanks to translation invariance of the

Lip-norm, i.e. | (0 + ·)|Lip = | |Lip .

11.2 Flows of diffeomorphisms

We saw that Lip+−1-regularity on the vector fields  implies that

0 ∈ R 7→ ( ) (0 0x) ∈ -var ([0  ] R)

is -Fréchet. Relatedly, under the same regularity assumptions, we now

show that the map ( 0) 7→  (0 0;x) is a flow of 
-diffeomorphisms,

i.e. an element in the space D (R) defined as

D (R) :=

⎧⎨⎩
 : [0  ]×R → R : ( ) 7→  () such that

∀ ∈ [0  ] :  is a -diffeomorphism of R

∀ : || ≤  :  ()  
−1
 () are continuous in ( )

⎫⎬⎭ 

(11.5)



11. RDEs: Smoothness 291

Proposition 11.13 Let  ≥ 1 and  ∈ {1 2    } and assume  = (1  )

is a collection of Lip+−1-vector fields on R for   . Assume x ∈
-var

¡
[0  ] []

¡
R
¢¢
. Then, the map

 : ( ) ∈ [0  ]×R 7→ ( ) (0 ;x) ∈ R

is a flow of -diffeomorphisms. Moreover, for any multi-index  with 1 ≤
|| ≤ , the maps

( ) ∈ [0  ]×R 7→  ()  
−1
 ()

are bounded by a constant only depending on    kxk-var;[0 ] and | |Lip+−1 
Proof. We proceed as in the ODE case (corollary 4.9): Clearly, 0 ∈
R 7→ ( ) (0 0x) is in 

 (RR). We then argue that ( ) (0 ·x)−1 =

( )
¡
0 ·←−x ¢


, where ←−x (·) = x (− ·) ∈ -var

¡
[0 ]  []

¡
R
¢¢
. Indeed,

we have seen that this holds (cf. the proof of corollary 4.9) in the ODE

case, i.e. when x is replace by some continuous, bounded variation path

. A simple limit argument (in fact: our definition of RDE solution com-

bined with uniqueness) then shows that this identity remains valid in the

RDE setting. It follows that ( ) (0 ·x) is a bijection whose inverse is
also in  (RR). This finishes the proof that ( ) (0 ·x) is a -

diffeomorphism of R. At last, each -derivative of ( ) (0 ·;x) resp.
( ) (0 ·;x)−1 can be represented via (non-explosive) RDE solutions which

plainly implies joint continuity in  and 0. This also yields that the claimed

boundedness since for a fixed  say,

( ) (0 ;x) = (̃ ) (0 0x)

where ̃ =  ( + ·); it is then clear that sup∈[0 ] |(̃ ) (0 0x) | will
be bounded by a constant depending only on    kxk-var;[0 ] and¯̄̄

̃
¯̄̄
Lip+−1

= | |Lip+−1 

thanks to translation invariance of Lip-norms.

The following statement is a first limit theorem for RDE flows. The

uniformity in 0 ∈ R is a consequence of the invariance of the Lip-norm
under translation,

∀0 ∈ R  ≥ 1 : | |Lip = | (0 + ·)|Lip  (11.6)

Theorem 11.14 Let  ≥ 1 and  ∈ {1 2    } and assume  = (1  )

is a collection of Lip+−1-vector fields on R for   . Write  =

(1     ) ∈ N and || = 1 + · · ·+  ≤ . Then the ensemble©
( ) (0 0;x) : || ≤ 

ª
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depends continuously on x ∈ -var
¡
[0  ]  []

¡
R
¢¢
. More precisely, for

all   0 there exists  (depending also on    and | |Lip+−1) such
that for all x1x2 with max=12

°°x°°
-var;[0 ]

≤  and

-var;[0 ]
¡
x1x2

¢
 

we have

sup
0∈R

¯̄
( )

¡
0 0;x

1
¢− ( )

¡
0 0;x

2
¢¯̄
-var;[0 ]

  (11.7)

If x is a geometric 1-Hölder rough path, we may replace -variation by

1-Hölder throughout.

Proof.We show for all   0 there exists  such that -var;[0 ]
¡
x1x2

¢
 

implies

sup
0∈R

¯̄
( )

¡
0 0;x

1
¢− ( )

¡
0 0;x

2
¢¯̄
-var;[0 ]

 

where  is an arbitrary multi-index with || = 1 + · · · +  ≤  The

main observation is that we can take 0 = 0 at the price of replacing  by

 (0 + ·). Thus, thanks to (11.6), uniformity in 0 ∈ R will come for free
provided our choice of  depends on  only through | |Lip+−1 .
Case 1: Assume  = 1 so that  ∈ Lip . In this case, ( ) (0 0;x)
corresponds to a directional derivatives in one of the basis-directions of R,
say  . From Theorem 11.3 we can write ( ) (0 0;x) as composition of

the form

3( )
¡
  2( ) ◦ 1( ) (0x)

¢
Inspection of the respective definitions of these maps shows continuous

dependence in x with modulus of continuity only depending on | |Lip , as
required. More precisely, 1( ) was defined as full RDE solution and the

continuity estimate for full RDE solutions, corollary 10.42, clearly shows

that the modulus of continuity only depends on | |Lip . Similar remarks
apply to 2( ) and 3( ) after inspection of the continuity estimates for

rough integrals and solutions of RDEs with linear vector fields.

Case 2: Now assume  ∈ Lip+−1 for   1. We have already pointed

out that the ensemble©
( ) (0 0;x) : || ≤  − 1ª

can be written as solution to an RDE along Lip

-vector fields (satisfying

the  non-explosion condition). After localization, it can be written as RDE

solution along genuine Lip vector fields where we insist that the Lip-norm

of these localized vector fields only depends on kxk-var;[0 ] and | |Lip+−1 .
We can now appeal to case 1 and the proof is finished.

(The adaptation to the Hölder case is left to the reader as simple exercise.)
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Theorem 11.15 The conclusion of theorem 11.14 holds with (11.7) re-

placed by2

sup
0∈R

¯̄̄
( )

¡
0 0;x

1
¢−1 − ( )

¡
0 0;x

2
¢−1 ¯̄̄

-var;[0 ]
  (11.8)

If x is a geometric 1-Hölder rough path, we may replace -var by 1-Höl

throughout.

Proof. We proceed as in the proof of theorem 11.14 and observe that we

can take 0 = 0 at the price of replacing  by  (0 + ·). Secondly, we
only consider the case || =  = 1 so that  ∈ Lip . (The general case is
reduced to this one as in the proof of theorem 11.14, case 2.)

It helps to note that with ̂ =  ( ;x) we have

( ) (0 ;x (− ·)) = ( ) (0 ̂;x (− ·)) 

We now consider the (inverse-)flow of two RDEs driven by x  = 1 2

respectively, so that³
( )

¡
0 ;x

¢−1´


= ( )
¡
0 ;x (− ·)¢


− ( )

¡
0 ̂;x (− ·)¢



=
¡
 − ̂

¢| {z }
=(;x)

·
Z 1

0

∇ ¡0 ̂ + 
¡
 − ̂

¢
;x (− ·)¢


| {z }

=: (x)



We can write¯̄̄̄³
( )

¡
0 1;x1

¢−1´

−
³
( )

¡
0 2;x2

¢−1´


¯̄̄̄
≤

¯̄̄³

¡
 1;x1

¢

− 

¡
 2;x2

¢


´¯̄̄
| ¡x1¢ |+ ¯̄̄ ¡ 2;x2¢



¯̄̄ ¯̄

¡
x1
¢− 

¡
x2
¢¯̄

which leaves us with estimating four terms. First, from corollay 10.30,¯̄̄³

¡
 1;x1

¢

− 

¡
 2;x2

¢


´¯̄̄
≤ 3

h
-var;[]

¡
x1x2

¢
+
¯̄
1 − 2

¯̄i
where 3 may depend on  ≥ max=12

°°x°°
-var;[0 ]

and | |Lip . Secondly,
it is easy to see that¯̄


¡
x1
¢¯̄ ≤ sup

∈[0 ]
sup
0∈R

∇ ¡0 0;x (− ·)¢
≤ 4 = 4

³
 | |Lip

´


2( ) (0 0;x)
−1 denotes the path  7→ ( ) (0 ·;x)−1 |·=0 ∈ R.
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Third, for 5 = 5

³
 | |Lip

´
we have

¯̄̄

¡
 2;x2

¢


¯̄̄
≤ 5

°°x2°°
-var;[]

by theorem 10.16. At last, forth, we easily see that
¯̄

¡
x1
¢− 

¡
x2
¢¯̄
is

bounded from above byX
:||=1

sup
0∈R

¯̄
( )

¡
0 0;x

1
¢− ( )

¡
0 0;x

2
¢¯̄
-var;[0 ]

 

for an arbitary fixed   0 which is possible by theorem 11.14 provided

x1x2 satisfy max=12
°°x°°

-var;[0 ]
≤  and -var;[0 ]

¡
x1x2

¢
  for

some  =  (). Putting things together, and taking 1 = 2 = 0 = 0,

we see that¯̄̄̄³
( )

¡
0 0;x1

¢−1´

−
³
( )

¡
0 0;x2

¢−1´


¯̄̄̄
≤ 34

¯̄̄
-var;[]

¡
x1x2

¢¯̄̄
+ 5

°°x2°°
-var;[]

¯̄

¡
x1
¢− 

¡
x2
¢¯̄

≤ 6-var;[]
¡
x1x2

¢
+ 6

°°x2°°
-var;[]

 (thanks to theorem 8.10)

and, by super-addivitity of -var;[··]
¡
x1x2

¢
resp.

°°x2°°
-var;[··]  this be-

comes ¯̄̄
( )

¡
0 0;x1

¢−1 − ( )
¡
0 0;x2

¢−1 ¯̄̄
-var;[0 ]

≤ 6 + 6

with 6 = 6

³
 | |Lip

´
. This estimate is more than enough to finish

the proof; e.g. replace  bymin () and start the argument with  (6)

instead of  (The adaption to the Hölder case is left to the reader as simple

exercise.)

We already pointed out that ( ) (0 ·;x) can be viewed as an element
in D (R), the space of flows of -diffeomorphism. For any bounded set

K ⊂ R one can define
||(0);K := sup

∈[0 ]
:||≤
∈K

| ()|

and, setting K := { ∈ R : || ≤ },

D(R) ( ) =
∞X
=1

1

2

|− |(0);K
1 + |− |(0);K

and also ̃D(R) ( ) = D(R) ( )+D(R)
¡
−1 −1

¢
. One can check

thatD (R) is a Polish space under ̃D(R) and that convergence ̃D(R) (
 )→

0 is equivalent to

sup
∈[0 ]
∈K

:||≤

| ()−  ()|+
¯̄̄
 (


 )
−1
()−  ()

−1
()
¯̄̄
→ 0
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for all compact subsets K ⊂ R. We then have the following "limit theorems
for flows of diffeomorphisms", as immediate consequence of theorems 11.14

and 11.15.

Corollary 11.16 Under the assumptions of theorem 11.14, the map

x ∈ -var
³
[0  ]  []

¡
R
¢´ 7→ ( ) (0 ·x) ∈ D (R)

is (uniformly) continuous (on bounded sets).

Exercise 11.17 Establish continuity of x ∈ -var
¡
[0  ] []

¡
R
¢¢ 7→

( ) (0 ·x) ∈ D-var
 (R) where D-var

 is constructed as D (R) but with
the semi-norm ||(0);K replaced by

sup
:||≤
∈K

Ã
sup

()⊂[0 ]

X¯̄̄
+1 ()

¯̄̄!1


Conduct a similar dicussion in the 1-Hölder context.

11.3 Application: a class of rough partial
differential equations

Let  denote the set of symmetric × matrices and consider the partial

differential equations of parabolic type

̇ = 
¡
 2

¢
 (11.9)

 (0 ·) = 0 ∈ BUC(R)  (11.10)

where  =  (  ) ∈  ([0  ] RR ) is assumed to be degener-
ate elliptic3 and  =  ( ) ∈ BUC([0  ]×R) is a real-valued function
of time and space4. Equation (11.9) will be interpreted in viscosity sense

and we recall5 that this means that  is a viscosity sub- ( and super-) so-

lution to  −  = 0; that is, if  ∈ 2 ([0  ]×R) is such that (̄ ̄) is a
maximum (resp. minimum) of −  then

̇ (̄ ̄) ≤ (resp. ≥ )  ¡̄ ̄  (̄ ̄) 2 (̄ ̄)
¢


3This means  (   ) ≥  (     ) whenever  ≥  in the sense of symmetric

matrices.
4BUC denotes the space of bounded, uniformly continuous functions , equipped with

local-uniform topology.
5Cf. the "User’s Guide" [30] or Fleming—Soner’s textbook [49] .
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The aim of this section is to allow for some "rough" perturbation of the

form

 ·  ()  ≡
X


 ( )

 () 




where  =
¡
1     

¢
: [0  ] → R and, as usual,  = (1     )

denotes a collection of sufficienly nice vector fields on R. As pointed out
in [104], classical (deterministic) second order viscosity theory can deal at

best with  ∈  11
¡
[0  ] R

¢
, i.e. measurable dependence in time. Any

"rough" partial differential equation of the form

 = 
¡
 2

¢
− ( ) ·  () 

where  enjoys only "Brownian" regularity of  (i.e. just below 12-Hölder),

or less, falls dramatically outside the scope of the deterministic theory. How-

ever, one can give meaning to this equation (and then establish existence,

uniqueness, stability ...) via ideas from rough path theory; that is, by ac-

cepting that  should be replaced by a geometric -rough path z. The main

result of this section is6

Theorem 11.18 Let () ⊂ ∞
¡
[0  ] R

¢
be Cauchy in (-variation)

rough path metric with rough path limit z ∈ 0-var
¡
[0  ]  []

¡
R
¢¢
.

Assume 0 ∈ BUC(R) → 0 ∈ BUC(R) locally uniformly and let  ∈
BUC([0  ]×R) be a viscosity solution to

 = 
¡
 2

¢
+ ·  ()  () = 0(11.11)

 (0 ·) = 0 (11.12)

where  =  (  ) is continuous, degenerate elliptic such that  = 

satisfies Φ(3)-invariant comparison (cf. definition 11.21 below, also for a

list of examples which satisfy this condition) and

 = (1     ) ⊂ Lip+2 (R;R) with   .

Assume that any such family ( :   0) is locally uniformly bounded7 .

Then (i) there exists  = z, only dependent on z but not on the particu-

lar approximating sequence, such that  →  locally uniformly. We then

say that  satisfies the rough partial differential equation (RPDE) formally

written as

 = 
¡
 2

¢
+ ·  () z () = 0 (11.13)

 (0 ·) = 0; (11.14)

6Unless otherwise stated, BUC-spaces will be equipped with the topology of locally

uniform convergence.
7A simple sufficient conditions is boundedness of  (· · 0 0) on [0  ]× R, and the

assumption that 0 → 0 uniformly, as can be seen by comparison.
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(ii) the solution map induces a contraction semi-group in the sense that

|z − ̂z|∞;R×[0 ] ≤ |0 − ̂0|∞;R

where ̂z is defined as limit of ̂, similar as in (11.11);

(iii) the map (z0) 7→ z from

-var
³
[0  ]  []

¡
R
¢´× BUC(R)→ BUC([0  ]×R)

is continuous.

Let us recall that comparison (for BUC-solutions of  −  = 0 ) means

that, whenever   ∈ BUC([0  ]×R) are viscosity sub- (resp. super-)
solution to (11.9) with respective BUC-initial datas 0 ≤ 0, then

 ≤  on [0  ]×R

Given  ∈  ([0  ] RR ), a well-known sufficient condition for com-
parison8 is the following technical9

Condition 11.19 ([30, (3.14)]) There exists a function  : [0∞] →
[0∞] with  (0+) = 0, such that for each fixed  ∈ [0  ],

 (   (− ̃) )−  ( ̃  (− ̃)   ) ≤ 
³
 |− ̃|2 + |− ̃|

´
whenever   0,  ̃ ∈ R, and  ∈  satisfy

−3
µ
 0

0 

¶
≤
µ
 0

0 −
¶
≤ 3

µ
 −
− 

¶
.

Remark 11.20 A free benefit, cf. [30, p.20], of condition 11.19 is that if

 satisfies Condition 11.19 for  ∈ Γ (some index set) with a uniform
modulus , then inf  again satisfies condition 11.19; similar remarks

apply to sup inf  .

To state our key assumption on  we need some preliminary remark on

the transformation behaviour of

 = (1      )  
2 = ()=1 

under change of coordinates on R where  =  ( ·), for fixed . Let us

allow the change of coordinates to depend on , say  ( ·) :=  (  (·))

8 ... which, en passant, implies degenerate ellipticity, cf. page 18 in [30, (3.14)].
9This condition is usually stated for a bounded domain; however, it also guarantees

comparison on [0  ] × R provided the solutions are assumed to have suitable growth
restrictions. In particular one shows that comparison holds for BUC-solutions in [0  ]×
R, cf. the remarks preceding Theorem 2.1 in [106] for instance.
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where  : R
 → R is a diffeomorphism. Differentiating 

¡
 −1 (·)¢ =

 ( ·) twice, followed by evaluation at  (), we have, with summation
over repeated indices,

 (  ()) =  ( ) 
−1;
 |()

 (  ()) =  ( ) 
−1;
 |()

−1;
 |() +  ( ) 

−1;
 |()

We shall write this, somewhat imprecisely10 but convenient, as

|() =

|−1 |()

®
 (11.15)

2|() =

2|−1 |() ⊗−1 |()

®
+

|2−1 |()

®


Let us now introduce Φ() as the class of all flows of -diffeomorphisms

of R,  = ( :  ∈ [0  ]), such that 0 = Id ∀ ∈ Φ() and such that
 and −1 have  bounded derivatives, uniformly in  ∈ [0  ]. Since

Φ() ⊂ D (R) we inherit a natural notion of convergence:  () → 

in Φ() iff for all multi-indices  with || ≤ 

 ()→   ()
−1 → 

−1
 locally uniformly in [0  ]×R

Definition 11.21 (Φ()-invariant comparison) Let  ≥ 2 and

 ((  )) := 
¡
  () 


−1 |()

®


−1 |() ⊗−1 |()

®
+

2−1 |()

®¢
(11.16)

We say that  =  satisfies Φ()-invariant comparison if, for every  ∈
Φ(), comparison holds for  solutions of  −  = 0.

Example 11.22 ( linear) Suppose that  ( ) : [0  ] × R → R×
0

and  ( ) : [0  ]×R → R are continuous in  and Lipschitz continuous

in , uniformly in  ∈ [0  ]. If  (  ) = Tr
h
 ( ) ( )



i
+

 ( ) · , then Φ(3)-invariant comparison holds. Let  ∈ Φ(3). Although
this is a special case of exercise 11.23 below, let us point out that  is of

the same form as  with   replaced by

 ( )

 =  (  ()) 

−1;
 |()  = 1     ; = 1     0

 ( )

=

h
 (  ()) 

−1;
 |()

i
+
X


³





−1;
 |()

´
  = 1     

By defining properties of the class Φ(3), the map  7→ 
−1;
 |() 

−1;
 |()

is continuous and the 3-boundedness assumption inherent in our defini-

tion of Φ(3) ensures that   are Lipschitz in , uniformly in  ∈ [0  ].

10 Strictly speaking, one should view

2

 |· as second order cotangent vector,
the pull-back of


2

 | under −1 .
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Comparison for (viscosity) solutions of  −  = 0 can then be discussed

directly11 .

Exercise 11.23 ( quasi-linear) Let

 (  ) = Tr
h
 (  ) (  )



i
+  (  )  (11.17)

(i) Assume that  =  (  ) : [0  ]×R×R → R is bounded, continuous
and Lipschitz continuous in  and , uniformly in  ∈ [0  ].
(ii) Assume that  =  (  ) : [0  ]×R ×R → R×

0
is a continuous

map such that  ( · ) is bounded and Lipschitz continuous, uniformly in
( ) ∈ [0  ]×R; assume also existence of a constant   0, such that

∀  ∈ R : | (  )−  (  )| ≤ 
|− |

1 + ||+ || (11.18)

for all  ∈ [0  ] and  ∈ R. Show that under these assumptions Φ(3)-
invariant comparison holds for  =  .

Example 11.24 ( of Hamilton-Jacobi-Bellman type) From exam-

ple 11.22 and remark 11.20, we see that Φ(3)-invariant comparison holds

when  is given by

 (  ) = inf
∈Γ

n
Tr
h
 ( ; ) ( ; )



i
+  ( ; ) · 

o


the usual non-linearity in the Hamilton-Jacobi-Bellman equation, whenever

the conditions in examples 11.22 are satisfied uniformly with respect to  ∈
Γ. More generally, one can take the infimum of quasi-linear , provided

the conditions in exercise 11.23 are satisfied uniformly.

Example 11.25 ( of Isaac type) Similarly, Φ(3)-invariant comparison

holds for

 (  ) = sup


inf


n
Tr
h
 ( ; ) ( ; )



i
+  ( ; ) · 

o


(such non-linearities arise in Isaac equation in the theory of differential

games), and more generally

 (  ) = sup


inf


n
Tr
h
 (  ; ) (  ; )

 ·
i
+  (  ; )

o
whenever the conditions in examples 11.22 and 11.23 are satisfied uniformly

with respect to  ∈ B and  ∈ Γ, where B and Γ are arbitrary index sets.

11 In the case of 12- solutions this boils down to classical "weak maximum principles"

for linear parabolic equations, see e.g. [158, Thm. 3.1.1].
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Lemma 11.26 Let  : [0  ]→ R be smooth and assume that we are given
Lip-vector fields  = (1     ) with   3. Then the ODE

 =  ()   ∈ [0  ]

has a unique solution flow  =  ∈ Φ(3).
Proof. This follows directly from proposition 11.13 applied with  = 1.

A direct ODE proof, building on corollary 4.9 and then arguing as in the

proof of proposition 11.13 is also not difficult (and actually shows that

3-boundedness of  is enough here).

Proposition 11.27 Let   and  be as in lemma 11.26. Then  is a

viscosity sub- (resp. super-) solution (always assumed BUC) of

̇ ( ) = 
¡
 2

¢− ( ) ·  () ̇ () (11.19)

if and only if  ( ) :=  (  ()) is a viscosity sub- (resp. super-) solution

of

̇ ( ) = 
¡
 2

¢
(11.20)

where  was defined in (11.16).

Proof. Set  =  (). When  is a classical sub-solution, it suffices to use

the the chain-rule and definition of  to see that

̇ ( ) = ̇ ( ) + ( ) · ̇ () = ̇ ( ) + ( ) ·  () ̇
≤ 

¡
  ( ) 2 ( )

¢
= 

¡
  ( ) 2 ( )

¢


The case when  is a viscosity sub-solution of (11.19) is not much harder:

suppose that (̄ ̄) is a maximum of  − , where  ∈ 2 ([0  ]×R) and
define  ∈ 2 ([0  ]×R) by  ( ) = 

¡
 −1 ()

¢
. Set ̄ = ̄ (̄) so

that


¡
̄ ̄  (̄ ̄) 2 (̄ ̄)

¢
= 

¡
̄ ̄  (̄ ̄) 2 (̄ ̄)

¢


Obviously, (̄ ̄) is a maximum of  − , and since  is a viscosity sub-

solution of (11.19) we have

̇ (̄ ̄) + (̄ ̄) (̄) ̇ (̄) ≤ 
¡
̄ ̄  (̄ ̄) 2 (̄ ̄)

¢


On the other hand,  ( ) =  (  ()) implies ̇ (̄ ̄) = ̇ (̄ ̄) +

 (̄ ̄) (̄) ̇ (̄) and putting things together we see that

̇ (̄ ̄) ≤ 
¡
̄ ̄  (̄ ̄) 2 (̄ ̄)

¢
which says precisely that  is a viscosity sub-solution of (11.20). Replacing

maximum by minimum and ≤ by ≥ in the preceding argument, we see that
if  is a super-solution of (11.19), then  is a super-solution of (11.20).
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Conversely, the same arguments show that if  is a viscosity sub- (resp.

super-) solution for (11.20), then  ( ) = 
¡
 −1 ()

¢
is a sub- (resp.

super-) solution for (11.19).

We can now give the proof of the main result.

Proof. (Theorem 11.18.) Using lemma 11.26, we see that  ≡ 


, the

solution flow to  =  () , is an element of Φ ≡ Φ(3). Set   :=  .

From Proposition 11.27, we know that  is a solution to

 = 
¡
 2

¢
− ( ) ·  ()  ()   (0 ·) = 0

if and only if  is a solution to −  = 0. By assumption of Φ-invariant

comparison,

| − ̂|∞;R×[0 ] ≤ |0 − ̂0|∞;R 
where  ̂ are viscosity solution to −  = 0. Let z denote the solution

flow to the rough differential equation

 =  () z

Thanks to Lip+2-regularity of the vector fields z ∈ Φ, and in particular a
flow of 3-diffeomorphisms. Set  z = z . The "universal" limit theorem

[113] holds, in fact, on the level of flows of diffeomorphisms (see [112] and

[66, Chapter 11] for more details) tells us that, since  tends to z in rough

path sense,

 → z in Φ

so that, by continuity of  (more precisely: uniform continuity on com-

pacts), we easily deduce that

  →  z locally uniformly.

From the "Barles-Perthame" method of semi-relaxed limits (Lemma 6.1

and Remarks 6.2, 6.3 and 6.4 in [30], see also [49]) the pointwise (relaxed)

limits

̄ : = lim sup ∗ 

 : = lim inf ∗ 

are viscosity (sub resp. super) solutions to  −  z = 0 with identical

initial data. As the latter equation satisfies comparison, one has trivially

uniqueness and hence  := ̄ =  is the unique (and continuous, since ̄ 

are respectively upper resp. lower semi-continuous) solution to

 =  z   (0 ·) = 0 (·) 
Moreover, using a simple Dini-type argument (e.g. [30, p.35]) one sees that

this limit must be uniform on compacts. It follows that  is the unique

solution to

 =  z   (0 ·) = 0 (·)



302 11. RDEs: Smoothness

(hence does not depend on the approximating sequence to z) and the proof

of (i) is finished by setting

z ( ) := 
³
 (z )

−1
()
´


(ii) The comparison |z − ̂z|∞;[0 ]×R ≤ |0 − ̂0|∞;R is a simple conse-
quence of comparison for  ̂ (solutions to  =  z). At last, to see (iii),

we argue in the very same way as in (i), starting with

 z →  z locally uniformly

to see that  →  locally uniformly, i.e. uniformly on compacts.

11.4 Comments

Flows of RDE solutions were first studied in [112], see also [113]; pertur-

bations in the driving signal in [111]. Theorem 11.6 appears to be new;

corollary 11.7 was established by Li—Lyons in [102]. Exercise 11.8 is the

rough path generalization of a SDE regularity result of Kusuoka [91]; his

result is recovered upon taking the driving rough path to be enhanced

Brownian motion. The limit theorem 11.14 is the rough path generaliza-

tion of the corresponding limit theorems for stochastic flows as discussed

in the books [83], [117] or [91].

Our definition of D (R), equation (11.5), follows [11]; see also [91].
Corollary 11.16 is somewhat cruder than theorem 11.14 but helpful in mak-

ing the link to various works on stochastic flows, including [102] and [91].

Section 11.3 on rough partial differential equations

 = 
¡
 2

¢
+ () z

with  fully non-linear but  = (1    ) linear in  is taken from

[120]; the case when  and are both linear (with respect to the derivatives

of ) was considered in [20]. From the works of Lions—Souganidis [104, 105,

106] we conjecture that the present results extend to sufficiently smooth

but non-linear . Other classes of rough partial differential equations have

been studied; in [73] the authors consider the evolution problem  =

−  +  ( )  where − is the generator of an analytic semigroup;

the solution is understoof in mild sense, with the intergrals involved being

of Young type. An extension to a genuine rough setting (i.e. beyond the

Young setting) is discussed in [72].
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RDEs with Drift and Other
Topics

In the last two chapters we discussed various properties of rough differential

equations of the form

 =  ()x

where  = (1     ) denotes, as usual, a collection of vector fields. In

applications, the term  ()x may model a state-dependent perturbation

of the classical classical ODE ̇ = (). This leads to differential equations

of the form

 =  ()x+ () 

where  ()  is viewed as drift term. To some extent, no new theory

is required here. It suffices to replace  by ̃ = (1      ) and the

geometric -rough path x by the "space-time" rough path x̃ :  7→ [] (x),

as discussed in section 9.4. The downside is of this approach is that one has

to impose the same regularity assumptions on  and which is wasteful1.

We shall see in this section that the regularity assumptions on  can be

significantly weakened. Moreover, the estimates we shall will be important

in their own right as they will lead us to a deterministic understanding

McShane-type approximation results2

12.1 RDEs with drift terms

It is helpful to consider drift terms of the more general form ()  where

 = (1    0) and  ∈ -var
³
[0  ] R

0
´
. It is natural to assume

that the drift term signal  has better regularity than ; which is to say

that  ≤ . A well-defined Young pairing [] (x ) is still necessary and so

we assume that

1+ 1  1

It follows that  ∈ [1 2) and hence [] = 1. This implies that  is actually
a geometric -rough path; say

h ∈ -var
³
[0  ]  []

³
R

0´´


1From ODE theory, one expects that  ∈ Lip1 will suffice for uniqueness, in contrast
to  ∈ Lip needed for RDE uniqueness ...

2To be discussed in sections 12.2 and 13.3.4.
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In fact, we shall find it convenient not to impose that  ≤ , since this will

allow us to keep the symmetry between x and h. The object of study is

then the rough differential equation of the form

 =  ()x+ ()h (12.1)

where x is a weak geometric -rough path, and h is a weak geometric -

rough path3. In many applications,  =  or  is of bounded variation, i.e.

 = 1.) We note again that (12.1) can be rewritten a standard RDE driven

by the geometric -rough path [] (x⊕ h), along the vector fields ( ),

at the price of suboptimal regularity assumptions on  and  . Our direct

analysis of (12.1) starts with the following

Definition 12.1 Let   ≥ 1 such that 1+1  1 Let x ∈ -var
¡
[0  ]  []

¡
R
¢¢

be a weak geometric -rough path, and h ∈ -var
³
[0  ]  []

³
R

0
´´

be

a weak geometric -rough path. We say that  ∈  ([0  ] R) is a so-
lution to the rough differential equation (short: a RDE solution) driven

by (xh) along the collection of R-vector fields
³
()1≤≤  ()1≤≤0

´
and started at 0 if there exists a sequence (

 ) ⊂ 1-var
¡
[0  ] R

¢×
1-var

³
[0  ] R

0
´
such that

sup


°°[] ()°°-var;[0 ] + °°[] ()°°-var;[0 ] ∞

lim
→∞

0;[0 ]([] (
) x) = 0 and lim

→∞
0;[0 ]

¡
[] (

) h
¢
= 0.

and ODE solutions  ∈ ( ) (0 0; (
 )) such that

 →  uniformly on [0  ] as →∞ .

The (formal) equation  =  () x +  () h is referred to as rough

differential equation with drift (short: RDE with drift).

This definition generalizes immediately to time intervals [  ] and we

define ( ) ( ; (x )) ⊂  ([  ] R) to be the set of all solutions to
the above RDE with drift starting at  at time , and in case of uniqueness,

( ) ( ; (xh)) is the solution of the RDE with drift.

We will also be interested in full RDE solution with drift. Let us define

this concept.

Definition 12.2 Let   ≥ 1 such that 1+1  1 Let x ∈ -var
¡
[0  ]  []

¡
R
¢¢

be a weak geometric -rough path, and h ∈ -var
³
[0  ]  []

³
R

0
´´

be a

3 In the case that   , one sees that 1+ 1  1 implies  ∈ [1 2) and so  ()x
plays the rôle of the drift term.
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weak geometric -rough path. We say that y ∈ 
¡
[0  ]  [max()] (R)

¢
is

a solution to the full rough differential equation (short: a full RDE solution)

driven by (xh) along the collection of R-vector fields
³
()1≤≤  ()1≤≤0

´
and started at y0 if there exists a sequence (

 ) in 
1-var

¡
[0  ] R

¢×
1-var

³
[0  ] R

0
´
such that

sup


°°[] ()°°− + °°[] ()°°− ∞

lim
→∞

0([] (
) x) = 0 and lim

→∞
0
¡
[] (

) h
¢
= 0.

and ODE solutions  ∈ ( ) (0 1 (y0) ; (
 )) such that

y0 ⊗ [max()] (
)→ y uniformly on [0  ] as →∞ .

The (formal) equation y =  (y) x+ (y) h is referred to as full rough

differential equation with drift (short: full RDE with drift).

This definition generalizes immediately to time intervals [  ] and we

define π( ) ( ; (xh)) ⊂ 
¡
[  ] [max()] (R)

¢
to be the set of all

solutions to the above full RDE with drift starting at  at time , and

in case of uniqueness, π( ) ( ; (xh)) is the solution of the full RDE

with drift.

12.1.1 Existence

We start by comparing ODE solution with drift with their counterpart

where we remove the drift.

Lemma 12.3 Assume that

(i)  = ()1≤≤ is a collection of vector fields in Lip
−1 (R), with   1

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
−1 (R) with

  1

(ii)   are some elements of [0  ] 

(iii)  ∈ R is an initial condition,
(iv)  and  are two paths in 1-var

¡
[ ] R

¢
and 1-var

³
[ ] R

0
´
,

(v)  ≥ 0 is a bound on | |Lip−1
R 

|| and  ≥ 0 is a bound on

| |Lip−1
R 

|| 

Then, we have for some constant  =  ( )¯̄̄
( ) ( ; ( )) − ( ) ( ;) − ( ) ( ;)

¯̄̄
≤ 

³


 + 

−1
 +  + −1  + 

´
exp ( ( + )) 
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In the case when  ≥ 2 and  ≥ 2 we have

¯̄̄
( ) ( ; ( )) − ( ) ( ;) − ( ) ( ;)

¯̄̄
≤  exp ( ( + )) 

Proof. Without loss of generality, we assume ( ) = (0 1)  Then, as¯̄̄
( ) (0 0;) − (0)

¯̄̄
≤ 1


 we see we can replace ( ) ( ;)

by  (0)

Case 1: We first assume that  ≥ 2 and  ≥ 2
Define for  ∈ [0 1],  = ( ) (0 0; ( )), 


 = ( ) (0 0;) and

 = ( ) (0 0;)  Define also

 =
¯̄
0 −

¡
0 + 0

¢¯̄


First observe that

¯̄
0

¯̄
≤  and

¯̄
0

¯̄
≤ 

Then, by definition of  and  for  ∈ [0 1] 

 =

¯̄̄̄Z 

0

{ ()−  ( )}  +
Z 

0

©
 ()−

¡

¢ª



¯̄̄̄
≤ 2 | |Lip−1

Z 

0

| −  |  ||+ 2 | |Lip−1
Z 

0

¯̄
 − 

¯̄
 ||

≤ 2

Z 

0

¯̄
0 − 0 − 0

¯̄

³
| |Lip−1 ||+ | |Lip−1 ||

´
+2 | |Lip−1

Z 

0

¯̄
0

¯̄
 ||+ 2 | |Lip−1

Z 

0

¯̄
0

¯̄
 ||

≤ 2

Z 

0



³
| |Lip−1 ||+ | |Lip−1 ||

´
+ 4

We conclude the proof by using Gronwall inequality.

Case 2: We still assume  ≥ 2 but   2As
¯̄̄
( ) (0 0;) − (0)

¯̄̄
≤

1

 we see we can replace ( ) ( ;) by  (0)
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Define this time  = | −  − (0)0|  and observe that |01| ≤
1 ( + )  Then, by definition of  and  for  ∈ [0 1] 

 =

¯̄̄̄Z 

0

{ ()−  ()}  +
Z 

0

{ ()− (0)} 
¯̄̄̄

≤ 2 | |Lip−1
Z 

0

| − |  ||+ 2 | |Lip−1 sup

|0|−1

Z 

0

||

≤ 2 | |Lip−1
Z 

0

 ||+ 2 | |Lip−1 sup

|0|−1

Z 

0

||

+2

µ
| |Lip−1

Z 

0

||
¶µ

| |Lip−1
Z 

0

||
¶

≤ 3 | |Lip−1
Z 

0

 ||+ 3

³
( + )

−1
+ 

´
≤ 3 | |Lip−1

Z 

0

 ||+ 4

³


 + 

−1


´
exp (4)

We conclude this case with Gronwall lemma once again.

The case   2 and  ≥ 2 is of course the symmetric case.
Case 3: We finally consider the case   2 and   2 which is the

simplest case. As¯̄̄
( ) (0 0;)01 − (0)01

¯̄̄
≤ 1


¯̄̄

( ) (0 0;)01 −  (0)01

¯̄̄
≤ 1




we see that we can replace ( ) (0 0;)01by (0)01 and ( ) (0 0;)01
by  (0)01 But¯̄

( ) (0 0; ( ))1 −  (0)01 − (0)01
¯̄

≤
¯̄̄̄Z 1

0

[ ()−  (0)] 

¯̄̄̄
+

¯̄̄̄Z 1

0

[ ()− (0)] 

¯̄̄̄
≤ 4 ( + )

−1
 + 4 ( + )

−1


≤ 5

³


 + 

−1
 + −1  + 

´


That concludes the proof.

It is now easy to give the following generalization of lemma 10.5.

Lemma 12.4 (Lemma drift) Assume that

(i)  = ()1≤≤ is a collection of vector fields in Lip
−1 (R) with   1;

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
−1 (R), with

  1;
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(ii)    are some elements of [0  ] ;

(iii)  ̃ are two paths in 1-var
¡
[ ] R

¢
such that bc() = bc(̃);

(iii bis)  ̃ are two paths in 1-var
³
[ ] R

0
´
such that bc () =

bc
³
̃
´

;

(iv)  ≥ 0 is a bound on | |Lip−1 max
©R 


|| R 


|̃|ª and  ≥ 0 is a

bound on | |Lip−1 max
nR 


||  R 



¯̄̄
̃
¯̄̄o



We then have, for some constant  =  ( ) ¯̄̄
( )(  ( )) − ( )( 

³
̃ ̃

´
)

¯̄̄
≤ 

³


 + 

−1
 +  + −1  + 

´
exp ( ( + ))

Proof.Write ( )(  ( ))−( )( 
³
̃ ̃

´
) as ∆1+ ∆2+

∆3, where

∆1 = ( )(  ( )) − ( )(   ) − ( ) ( ;)

−
µ
( )(  ( )) − ( )(  ̃) − ( )

³
 ; ̃

´


¶


and

∆2 = ( )(   ) − (̃ )(  ̃)

∆3 = ( ) ( ;) − ( )

³
 ; ̃

´




Lemma 12.3 gives

|∆1| ≤ 1

³


 + 

−1
 +  + −1  + 

´
exp (1) 

lemma 10.5 (which we called "lemma ") gives

|∆2| ≤ 2

 exp (2) 

and

|∆3| ≤ 3

 exp (3)

The triangle inequality then finishes the proof.

Lemma 12.5 (Lemma drift) Assume that

(i)  = ()1≤≤ is a collection of vector fields in Lip
−1 (R) with   1,

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
−1 (R), with

  1

(ii)    are some element of [0  ],

(iii)  ̃ ∈ R (thought of as "time−" initial conditions)
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(iv)  is a path in 1-var
¡
[ ] R

¢
,

(iv bis)  is a path in 1-var
³
[ ] R

0
´


(v)  ≥ 0 is a bound on | |Lip−1
R 

|| and  ≥ 0 is a bound on

| |Lip−1
R 

||.

Then, if ( ) ( ·;) denotes the unique solution to  =  ()  from

some time- initial condition, we have for some  =  ( ) ¯̄̄
( ) ( ; ( )) − ( ) ( ̃; ( ))

¯̄̄
≤

 | − ̃| 
³
−1 + 

−1


´
exp ( ( + ))

+
³


 + 

−1
 +  + −1  + 

´
exp ( ( + ))

Proof. Write once again ( ) ( ; ( )) − ( ) ( ̃; ( )) as

∆1+ ∆2 +∆3, where

∆1 = ( ) ( ; ( )) − ( ) ( ;) − ( ) ( ;)

−
³
( ) ( ̃; ( )) − ( ) ( ̃;) − ( ) ( ̃;)

´


and

∆2 = ( ) ( ;) − ( ) ( ̃;)

∆3 = ( ) ( ;) − ( ) ( ̃;) 

Lemma 12.3 gives

|∆1| ≤ 1

³


 + 

−1
 + 

−1
  + 

´
exp (1) 

Then remark that lemma 12.5 (lemma B) in the case  ≥ 2 gives

|∆2| ≤ 2 (| − ̃| ) exp (2) 

while inequality (10.12) in exercise 10.12 easily leads to

|∆2| ≤ 2
¡| − ̃| −1 + 

¢
exp (2)

in the case   2 We obtain similarly

|∆2| ≤ 2

³
| − ̃| −1 + 




´
exp (2) 

We are now ready for our existence theorem:
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Theorem 12.6 Assume that,     ∈ [1∞) are such that
1+ 1  1 (12.2)

   and    (12.3)

 − 1


+
1


 1 and

1


+

 − 1


 1; (12.4)

(i)  = ()1≤≤ is a collection of vector fields in Lip
−1 (R);

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
−1 (R);

(ii) () is a sequence in 1-var
¡
[0  ] R

¢
, and x is a weak geometric

-rough path such that

lim
→∞

0[0 ]
¡
[] () x

¢
and sup



°°[] ()°°-var;[0 ] ∞;
(ii bis) () is a sequence in 

1-var
³
[0  ] R

0
´
, and h is a weak geometric

-rough path such that

lim
→∞

0[0 ]
¡
[] () h

¢
and sup



°°[] ()°°-var;[0 ] ∞; .
(iii) y0 ∈ [max()] (R) is a sequence converging to some y0;
(iv)  is the control defined by

 ( ) =
³
| |Lip−1 kxk-var;[]

´
+
³
| |Lip−1 khk-var;[]

´


Then, at least along a subsequence, y0⊗[max()]
¡
( ) (0 1 (y


0 ) ; ( ))

¢
converges in uniform topology, and there exists a constant 1 depending on

   and  such that for any limit point y, and all    in [0  ] 

kykmax()-var;[] ≤ 1

³
 ( )

1max() ∨  ( )
´


Finally, if  : [ ] → R and  : [ ] → R
0
are two continuous path

of bounded variation such that

[]
¡


¢


= x and

Z 



¯̄


¯̄
≤  kxk-var;[]

[]
¡




¢
= h and

Z 



¯̄


¯̄
≤  khk-var;[]

for some constant , then, for all    :  ( ) ≤ 1, there exists 2 and
  1¯̄̄

y − [max()]
¡
( )

¡
 1 (y) ;

¡
 

¢¢¢


¯̄̄
≤ 2 ( )




(12.5)

where 2 depends on     and .
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Proof. The argument follows exactly the line of the proof of lemma 10.7,

theorem 10.16, and theorem 10.39. We adapt lemma 10.7 by first assuming

x and h to be lift of smooth paths and concentrating on RDE rather than

full RDEs. We then define geodesics   corresponding to the elements

h and x, and Γ to be the difference of the ODE solution driven by

  and hx. The we bound Γ − Γ − Γ using lemma drift and
lemma drift , and conclude this first part with lemma 10.65. When using

emma drift and lemma drift , the variables  and  are set to  ( )
1

and  ( )
1
, respectively. To be able to use lemma 10.65, all the power

in the expression

 ( )


+  ( )
−1

+ 1
 +  ( )

1+1
+  ( )

1

+
−1
 +  ( )




(which comes 

 + 

−1
 +  + −1  + ), must be strictly greater

than 1. That explains the conditions 12.2,12.3, and 12.4. Equipped with the

equivalent of lemma 10.7, a limit argument similar to the one in theorem

10.16 allows us to prove the current theorem, for the case of RDE (rather

than full RDEs). We then use similar arguments as the one in the proof of

theorem 10.39 to conclude the proof.

Remark 12.7 The conditions on     in Theorem 12.6 may look sur-

prisingly complicated and it helps to play through a few special case. To this

end, let us note that the conditions have been stated in a way to empha-

size the symmetric roles of these parameters. We may break this symmetry

by assuming, without loss of generality, that  ≥  in which case the first

condition in (12.4) is seen to be redundant since

 − 1


+
1


≥  − 1


+
1


=




 1

The conditions on     then reduce to

1+ 1  1    and   max

½
 1 + 

µ
1− 1



¶¾


Let us look at three special cases:

(i) The case  = 1, frequently encountered in applications. The condition

reduces to

   and    = 1

which is natural when compared with the regularity assumptions for RDE

existence.

(ii) The case  =  The conditions now reduce to

  2    and   
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and we effectively consider RDEs (or better: Young ODEs) driven by  7→
( ) of finite -variation.

(iii) A good understanding of the term " max
n
 1 + 

³
1− 1



´o
" is the

content of the forthcoming remark 12.12.

The following corollary will be important as it often allows to identify

RDEs with drift. Examples will been seen in section 12.2 below.

Corollary 12.8 (Euler estimate, RDE with drift) In the setting of the

previous theorem 12.6, but focusing for simplicity on RDE solutions rather

than full RDE solutions, we have for   0, for all   such that  ( ) ≤
¯̄̄
( ) ( ; ((xh))) − ( ) ( x)− ( ) ( h)

¯̄̄
≤ 1 ( )



for some   1 and 1 =  (   ). We also have for some constant

2 =  (   ) ¯̄̄
( ) ( ; ((xh))) − E( ) (x)− E( ) (h)

¯̄̄
≤ 2 ( )



(12.6)

Proof. We assume  = 1; the general case follows the same lines. By the

triangle inequality and inequality (12.5), it suffices to prove that¯̄̄
( )

¡
 ;

¡
 

¢¢

− ( )

¡
 ;


¢

− ( )

¡
 ;


¢


¯̄̄
is bounded by  ( )


 But this follows from lemma 12.3.

The second inequality follows easily from the first one.

12.1.2 Uniqueness and continuity

For existence of RDE with drift, we start by comparing ( ) ( ; ( ))
to ( ) ( ;)+( ) ( ;) We now look at the continuity of the

difference between those two terms.

Lemma 12.9 Assume that

(i)  = ()1≤≤ and ̃ = ()1≤≤ are two collections of vector fields in
Lip (R),  ≥ 1;
(i bis)  = ()1≤≤0 and ̃ = ()1≤≤ is a collection of vector fields

in Lip (R),  ≥ 1;
(ii)    are some elements of [0  ] ;

(iii)  ∈ R is an initial condition;
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(iv) ( ̃) and
³
 ̃

´
are two pairs in 1-var

¡
[ ] R

¢×2
and 1-var

³
[ ] R

0
´×2

;

(v)  and  are such that

max

½
| |Lip

Z 



|| 
¯̄̄
̃
¯̄̄
Lip

Z 



|̃|
¾
≤ 

max

½
| |Lip

Z 



|| 
¯̄̄
̃
¯̄̄
Lip

Z 



¯̄̄
̃

¯̄̄¾
≤ ;

(vi)  and  are such that

max

µ
| |Lip 

¯̄̄
̃
¯̄̄
Lip

¶Z 



| − ̃| ≤ 

max

µ
| |Lip−1 

¯̄̄
̃
¯̄̄
Lip−1

¶Z 



¯̄̄
 − ̃

¯̄̄
≤ ;

(vii)  and  are such that

1

max

µ
| |Lip 

¯̄̄
̃
¯̄̄
Lip

¶ ¯̄̄ − ̃
¯̄̄
Lip−1

≤  

1

max

µ
| |Lip 

¯̄̄
̃
¯̄̄
Lip

¶ ¯̄̄ − ̃
¯̄̄
Lip−1

≤  

Then, if ∆ is defined by

∆ =
³
( ) ( ; ( )) − ( ) ( ;) − ( ) ( ;)

´
−
µ
(̃ ̃)

³
 ̃;

³
̃ ̃

´´

− (̃ ) ( ̃; ̃) − (̃)

³
 ̃; ̃

´


¶


we have for some constant  =  ( ) 

∆ ≤  (|0 − ̃0|+  +  )
³
 + 

−1
 + 

−1
 

´
exp ( ( + ))

+
³


³
 + 

−1
 

´
+ 

¡
 + −1 

¢´
exp ( ( + )) 

Proof. Without loss of generality, we assume ( ) = (0 1)  Define for

 ∈ [0 1],

 = ( ) (0 0; ( )) , 

 = ( ) (0 0;) and  = ( ) (0 0;)

̃ = (̃ ̃)

³
0 ̃0;

³
̃ ̃

´´

, ̃ = (̃ ) (0 ̃0; ̃) and  = (̃)

³
0 ̃0; ̃

´
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We also set

 =
¡
0 − 0 − 0

¢− ³̃0 − ̃̃0 − ̃̃0

´
We obtain by definition of   ̃ ̃ for  ∈ [0 1] that  = ∆1+∆2 where

∆1 =

Z 

0

{ ()−  ( )}  −
Z 

0

n
̃ (̃)− ̃

¡
̃̃
¢o

̃

∆2 =

Z 

0

©
 ()−

¡

¢ª

 −
Z 

0

n
̃ (̃)− ̃

³
̃̃

´o
̃

Lemma 10.24 implies that

¯̄
∆1
¯̄
≤ | |Lip

Z 

0

¯̄
 −  − ̃ − ̃̃

¯̄
 ||

+
³
| − |∞[01] +

¯̄
̃ − ̃̃

¯̄
∞[01]

´−1 ³¯̄
 − ̃̃

¯̄
∞[01]

+ 

´


+
¯̄
̃ − ̃̃

¯̄


There are a few terms in here we know how to bound: first from lemma

12.3 (that we have to use with Lispchitz parameters +1 and +1 which

are greater than 2), we have

| − |∞[01] ≤
¯̄
0
¯̄
∞[01]

+
¯̄
 −  − 0

¯̄
∞[01]

≤ 1 + 1 exp (1 ( + ))

≤ 2 exp (2 ( + ))

Similarly, we have¯̄
̃ − ̃̃

¯̄
∞[01]

≤ 2 exp (2 ( + )) 

Then, lemma 3.15 provides¯̄
 − ̃̃

¯̄
∞[01]

≤ 3 (|0 − ̃0|+  +  ) 

Hence, we obtain¯̄
∆1
¯̄
≤ | |Lip

Z 

0

||  ||+ | |Lip
Z 

0

¯̄̄
0 − ̃̃0

¯̄̄
 ||

+4 (|0 − ̃0|+  (1 + )) 
−1
  exp (4 ( + ))

+4

³
 + 

−1
 

´
exp (4 ( + )) 

Theorem 3.19 also provides¯̄̄
0 − ̃̃0

¯̄̄
∞[01]

≤ 5 (|0 − ̃0|  +  +  ) exp (5 ( + )) 
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That gives our final bound on ∆1, namely

¯̄
∆1
¯̄
≤ | |Lip

Z 

0

||  ||

+6

³
|0 − ̃0|

³
 + 

−1
 

´
+  

−1
  +  

´
exp (6 ( + ))

+6

³
 + 

³
 + 

−1
 

´´
exp (6 ( + )) 

By symmetry, we obtain¯̄
∆2
¯̄
≤ | |Lip

Z 

0

||  ||

+7
¡|0 − ̃0|

¡
 + 

−1


¢
+  

−1
 +  

¢
exp (7 ( + ))

+7
¡
 + 

¡
 + −1 

¢¢
exp (6 ( + )) 

In particular, we obtain that

|| ≤
Z 

0

|| 
³
| |Lip ||+ | |Lip ||

´
+8 (|0 − ̃0|+  +  )

³
 + 

−1
 + 

−1
 

´
exp (6 ( + ))

+8

³


³
 + 

−1
 

´
+ 

¡
 + −1 

¢´
exp (6 ( + )) 

We conclude with Gronwall lemma.

In the existence part, we used lemma 12.3 to extend lemma A and lemma

B to be able to generalize the RDE existence theorem to the RDE with drift

existence theorem. Here, with lemma 12.9, we can do the same, and gener-

alise the RDE continuity theorems to RDE with drift continuity theorems.

Without further details, we therefore present the uniqueness/continuity

theorem for RDE with drifts:

Theorem 12.10 Assume that,     ∈ [1∞) are such that

1+ 1  1

   and   

 − 1


+
1


 1 and

1


+

 − 1


 1

(i)  = ()1≤≤ is a collection of vector fields in Lip
 (R);

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
 (R);

(ii)  is a fixed control;

(iii) x1x2 are two weak-geometric -rough paths in -var
¡
[0  ]  []

¡
R
¢¢
,

with
°°x°°

− ≤ 1;
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(iii bis) h1h2 are two weak-geometric -rough paths in -var
³
[0  ]  []

³
R

0
´´
,

with
°°h°°

− ≤ 1;
(iv) y10y

2
0 ∈ [max()] (R) thought of time-0 initial conditions;

(v)  is a bound on
¯̄
 1
¯̄
Lip

,
¯̄
 2
¯̄
Lip


¯̄
 1

¯̄
Lip

and
¯̄
 2

¯̄
Lip



Then, π(  )

¡
0y0;

¡
xh

¢¢
is a singleton; that is, there exists a unique

full RDE solution y = π(  )

¡
0y0;

¡
xh

¢¢
started at 0 driven by x



along  . Moreover,

max()
¡
y1y2

¢ ≤  exp ( (0  ))

where  =  (   ) and

 = 
¯̄
10 − 20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 +

¯̄
 1 − 2

¯̄
Lip−1

+
¡


¡
x1x2

¢
+ 

¡
h1h2

¢¢


Remark that the metric max(), unlike ∞;[0 ] in the next statement,
only measures the distance between the increments of two paths. Then, in

the above definition of , it is really
¯̄
10 − 20

¯̄
=
¯̄
10 − 20

¯̄
R
rather than¯̄

y10 − y20
¯̄
 [∨](R). We now state the refined uniqueness theorem, which

also extends to the drift case without difficulties.

Theorem 12.11 Assume that,     ∈ [1∞) are such that
1+ 1  1

 ≥  and  ≥ 

 − 1


+
1


≥ 1 and 1


+

 − 1

≥ 1

(i)
¡
 1


¢
1≤≤ and

¡
 2


¢
1≤≤ are two collections of vector fields in Lip

 (R),

(i bis)
¡
 1



¢
1≤≤0 and

¡
 2



¢
1≤≤0are two collections of vector fields in

Lip (R),
(ii) x1x2 ∈ -var

¡
[0  ]  []

¡
R
¢¢
, with

°°x°°
-var

≤ 

(ii bis) h1h2 ∈ -var
³
[0  ] []

³
R

0
´´
, with

°°h°°
-var

≤ 

(iii) y10y
2
0 ∈ [∨] (R) thought of time-0 initial conditions.

(iv) y are some arbitrary elements of π( )

¡
0 0;x


¢
, (that is they are

RDE solutions driven by x starting at y0 along the vector fields 
).

(v)  is a bound on
¯̄
 1
¯̄
Lip

,
¯̄
 2
¯̄
Lip


¯̄
 1

¯̄
Lip

and
¯̄
 2

¯̄
Lip



Then, π(  )

¡
0y0;

¡
xh

¢¢
is a singleton; that is, there exists a unique

full RDE solution y = π(  )

¡
0y0;

¡
xh

¢¢
started at y0 driven by x



along  . Moreover, for all   0 there exists  =  (;   )  0 such

that¯̄
y10 − y20

¯̄
+
¯̄
 1 −  2

¯̄
Lip−1 +

¯̄
 1 − 2

¯̄
Lip−1 + ∞

¡
x1x2

¢
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implies that

∞;[0 ]
¡
y1y2

¢
 

Remark 12.12 The conditions on     above already appeared in the

existence theorem for RDEs with drift and all comments made then (remark

12.7) remain valid. In particular, assuming  ≥  without loss of generality,

the conditions reduce to

1+ 1  1    and   max

½
 1 + 

µ
1− 1



¶¾


In section 12.2 we shall see that  :=  [] ≥ 1 and  :=  − [] + 1
arises naturally when perturbing the (center of the) driving geometric -

rough path. (In fact, the drift vector fields then consist of [] − 1 iterated
Lie brackets of the original Lip-vector fields which explains the choice of

) An elementary then computation gives

max

½
 1 + 

µ
1− 1



¶¾
= − [] + 1  

which shows that this condition is natural after all.

Of course, corollaries 10.42 and 10.43 also extend to the drift case and

we leave the details to the reader.

We conclude this section with an exercise in which the reader is invited

to implement the so-called Doss—Sussmann method for RDEs with drift.

For simplicity, we only deal with R-valued RDE solutions. Let us also note
that it does not (seem to) lead to optimal regularity assumptions.

Exercise 12.13 (Doss—Sussmann) Let x ∈ -var
¡
[0  ]  []

¡
R
¢¢


0 ∈ Lip1 (R)   = (1     ) ∈ Lip+1 (R)

with   . Let x0←− be the Jacobian of ( ) (0 ·;x)−1 : R → R and set

 ( ) ≡ x0←− () · 0
¡
( ) (0 ;x)

¢
 (12.7)

(i) Show that the ordinary, time-inhomogenous ODE

̇ = ( )   (0) = 0 (12.8)

admits a unique, non-explosive solution on [0  ].

(ii) Show that the solution to the RDE with drift  =  () x+0 () ,

started at 0, is given by

 = ( ) (0 ;x)   ∈ [0  ]  (12.9)

(iii) Deduce an Euler estimate for RDEs with drift of form (12.6).
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12.2 Application: perturbed driving signals and
impact on RDEs

12.2.1 (Higher-)area perturbations and modified drift terms

We consider a driving rough path x and consider what happens if we per-

turbe it on some "higher area" level such as

V ¡R¢ := g ¡R¢ ∩ ¡R¢⊗ 

the center of the Lie algebra g
¡
R
¢
; for example, V2 ¡R¢ =  (), the

space of anti-symmetric  ×  matrices. Unless otherwise stated, V ¡R¢
will be equipped with the Euclidean metric.

Theorem 12.14 (Center-perturbation) Let   ≥ 1 and  ∈ N such
that

[] =  ≥ [] 
Given a weak geometric -rough path x : [0  ]→ []

¡
R
¢
and

 ∈ 

[]
-var

¡
[0  ] V ¡R¢¢

we define the perturbation

x := exp (log ( (x)) + )  (12.10)

Then x is a weak geometric max ( )-rough path. Assume  ∈ Lip with
  max ( ), so that  =  () x  (0) = 0 has a unique RDE

solution. Then there is a unique solution to the RDE with drift,

 =  () x+ ()   (0) = 0

where  is the collection of vector fields given by¡£
1 

£
   

£
−1  

¤¤
  
¤¢
1∈{1}

and

 = ( ) (0 0;x
) ≡ ( ) (0 0; (x)) = 

We prepare the proof with

Lemma 12.15 Let  ∈ N. Given a multi-index  = (1  ) ∈ {1  }
and Lip−1 vector fields 1      on R, define

 =
£
 

£
−1   [2  1 ]

¤¤
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Further let 1   denote the canonical basis of R. Then g
¡
R
¢
, the

step- free Lie algebra, is generated by elements of form

 =
£
 

£
−1   [2  1 ]

¤¤ ∈ ¡R¢⊗   ≤ 

with [ ] = ⊗  −  ⊗  and4X
1∈{1}

 · · ·1 ()1 = 

Proof. It is clear that g
¡
R
¢
is generated by the . We prove the

second statement by induction: a straightforward calculation shows that

it holds for  = 2. Now suppose it holds for  − 1 and denote ̃ =£
−1   [2  1 ]

¤
. Then, (using summation convention),

    1 ()
1 =     1

¡
 ⊗

£
−1   [2  1 ]

¤¢1
−    1

¡£
−1   [2  1 ]

¤⊗ 
¢1

=     1
 ⊗ £−1   [2  1 ]¤−11

−    1
£
−1   [2  1 ]

¤2 ⊗ 1

= −1    1
£
−1   [2  1 ]

¤−11
−    2

£
−1   [2  1 ]

¤2


= ̃ − ̃ =
£
 

£
−1   [2  1 ]

¤¤


where we set ̃ = (−1     1) and used the induction hypothesis that

̃
equals

−1    1
£
−1   [2  1 ]

¤−11
=     2

£
−1   [2  1 ]

¤2


Proof of Theorem 12.14.

Remark that  satisfy the regularity condition of theorem 12.10 (cf.

remark 12.12), and so RDEs of type  =  () x+ ()  have unique

solutions. It suffices to show that  =  . Take a dissection  = () of

[0  ] define

 = ( ) (  ; (x)) for  ∈ [  ] 
Note that 0 =  and 

||
 =  , hence

| −  | ≤
||X
=1

¯̄
 − −1

¯̄


4A -tensor  ∈ R⊗ is written as  =1∈{1} 
1 ⊗   ⊗ 1 .



320 12. RDEs with Drift and Other Topics

Now,¯̄
 − −1

¯̄
=

¯̄
( ) (  ; (x))− ( )

¡
−1 −1 ; (x)

¢¯̄
= |( ) (  ; (x))

−( )

¡
 ( )

¡
−1 −1 ; (x)

¢
; (x)

¢ |
.

¯̄̄
( )

¡
−1 −1 ;x

¢

− ( )

¡
−1 −1 ; (x)

¢¯̄̄
thanks to Lipschitzness of the flow (which was established in theorem

12.10). By subtracting/adding E( )
¡
−1 x−1

¢
+ E( )

³
−1  −1

´
we estimate

¯̄
 − −1

¯̄
≤ ∆1 +∆2 where

∆1 =
¯̄̄
 − E( )

¡
−1 x−1

¢− E( )

³
−1  −1

´¯̄̄


∆2 =
¯̄̄
( ) (  ; (x))− E( )

¡
−1 x−1

¢− E( )

³
−1  −1

´¯̄̄


Thanks to lemma 12.15 and E( )

³
−1  −1

´
=

¡
−1

¢ ·−1 we
have

E( )
¡
−1 x−1

¢
+ E( )

³
−1  −1

´
= E( )

³
−1 x


−1

´
and hence, from the Euler estimate for RDEs, corollary 10.17,∆1 ≤ 1 (−1 )



for some control  and some   1. On the other hand, our Euler esti-

mates for RDEs with drift as stated in corollary 12.8 imply that, similarly,

∆2 ≤ 2 (−1 )

. It follows that, with 3 = 1 + 2,¯̄

 − −1

¯̄
≤ 3 (−1 )



and so | −  | ≤ 3
P||

=1  (−1 )
 → 0 as ||→ 0.

In theorem 12.14 we have studied the impact of level- perturbation of a

driving signal. More precisely, given a weak geometric -rough path x with

[] ≤  and a sufficiently regular map

() : [0  ]→ V ¡R¢
we defined in (12.10) a perturbation of x, which we now denote by

()x := exp[log (x) +
³
0     0 ()

´
]

and then saw that RDEs driven along vector fields  = (1     ) by x

versus 
¡
()x

¢
effectively differ by a drift term of the form¡£
1 

£
   

£
−1  

¤¤
  
¤¢
 ;1
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with summation over iterated indices. On the other hand, the "natural"

level-1 perturbation of a geometric -rough path x, in direction of a suffi-

ciently regular path (1) : [0  ] → R, is given by (cf. section 9.4.6) the
translation operator (1) acting on x. The respective RDEs driven by x

and x
(1)

obviously differ by a drift term of the form


1;

These two perturbations can be seen of as special cases of a general per-

turbation. To this end, we now consider a general perturbation

 =
³
(1)     ()

´
: [0  ]→ g

¡
R
¢


assumed (for simplicity) to be of bounded variation with respect to the

Euclidean metric on g
¡
R
¢
. Let us also assume, at first, x =  ()

where  ∈ 1-var
¡
[0  ] R

¢
. We then define, inductively,

(1) : = + (1) ∈ 1-var
¡
[0  ] R

¢
(12.11)

((1)(2)) : = exp[log2
¡
(1)

¢
+
³
0 (2)

´
∈ 2-var

¡
[0  ]  2

¡
R
¢¢

· · ·
((1)()) : = exp[log

³
((1)(−1))

´
+
³
0     0 ()

´
∈  -var

¡
[0  ]  

¡
R
¢¢

and note that, eventhough  was assumed to be of bounded variation,

((1)()) is a genuine (weak) geometric  -rough path.

Theorem 12.16 (General perturbation) (i) Let  ≥ 1 and [] ≤  .

Given x ∈ -var


¡
[0  ]  []

¡
R
¢¢
and  : [0  ] → g

¡
R
¢
of bounded

variation with respect to the Euclidean metric on g
¡
R
¢
, there exists a

unique

x := ((1)())x ∈
½

-var
¡
[0  ]  

¡
R
¢¢
if [] = 

-var
¡
[0  ]  

¡
R
¢¢
if []  

with the property that, whenever [] (
)→ x uniformly and sup

°°[] (x)°°-var 
∞ then

((1)())
 → ((1)())x

uniformly and with uniform - (resp. -) variation bounds.

(ii) Assume  ∈ Lip    max (). Then

 ≡ ( ) (0 0;x) equals  ≡ (∗ ) (0 0; (x;))

where  is the RDE solution to  =  () 
³
((1)())x

´
and  the

solution of the following RDE with drift,

 =  () x+ (∗ ) ()   (0) = 0
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where

(∗ ) (·)  =
X
=1

X
1

¡£
1 

£
   

£
−1  

¤¤
  
¤¢ |·();1 

Proof. When x =  () for  ∈ 1-var
¡
[0  ] R

¢
, we can use (12.11)

and apply iteratively theorem 12.14 to see that

( ) (0 0;x) equals  ≡ (∗ ) (0 0; (x;)) 

For the general case, we need to properply define x. To this end, let

 = (1     ) be the collection of coordinate vector fields on R. The
full RDE solution y = π() (0x0;x) is identical equal to the input signal

x which suggests to define

x := π(∗ ) (0 ; (x;))

as RDE with drift. We can now use continuity results for RDEs with drift

to see that x 7→ x has the required continuity properties, as stated in

part (i).

12.2.2 Limits of Wong—Zakai type with modified area

The next theorem describes a situation in which a piecewise linear approx-

imation is twisted in a way to lead to a center-perturbation. In view of the

forthcoming examples (section 13.3.4) we state the following results only

for geometric Hölder rough paths.

Definition 12.17 Let  ∈ (0 1], x ∈ -Höl
¡
[0  ]  [1]

¡
R
¢¢
and write

 = 1 (x) for its projection to a path with values in R.
(i) Assume [1] ≤  ∈ N and let () = (


 : ) be a sequence of dissec-

tions of [0  ] such that5

sup
∈N

°°[1] ¡
¢°°

-Höl
= ∞ and ∞

¡
[1]

¡


¢
x
¢→→∞ 0

If () ⊂ 1-Höl
¡
[0  ] R

¢
is such that6

p :=  (
)0 ⊗ 

¡


¢−1
0

takes values in the center of 
¡
R
¢
whenever  ∈  then we say that

() is an approximation on () with perturbations (p
) on level  to x.

(ii) Let  ∈ (0 1] such that
[1] =  ≥ [1]  (12.12)

5We recall that  is the piecewise linear approximation to  based on the dissection

.
6 It is not assumed that p ∈ center of 


R

when  ∈ .



12. RDEs with Drift and Other Topics 323

We say that an approximation () on () with perturbations (p
) on

level  to x is min ( )-Hölder comparable (with constants 1 2 3) if

for all   

+1 ∈ 

||
1-Höl;[ 


+1]

≤ 1
¯̄


¯̄
1-Höl;[ 


+1]

+ 2
¯̄
+1 − 

¯̄−1
and°°p°° ≤ 3 |− | for all   ∈ 

Although at first sight technical, these definitions are fairly natural:

firstly, we restrict our attention to Hölder rough paths x which are the

limit of "their (lifted) piecewise linear approximations". As we shall see

in Part III this covers the bulk of stochastic processes which admit a lift

to a rough path. Assumption (ii) in the above definition then guarantess

that () remains, at min ( )-Hölder scale, comparable to the piecewise

linear approximations. In particular, the assumption on ||
1-Höl;[ +1]

=

|̇|∞;[ +1] will be easy to verify in all examples (cf. below. The intu-
ition is that, if we assume that  runs at constant speed over any interval

 =
£
  


+1

¤
,  = (


 ), it is equivalent to saying that

length (|) ≤ 1length
¡
 |

¢
+ 2 ||

( = 1

¯̄̄
 


+1

¯̄̄
+ 2

¯̄
+1 − 

¯̄
).

Theorem 12.18 Let   ∈ (0 1] and assume [1] =  ≥ [1]. Assume
x ∈ -Höl

¡
[0  ]  [1]

¡
R
¢¢
and let () be an approximation on some

sequence () of dissections of [0  ] with perturbations (p
) on level  to

x.

(i) If the approximation is min ( )-Hölder comparable (with constants

1 2 3) then there exists a constant  =  (  1 2 ) such

that

sup
∈N

k ()kmin()-Höl ≤ 

µ
sup
∈N

°°[1] ¡
¢°°

-Höl
+ 3 + 1

¶
∞.

(ii) If p → p for all  ∈ ∪ and ∪ is dense in [0  ] then p is

a -Hölder continuous path with values in the center of 
¡
R
¢
and for

every  ∈ [0  ],


³
 (

)0   (x)0 ⊗ p0
´
≤ 

³


¡


¢
0

  (x)0

´
+ 

¡
p0p0

¢
→ 0 as →∞

(iii) If the assumptions of both (i) and (ii) are met then, for all  

min ( ),

-Höl ( (
) x)→→∞ 0

where  := logp ∈ V ¡R¢ and x = exp (log ( (x)) + ).
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Proof. (i) Take    in [0  ]. If   ∈ £  +1¤ we have by our assumption
on ||1-Höl;[+1]°°° ()°°° ≤ |− | k ()k1-Höl;[ +1]

= |− | ||
1-Höl;[ 


+1]

≤ |− |
n
1

¯̄̄
 


+1

¯̄̄

¯̄
+1 − 

¯̄
+ 2

¯̄
+1 − 

¯̄−1o
≤ |− |

n
1 ||-Höl

¯̄
+1 − 

¯̄−1
+ 2

¯̄
+1 − 

¯̄−1o
≤ 1 |− |min() 

with suitable constant 4. Otherwise we can find  ≤  so that  ≤  ≤
 ≤  and

°°° ()°°° ≤ 24 |− | +
°°° ()  °°° 

Estimates for the Lyons-lift x 7→  (x), proposition 9.3, then guarantee

existence of a constant 5 such that°°° ()  °°° ≤
°°° ¡

¢
 




°°°+ °°°p  °°°
≤ 5

°°[1] ¡
¢°°

-Höl

¯̄
 − 

¯̄
+ 3

¯̄
 − 

¯̄
≤ (5

°°[1] ¡
¢°°

-Höl
+ 3) |− |min()

and, since sup
°°[1] ¡

¢°°
-Höl

 ∞ by assumption, the proof of the

uniform Hölder bound is finished.

(ii) By assumption, p is uniformly -Hölder. By a standard Arzela-Ascoli

type argument, it is clear that every pointwise limit (if only on the dense

set ∪) is a uniform limit and -Hölder regularity is preserved in this

limit i.e.p is -Hölder itself. For every  ∈ ∪ p

 takes values the center

of 
¡
R
¢
and hence (density of ∪, continuity of p) it is easy to see

that p takes values in the center for all  ∈ [0  ]. Now take  ∈ . Since

elements in the center commute with all elements in 
¡
R
¢
we have


³
 (

)0   (x)0 ⊗ p0
´

=
°°° ()−10 ⊗ 

¡


¢
0
⊗ p0 ⊗ 

¡


¢−1
0
⊗  (x)0 ⊗

¡
p0

¢−1 ⊗ p0°°°
=

°°° ¡
¢−1
0
⊗  (x)0 ⊗

¡
p0

¢−1 ⊗ p0°°°
≤ 

³


¡


¢
0

  (x)0

´
+ 

¡
p0p0

¢
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On the other hand, given an arbitrary element  ∈ [0  ] we can take  to
be the closest neighbour in  and so


³
 (

)0   (x)0 ⊗ p0
´

= 
³


¡


¢
0

  (x)0

´
+ 2

¡
p0p0

¢
+
³
 (x)

−1
0 ⊗  (

)0   (x)
−1
0 ⊗  (

)0

´


From the assumptions and Hölder (resp. uniform Hölder) continuity of

 (x) (resp.  (
)) we see that 

³
 (

)0   (x)0 ⊗ p0
´
→ 0, as

required.

(iii) Uniform min ( )-Hölder bounds imply equivalence of pointwise and

uniform convergence; convergence with Hölder exponent   min ( )

then follows by interpolation. Observe also that

 (x)0 ⊗ p0 = x = exp (log ( (x)) + logp)

is a simple consequence of p0 taking values in the center.

12.3 Comments

The present exposition of RDEs with drift is new. A detailed study of RDEs

with drift was previously carried out in [100]. Exercise 12.13 goes back to

Doss—Sussmann [40, 162] and is taken from [54], as is the bulk of material

in section 12.2 which can be used to prove optimality of various rough path

estimates for RDEs and linear RDEs obtained in Chapter 10.
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13

Brownian Motion

We discuss how Brownian motion can be enhanced, essentially by adding

Lévy’s stochastic area, to a process ("Enhanced Brownian motion", EBM)

with the property that almost every sample path is a geometric rough

path ("Brownian rough path"). Various approximation results are studied,

followed by a discussion of large deviations and support descriptions in

rough path topology.

13.1 Brownian motion and Lévy’s area

13.1.1 Brownian motion

We start with the following fundamental

Definition 13.1 (Brownian Motion) A real-valued stochastic process ( :  ≥ 0)
is a (1-dimensional) Brownian motion if it has the properties

(i) 0 () = 0 for all;

(ii) the map  7→  () is a continuous function of  ∈ R+ for all ;
(iii) for every   ≥ 0, + ≡ +− is independent of ( : 0 ≤  ≤ ),

and has Gaussian distribution with mean 0 and variance .

An R-valued stochastic process ( :  ≥ 0) is a (-dimensional) Brown-
ian motion if it has independent components

¡
1     

¢
, each of which

is a 1-dimensional Brownian motion. A realization of Brownian motion is

called a Brownian path.

It is an immediate corollary of properties (i)-(iii) that Brownian motion

has stationary increments, that is

(+ :  ≥ 0) D= ( :  ≥ 0) 
as are the Brownian scaling property,

∀  0 : (2 :  ≥ 0) D= ( :  ≥ 0)
and

( :  ≥ 0) D=
¡
1 :  ≥ 0

¢
 (13.1)

We trust the reader is familiar with the following basic facts concerning

Brownian motion. (Some reference are given in the comments section at

the end of this chapter.)
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• Existence. More precisely, there exists a unique Borel probability
measureW on 

¡
[0∞)R¢ so that the coordinate function  () =

 defines a Brownian motion. The aforementioned measure is known

as (-dimensional) Wiener measure.

• Brownian motion is a martingale. In fact, a theorem of P. Lévy

states that if () denotes any R-valued continuous martingale started
at zero, such that

 ⊗ − × 

(where  is the (× )-identiy matrix) is also a martingale, then ()

must be a -dimensional Brownian motion.

• Brownian motion is a zero-mean Gaussian process with covariance
function1

( ) 7→ E ( ⊗) = ( ∧ )× 

As for every continuous Gaussian process, mean and covariance fully

determine the law of the process.

• Brownian motion is a (time-homogeneous) Markov process. Its

transition density - also known as heat kernel - is given by

 ( ) =
1

(2)
2

−
|−|2

2

where |·| denotes the Euclidean norm on R.

• Brownian sample paths are of unbounded variation, i.e. for any   0

||1-var;[0 ] = +∞ a.s.

In fact, Brownian sample have unbounded -variation for any  ≤ 2 and
the reader can find a self-contained proof in section 13.9.

13.1.2 Lévy’s area: definition and exponential integrability

Given two independent Brownian motion, say  and ̃, we define their

Lévy’s area as the stochastic Itô integral2

 ∈ [0∞) 7→ 1

2

µZ 

0

̃ − ̃

¶
 (13.2)

1 ∧  = min ( ) 

2 Since

 ̃


=

̃ 


(= 0) it would not make a difference here to use Stratonovich

integration.
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We recall that (Itô) stochastic integrals are limits of their (left-point)

Riemann-Stieltjes approximations, uniformly on compact time intervals. In-

deed, given any sequence of dissections3 () of [0  ] with mesh ||→ 0

one has4

E

⎡⎣ sup
∈[0 ]

¯̄̄̄
¯
Z 

0

̃ −
X

∈



³
̃+1∧ − ̃∧

´¯̄̄̄¯
2
⎤⎦→ 0 as →∞

(13.3)

Since uniform limits of continous functions are continuous, (13.3) implies

in particular that (13.2) can be taken to be continuous in , with probability

one.

Definition 13.2 (Lévy’s area) Given a -dimensional Brownian motion

 =
¡
1     

¢
we define -dimensional Lévy area  =

¡
 :   ∈ {1     }¢

as the continuous process

 7→ 

 =

1

2

µZ 

0





 −





¶


We also defined the Lévy area increments as, for any    in [0  ] 



 = 


 −

 −
1

2




 −





=
1

2

µZ 







 −





¶


We note that  = 0 and more generally  take values in  () ≡£
RR

¤
, the space of anti-symmetric  ×  matrices, and it suffices to

consider  6=  (or    if you wish). As a consequence of basic properties

of Brownian motion, we have that

∀  0 : ( :  ≥ 0) D= ( :  ≥ 0) 
∀0 ≤    ∞ : 

D
= 0−

We now establish that Lévy area has exponential integrability and note

that by scaling it suffices to consider  = 1. There are many ways to see

this integrability (including integrability properties of the Wiener-Itô chaos

and heat-kernel estimates) but we have chosen a fairly elementary one.

3Unless otherwise stated, dissections are assumed to be deterministic.
4This can be taken as the very definition of the stochastic integral

 ·
0
. Alter-

natively, only accepting that
 ·
0
̃ is an 2-martingale, one employs Doob’s 2-

inequality to "get rid" of the sup inside the expectation, followed by Itô’s 2-isometry

to establish (13.3).
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Lemma 13.3 Let  be a -dimensional Brownian motion. Then, for all

  12, we have

E
h
exp

³ 

||2∞;[0 ]

´i
∞

Proof. It suffices to consider  = 1 and  = 1. From 
D
= (−) and the

reflection principle for Brownian motion5, we see that

P [||∞ ≥ ] ≤ 2P
∙
sup
0≤≤1

 ≥

¸
= 4P (1 ≥)

The result follows from the usual tail behaviour of 1 ∼  (0 1).

Proposition 13.4 Let  be a -dimensional Brownian motion, and  its

Levy area. There exists   0 such that for any 0 ≤    ≤ 

E
∙
exp

µ

||
|− |

¶¸
∞

Proof. Since ||  |− | D= 01 it is enough to prove exponential in-

tegrability of Lévy’s area at time 1. To this end, it suffices to consider a

"building block" of Lévy’s area of form
R 1
0
̃. We observe that, condi-

tional on  ()  we can view
R 1
0
̃ as if the integrand  were deterministic

and from a very basic form of Itô’s isometry,Z 1

0

̃ ∼ 

µ
0

Z 1

0

2

¶


It follows that, conditional on F =  ( : 0 ≤  ≤ 1),

E
h
|

1
0
̃|

¯̄̄
F
i

= E
h
|||F

i
with  ∼ 

µ
0

Z 1

0

2

¶
≤ 2E

£
 |F¤ = 2expµ2

2

Z 1

0

2

¶
≤ 2 exp

µ
2

2
||2∞;[01]

¶


and after taking expectations

E
h
|

1
0
̃|

i
≤ 2E exp

µ
2

2
||2∞;[01]

¶
∞

for   0 small enough, thanks to lemma 13.3. The proof is now finished.

5E.g. [138, p.105].
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Exercise 13.5 (Lévy’s construction of Lévy’s area) Let  and ̃ be

two independent Brownian motions on [0  ]. Consider a sequence of dyadic

dissection  = {2− :  = 0     2} and write   ̃


for the result-

ing piecewise linear approximations. Show that

 () :=
1

2

ÃZ 

0



 ̃


 − ̃


 



!

is a (discrete-time) martingale with respect to the filration

F := 
³³

 ̃

´
:  ∈ 

´
which converges in 2 (P). Identify the limit as Lévy’s area (at time  ), as
defined in (13.2).

Exercise 13.6 Consider -dimensional Brownian motion with its associ-

ated  ()-valued Lévy area process . Let (0 = 0  1  · · ·   =  ) be

a dissection of [0  ] Show that¯̄̄̄
¯
X
=1

−1

¯̄̄̄
¯
(P)

≤ 

¯̄̄̄
¯
X
=1

−1

¯̄̄̄
¯
2(P)

where  is a constant, independent of  and .

(Remark that this estimate is an immediate consequence of integrability

properties of Wiener-Itô chaos as discussed in section D.4 in the appendix.

The point of this exercise is to give an elementary proof).

Solution 13.7 Without loss of generality, we take  = 1. If  := −1
and  = 1 + · · · +, a sum of independent random variables. It suf-

fices to show existence of   0, independent of  and , such that

E
¡
 ||/||2

¢
   ∞. From 

D
= − and || ≤  + − it is

enough to estimate

E
³
 /||2

´
= Π=1E

³
/||2

´


Note that, for all  small enough, E
¡
01

¢
= E

³


2
´
for some random

variable  with an exponential tail. (This can be seen from the identity

E exp
³

R 1
0
̃

´
= E exp

³
2

2

R 1
0
2

´
obtained by conditioning on , ex-

actly as in the proof of proposition 13.4) Note also that by scaling properties

of Lévy’s area,


D
= | − −1|01 =  ||2 01 with  = 1 |01|2 
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It follows that, for  small enough, and with  = ||22  ||22 ,

E (exp ( / ||2)) = E
µ
exp

µ

||2
||2

01

¶¶
= E

¡
exp

¡
22

¢¢ ≤ E ¡exp ¡22¢¢
by Jensen’s inequality. As a result, E

¡
 /||2

¢ ≤ E ¡exp ¡22¢¢ ∞
for  small enough.

13.1.3 Lévy’s area as time-changed Brownian motion

The following result will only be used in section 13.8 on the support theorem

in its conditional form.

Proposition 13.8 Let  be a -dimensional Brownian motion and fix two

distinct components  =  ̃ =  where   ∈ {1     } and  6= . Set

 () :=
1

2

µZ 

0

̃ − ̃

¶
and  () :=

1

4

Z 

0

³
2 + ̃

2



´


Then
¡

¡
−1 ()

¢
:  ≥ 0¢ is a (1-dimensional) Brownian motion, indepen-

dent of the process
³
2 + ̃

2

 :  ≥ 0
´
, and hence independent of the radial

process {|| :  ≥ 0} where |·| denotes Euclidean norm on R.

Proof. Set  () ≡  ≡
q
2 + ̃

2

 . By Itô’s formula,

2
2
=

Z 

0

 +  (13.4)

where

 () =

Z 

0



 +

Z 

0

̃

̃

(Note that  and  differ by a drift differential). Clearly, the system of

martingales ( ) satisifes the bracket relations hi =  hi = 0 and

hi =
1

4

Z 

0

2.

Let ̃ =  () where  = −1 (). By Lévy’s characterization,  are ̃
two mutually independent Brownian motions. Moreover, (13.4) shows that

 is the pathwise unique solution to a SDE driven by ̃ and, in particular,

 [ :  ≤ ] ⊂  [ :  ≤ ]  Consequently, the processes (̃) and () are

independent and we arrived at the representation

 () = ̃

µ
1

4

Z 

0

2

¶
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where ̃ is a Brownian motion independent of the process (). This con-

cludes the proof.

Exercise 13.9 Derive the characteristic function of 1
2

³R 
0
̃ − ̃

´
.

13.2 Enhanced Brownian motion

13.2.1 Brownian motion lifted to a 2
¡
R
¢
-valued path

Recall that exp denotes the exponential map from the 2
¡
R
¢ ∼= R ⊕

 () → 2
¡
R
¢
. Its inverse log (·) can be viewed as a global chart for

2
¡
R
¢
which is therefore diffeomorphic to a Euclidean space of dimension

 +  (− 1) 2. (As far as the geometry is concerned, it cannot get much
simpler!) If  : [0  ]→ R is a smooth path started at 0 then its step-2 lift
satisfies

2 () = exp ( + ) ∈ 2
¡
R
¢

with area



 =

1

2

µZ 

0



 − 




¶


Recall also that

2 () = 2 ()
−1
 ⊗ 2 () = exp ( + )

where  =  −  and  ∈  () is given by



 =

1

2

µZ 





 − 




¶
= 


 −  −

1

2

³



 − 




´


This motivatives to define the lift Brownian motion to a process with values

in 2
¡
R
¢
as follows.

Definition 13.10 (Enhanced Brownian motion, or EBM) Let  and

 denote a -dimensional Brownian motion and its Lévy area process. The

continuous 2
¡
R
¢
-valued process B, defined by

B := exp [ +]   ≥ 0

is called enhanced Brownian motion; if we want to stress the underlying

process we call B the natural lift of . Sample path realizations of B

are called Brownian rough paths. (This terminology is motivated by the

forthcoming corllary 13.15).
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We also write B = B
−1
 ⊗B ∈ 2

¡
R
¢
and observe that is consistent

with

B = exp [ +]

where  =  − (as usual) and  ∈  () is given by



 = 


 −

 −
1

2

³




 −





´
=

1

2

µZ 







 −





¶
a.s.

Why? We just recalled all this is holds for smooth paths, where one can

write out all iterated integrals as Riemann—Stieltjes integrals. This is still

true for the Brownian case but now convergence is only in 2-sense, see

13.3, and 2-limits are only defined up to null-sets hence the a.s. above.

Exercise 13.11 (i) Check that

B =

µ
1 

Z 

0

 ⊗ ◦
¶
∈ 2

¡
R
¢

where ◦ denotes Stratonovich integration.

(ii) Show that

B̂ =

µ
1 

Z 

0

 ⊗ 

¶
∈  21

¡
R
¢

where  denotes Itô integration does not yield a geometric rough path.

Hint: consider  =  and compute the expectation.

The following proposition should be compared with our definition of

Brownian motion, definition 13.1. It identifies Enhanced Brownian motion

as a special case of a left-invariant Brownian motion on a Lie group.

Proposition 13.12 Enhanced Brownian motion B is a left-invariant Brown-

ian motion on the Lie group
¡
2
¡
R
¢
⊗−1  1¢ in the sense that

(i) B0 () = 1 for all ;

(ii) the map  7→ B () is a continuous function of  ∈ R+ for all ;
(iii) for every   ≥ 0, B+ = B

−1
 ⊗B+ is independent of  (B :  ≤ );

(iv) it has stationary increments,

(B+ :  ≥ 0) D= (B :  ≥ 0) 
Proof. (i),(ii) are trivial. For (iii) observe that, since  is a measurable

function of { :  ≤ },
 (B :  ≤ ) =  (  :  ≤ ) =  ( :  ≤ ) 

On the other hand, (+ + :  ≥ 0) is a measurably determined by
 ( :  ≥ ) =  (+ :  ≥ 0) 
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see (13.5) in particular. From defining properties of Brownian motion,

 ( :  ≤ ) and  (+ :  ≥ 0) are indepedent and this finishes the
proof.

(iv) Recall that for Brownian motion, for all  ≥ 0,

(+ :  ≥ 0) D= ( :  ≥ 0) 

Then, for  fixed,³


+

´
≥0

=
1

2

µZ +







 −





¶
≥0

=
1

2

µZ +







 −





¶
≥0

(13.5)

D
=
1

2

µZ 

0





 −





¶
≥0

and the same holds for the pair

( +)≥0
D
= ( )≥0 

Recall that the Lie group
¡
2
¡
R
¢
⊗−1  ¢ has the additional struc-

ture of dilation. As we shall now see, it fits together perfectly with scaling

properties of Enhanced Brownian motion.

Lemma 13.13 (EBM, Scaling) Let B be an enhanced Brownian mo-

tion. For all   0 we have

(B2 :  ≥ 0) D= (B :  ≥ 0)

where  is the dilatation operator on 2
¡
R
¢
.

Proof. From Brownian scaling, for any   0 we have

(2)≥0
D
= ()≥0

That is, speeding up time by a factor 2 is, in law, equivalent to spacial

scaling by a factor . Since  is determinted as limit of a homogenuous

polynomial of degree 2 in terms of Brownian increments, see (13.3), the

scaling factor  appears twice and one has

(2 2)≥0
D
=
¡
 

2

¢
≥0 

Now apply exp:R ⊕  ()→ 2
¡
R
¢
.
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13.2.2 Rough path regularity

As shown in theorem 13.71 in the appendix to this section, Brownian mo-

tion has infinite 2-variation6 and hence infinite -variation for any  ≤ 2.
Therefore, our only chance to construct a "Brownian" rough path is to

look for a geometric -rough path,   2, which lifts . In other words, we

look for a process B with values in []
¡
R
¢
, of with finite -variation (or

1-Hölder) regularity with respect to the Carnot-Caratheodory distance,

such that

1 (B) = 

We shall see that a enhanced Brownian motion, i.e. the 2
¡
R
¢
-valued

process  7→ B ≡ exp ( ), has in fact a.s. finite -Hölder regularity

for any   12. In particular, there is no cost in assuming  ∈ (13 12)
so that [] = [1] = 2 which confirms that a.e. realization of B = B ()

is a geometric -rough path (in fact: geometric 1-Hölder rough path),

 ∈ (2 3)  in the sense of definition 9.16.
In order to establish that B is a.s. a geometric -Hölder rough path we

need to show that, for some  ∈ (13 12), the path  7→ B is Hölder

regular with respect to  ( ) =
°°−1 ⊗ 

°°, the Carnot-Caratheodory
norm. Using equivalence of homogenous norms all this boils down to the

question if

 (BB) = 
¡
+  +

¢
=
°°+°° ∼ | | ∨ ||12

is bounded by  () |− |, uniformly for   on a finite interval such as
[0 1].

Obviously, this is true for the Brownian increment  and we are only

left with the question

"Does there exists   13 such that sup
∈[01]

||
|− |2

∞ a.s. ?"

(13.6)

To fully appreciate the forthcoming corollary 13.15 the reader is urged to

think for a moment of how to prove this! To avoid misunderstandings, let

us point out two things:

(i) -Hölder regularity, for any   12, of  7→  () ∈  () is a

straight-forward application of a suitable version of Kolmogorov’s

regularity criterion, applied to a process with values in the Euclidean

space  (). It also follows from proposition 13.8 we represents Lévy

area as (-Hölder continuous) Brownian motion run at a (Lipschitz

continuous) random clock.

6This is not to be confused with the important fact that Brownian motion has finite

quadratic variation in the sense of theorem 13.72.
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(ii) the cancellation on the right hand side of,

 = ( −)− 1
2
[ ]  (13.7)

is essential. Thoughtless application of the triangle inequality only

shows

|| ≤ | −|+ 1
2
||∞ ||

.  () |− |

which is not the positive answer to (13.6) which we seek. In fact, this

only shows that sample paths  7→ B () are a.s. Hölder of exponent

less than 14 and there is a world of difference between   14 and

  13. The first is a sample path property of limited interest, the

latter implies that almost every realizationB () is a geometric rough

path to which all of the theory of rough path is applicable!

Theorem 13.14 Write B for a 2
¡
R
¢
-valued enhanced Brownian mo-

tion on [0  ]. Then there exists   0, not dependent on  , such that

sup
∈[0 ]

E

"
exp

Ã

 (BB)

2

|− |

!#
∞ (13.8)

Proof. From scaling properties of enhanced Brownian motion, B
D
=

(−)12B01 so that

 (BB)
2
= kBk2 D= (− ) kB1k2 

Hence, it suffices to find  small enough so that

E
h
exp

³
 kB1k2

´i
∞

By equivalence of homogenous norms, kB1k2 ∼ |1|2 + |1| where 1
(resp. 1) denotes -dimensional Brownian motion (resp. Lévy area) at

time 1. Thus, everthing boils down to (trivial) Gaussian integrabilty of

1 ∼  (0 1) and exponential integrability of Lévy area which was estab-

lished in proposition 13.4.

Thanks to (13.8), we can appeal to general regularity results for stochas-

tic processes (as discussed in section A.4 in the appendix).

Corollary 13.15 Write B for a 2
¡
R
¢
-valued enhanced Brownian mo-

tion on [0  ].

(i) Let  ∈ [0 12). Then there exists   0, not dependent on  , such that

E
h
exp

³ 

 1−2
kBk2-Höl;[0 ]

´i
∞
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(ii) Assume that  is a fixed increasing function such that  () =
p
 log (1)

(Lévy modulus) in a positive neighbourhood of 0. Then there exists  =

 ( )  0 such that

E
h
exp

³
 kBk2-Höl;[0 ]

´i
∞

where kBk-Höl;[0 ] = sup in [0 ]  (BB)  (− ).

Proof. (i) By scaling,  2−1 kBk2-Höl;[0 ] has the some distribution askBk2-Höl;[01].
We then apply theorem A.20 with modulus function  7→ 1.

(ii) A direct application of theorem A.20 with modulus function  7→  ().

Let us remark that we may take  ∈ (13 12) in the previous corol-
lary which therefore implies afortiori that B is a.s. a geometric -Hölder

rough path. Since -Hölder regularity implies -variation regularity with

 = 1 ∈ (2 3) we trivially see that B is a.s. a geometric -rough path.

Similarly, -Hölder regularity implies −1-variation regularity where

−1 () ∼ 2

log (1)


In fact, more is true and the general results of section A.4 (theorem A.25

to be precise) show that (13.8) implies

Theorem 13.16 (Exact variation for EBM) Write B for a 2
¡
R
¢
-

valued enhanced Brownian motion on [0  ]  Let7

21 () =
2

ln ∗ ln ∗ (1)


where ln∗ = max (1 ln). Then there exists   0, not dependent on  , such

that

E
h
exp

³ 

kBk221-var;[0 ]

´i
∞

where the reader is reminded that

kBk-var;[0 ] = inf
(
  0 sup

∈D[0 ]

X
∈


£

¡
B B+1

¢


¤ ≤ 1) 

Enhanced Brownian motion also satisfies a law of iterated logarithm. We

first recall Khintchine’s law-of-iterated-logarithm for a Brownian motion8

7This is one instance of a (generalized) variation function as introduced in definition

5.47.
8 See McKean’s classical text [118, p.12] or [87, Thm 9.23], for instance; it can also

been obtained consequence of Schilder’s theorem, to be discussed in section 13.6.
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which states that, for a 1-dimensional Brownian motion ,

P
∙
lim sup

→0

||
 ()

= 

¸
= 1 (13.9)

where  ∈ (0∞) is a deterministc constant (equal to √2 in fact) and
 () =

p
 ln∗ ln∗ (1). (Observe that  is Lipschitz equivalent to the

inverse of 21 see lemma 5.52).

Proposition 13.17 (Law of the Iterated Logarithm for EBM) Write

B for 2
¡
R
¢
-valued enhanced Brownian motion on [0  ]  Let  () =p

 ln∗ ln∗ (1). Then there exists a deterministic constant  ∈ (0∞)
such that

P

"
lim sup

→0

kBk0;[0]
 ()

= 

#
= 1

Proof. From general principles (theorem A.22 in section A.4) we see that

(13.8) implies that

 := lim sup
→0

||B||0;[0]
 ()

defines an almost surley finite random variable, i.e.  ()  ∞ almost

surely. On the other hand, by the classical law of iterated logarithm for

Brownian motion it is clear that

lim sup
→0

||B||0;[0]
 ()

≥ lim sup
→0

||
 ()

= ̃  0 a.s.

where ̃ =
√
2 is the constant from Khintchine’s law of iterated logarithm.

It follows that

0  ̃ ≤  () ∞ a.s.

By construction of enhanced Brownian motion, ||B||0;[0] is  ( :  ∈ [0 ])
measurable where = 1 (B) denotes the underlying -dimensional Brown-

ian motion. It now follows from Blumenthal’s zero-one law for Brownian

motion9 that  equals, almost surely, a deterministic constant.

13.3 Strong approximations

We discuss a number of approximation results in which enhanced Brownian

motion arises as almost-sure limit or limit in probability, always in the

appropriate rough path metrics. The interest in these results is that either

convergence is preserved under continuous maps; applied to the Lyons-Itô

9See e.g. [138, Ch. III] or [87, Thm 7.17].
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map in rough path topology all convergence results discussed then translate

immediately to strong convergence results in which the limit of certain

(random ODEs/RDEs) is identified as RDE solution driven by B, i.e. as

the solution to a Stratonovich SDE.

Our list of approximations is not exhaustive and several strong conver-

gence results (including convergence of non-nested piecewise linear approx-

imations and Karhunen-Loéve approximations) are left to a later chapter

on Gaussian processes which provides the natural framework for these con-

vergence results.

13.3.1 Geodesics approximations

Let us fix   12. From the last section, we now that Enhanced Brownian

motion B has sample paths with

B () ∈ -Höl
0

¡
[0  ]  2

¡
R
¢¢

almost surely. From general interpolation results, it follows that for every

  12 we also have

B () ∈ 
0-Höl
0

¡
[0  ] 2

¡
R
¢¢

almost surely. From the very definition of the space 
0-Höl
0 it then fol-

lows that almost every B () is the -Höl-limit of smooth paths lifted to

2
¡
R
¢
. (When  ∈ (12 13) this is precisely the difference between

weak geometric -Hölder rough paths and (genuine) geometric -Hölder

rough paths.) The important remarks here are that (i) these approxi-

mations are based on entirely deterministic facts and applied to almost

every  and (ii) the rely on all the information contained in B (), that

is on the underlying Brownian path  () = 1 (B) and the Lévy area

 () = Anti (2 (B)) This is in strict contrast to all probabilistic approx-

imations discussed in the following sections. These are only based on the

R-valued Brownian motion  = 1 (B) and frequently (but not always!)

give rise to the standard Lévy area which underlies our definition of En-

hanced Brownian motion.

13.3.2 Nested piecewise linear approximations

As earlier, B = exp ( +) denotes an enhanced Brownian motion, the

natural lift of a -dimensional Brownian motion . We now consider a

sequence () of nested dissections, that is  ⊂ +1 for all , such

that ||, the mesh of , tends to zero as  → ∞. The reason for this
assumption is that then

F :=  ( :  ∈ )
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forms a family of -algebras increasing in . In other words, (F) is a
filtration and this will allow us to use elegant martingale arguments. (What

we will not use here is the fact that  7→  is martingale.) Define 
 =

 () as the piecewise linear approximation based on the dissection .

We consider the step-2 lift and write, as usual,

B := 2 (
) = exp ( +) 

Proposition 13.18 For fixed  in [0  ] the convergence B
 → B holds

almost surely and in 2 (P).

Proof. The statement is  (B
 B)→ 0 (a.s. and in 2 ). This is equivalent

to

(a) |
 −|→ 0 and (b) |

 −|→ 0

Ad (a), since {} is nested, F :=  ( :  ∈ ) forms a filtration. We

claim that a.s.

E [|F] = 
 and E [|F] = 

 

Using the Markov property of ,

E [|F] = E
£
|  +1

¤
where  +1 are two neighbours in  with  ∈ [ +1]. It is a simple
exercise of Gaussian conditioning10 to see that

E
£
|  +1

¤
=

+1 − 

+1 −  
 +

− 

+1 − 
+1

and this is precisely equal to 
 . Mesh ||→ 0 implies that  is (∨F)-

measurable and martingale convergence shows that11


 = E [|F]→  a.s and in 2.

Ad (b): We first fix  and show E [|F] = 
 . It simplifies things to set

 =  ̃ =    6=  and consider
R 
0
̃. Let

n
̃

o
be a dissection of

[0 ]  with  fixed, and mesh
¯̄̄
̃

¯̄̄
→ 0. By 2-continuity of E [·|F] and

10The reader might be familiar with E [| ] = ( ) .
11There are more elementary arguments for 

 →  but this one extends to the

area-level.
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(13.3),

E
∙Z 

0

̃|F
¸

= lim
→∞

E

⎡⎣ X
∈̃

 ̃+1

¯̄̄̄
¯̄F

⎤⎦
= lim

→∞

X
∈̃

E
h
 ̃+1

¯̄̄
F

i
= lim

→∞

X
∈̃

 ̃


+1
(use  ⊥ ̃ and part (a))

=

Z 

0

̃



by definition of the Riemann-Stieltjes integral applied to the (bounded vari-

ation!) integrator ̃

. After exchanging the roles of  and ̃ and subtraction

we find E [|F] = 
 as claimed. The final reasoning is as above:  is

(∨F)-measurable, this follows from (13.3), and by martingale convergence

 = E [|F]→  a.s and in 2

Theorem 13.19 For every  ∈ [0 12), there exists a positive random
variable  with Gaussian tails, in particular  ∞ a.s., such that

sup
=1∞

kBk-Höl;[0 ] ≤

where B∞ ≡ B.
Proof. We keep the notation of the last proof where we established


 = E [|F] and 

 = E [|F] .
Simple algebra (attention  6=  −!) yields


 = E [|F] and 

 = E [|F] . (13.10)

We focus on one component in the matrix , say 

 with  6= . Clearly,¯̄̄





¯̄̄
≤ || ≤

³
|| ∨ ||12

´2
∼ kBk2

where ∼ is a reminder of the Lipschitz equivalence of homogenous norms on
2
¡
R
¢
. From Theorem 13.15, kBk2 ≤ 1 (− )

2
for a non-negative

r.v. 1 with Gauss tail. In particular, |1|  ∞ for all   ∞. (More
precisely, the Gauss tail is captured in |1| = 

¡
12

¢
for  large.) We

then have

−1 (− )
2 ≤ 


 ≤1 (− )

2
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and conditioning with respect to F yields

−2 (− )
2 ≤ E[

|F] ≤2 (− )
2

where2 = sup{E[1|F] :  ≥ 1} has its -normed controlled by Doob’s
maximal inequality

|2| ≤


 − 1 |1| = 
³
12

´
as  →∞

(The square-root growth implies that 2 has a Gauss tail.) From (13.10)

we have

−2 (− )
2 ≤ 

;
 ≤2 (− )

2

where 2 is independent of . If necessary, replace 2 by 
22 to obtain

the estimate

sup


¯̄



¯̄
≤2 (− )

2


The same reasoning, easier in fact, shows that

sup


¯̄



¯̄
≤2 (− )




Putting everything together°°B


°° ∼ ¯̄


¯̄
∨
¯̄



¯̄12 ≤2 (− )


which is precisely the required estimate on kBk-Hölder, uniform over  ≥
1. Setting  =1 +2 finishes the proof.

With the uniform bounds of theorem 13.19, a simple argument (interpo-

lation plus Hölder’s inequality) leads to

Corollary 13.20 Let () be a sequence of nested dissections of [0  ],

that is  ⊂ +1 for all , such that mesh ||→ 0 as →∞. Then

-Höl;[0 ]
¡
2
¡


¢
B
¢→ 0

almost surely and in  (P) for all  ∈ [1∞)

13.3.3 General piecewise linear approximations

We saw that martingale arguments lead to a quick proof of convergence

of (lifted) piecewise linear approximations to Enhanced Brownian motion,

along a nested sequence of dissections. Dealing with an arbitrary sequence

() requires a direct analysis. We first establish pointwise 
-estimates

(only here we use the specifics of piecewise linear approximations) followed

by a general Besov-Hölder type embedding which implies the corresponding

rough path estimates.
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Proposition 13.21 Let  be a dissection of [0  ] and 1 ∈ [0 12]. Then
there exists  =  ( ) such for  = 1 2 and all 0 ≤    ≤   ≥ 1¯̄̄



³
B − 2

¡


¢


´¯̄̄
(P)

≤  ||12−1
³√

 |− |1
´



Proof. We write  for the Levy area, i.e. B = exp ( +) 

Step 1: We consider first   ∈ . In this case, the level 1 estimate is trivial

as 
 = . For level 2, observe that if  =  and  =  for some

   we have

B − 2
¡


¢

=

−1X
=

+1 

From exercise 13.6,

¯̄̄
2

³
2
¡


¢

−B

´¯̄̄

≤ 1

¯̄̄̄
¯
−1X
=

+1

¯̄̄̄
¯
2

≤ 2

vuut−1X
=

(+1 − )
2


Since
P−1

= (+1 − )
2 ≤ |− |min (||  |− |) we have¯̄̄

2

³
2
¡


¢

−B

´¯̄̄

≤ 2 (|| ∧ |− |)12  |− |12

Step 2: (Small intervals) Consider the case  ≤    ≤ . Then

¯̄

 −

¯̄

≤ − 

 − 

¯̄


¯̄

+ ||

≤ 3
12 |− |12 = 3

12(|| ∧ |− |)12

which settles level 1. For level 2, we estimate¯̄̄
2

³
2
¡


¢

−B

´¯̄̄

≤

¯̄̄
2 ◦ 2

¡


¢


¯̄̄

+ |2 (B)|

≤ 4

Ã
|− |2
| − | + |− |

!
≤ 24 |− |
= 24 (|| ∧ |− |)12  |− |12

Step 3: (Arbitrary intervals) It remains to deals with    such that  ≤
 ≤  ≤ . The level 1 estimate follows immediately from the level 1

estimate of step 2; indeed¯̄

 −

¯̄

≤

¯̄̄

 −

¯̄̄

+
¯̄


−

¯̄


≤ 23
12(|| ∧ |− |)12
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For the level 2 estimate, we note the algebraic identity in  2
¡
R
¢


2
¡


¢

−B =

³
2
¡


¢

−B

´
⊗ 2

¡


¢


(13.11)

+B ⊗
³
2
¡


¢


−B


´
⊗ 2

¡


¢


(13.12)

+B ⊗
³
2
¡


¢

−B

´
 (13.13)

Projection to level 2 yields an expression of 2

³
2
¡


¢

−B

´
in terms

of the first and second level of all involved terms. For instance, the -norm

of 13.12 projected to level 2 is readily estimated by¯̄
2
¡
B

¢¯̄

+
¯̄̄
2

³
2
¡


¢


−B


´¯̄̄

+
¯̄̄
2

³
2
¡


¢


´¯̄̄


+
¡¯̄


¯̄

+ ||

¢
|


−| {z }
=0

| +
¯̄


¯̄


 ||

which, by the previous steps, is bounded by a constant times  times¯̄
 − 

¯̄
+
¡|| ∧ ¯̄ − 

¯̄¢12

¯̄
 − 

¯̄12
+ |− |+

¯̄
 − 

¯̄12
 |− |12

≤ 3(|| ∧ |− |)12 |− |12 

The estimates for the -norm of (13.11),(13.13) projected to level 2 are

very similar and also lead to bounds of form
³
 || ∧ |− |)12 |− |12

´
.

We omit the details.

Step 4: The estimates of steps 1-3 can be summarized in¯̄̄


³
2
¡


¢

−B

´¯̄̄

≤ 5

³


2 (|| ∧ |− |)12  |− | −12

´


valid for  = 1 2 and all    in [0  ]. By geometric interpolation, using

2 ∈ [0 1], we also have¯̄̄


³
2
¡


¢

−B

´¯̄̄


= 5

µ

³
||1−2 ∧ |− |2

´12
 |− | −12

¶
≤ 6

³
 ||12−1  |− |

´
We then obtain the following quantitative estimates in both (homoge-

nous, inhomogenous) Hölder rough path metrics.

Corollary 13.22 Let 0 ≤   12. Then, for every  ∈ (0 12−) there
exists a constant  =  (   ) such that, for all  ∈ [1∞)¯̄

-Höl
¡
2
¡


¢
B
¢¯̄
(P) ≤ 12 ||2 
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and also, for  ∈ {1 2} ¯̄̄

()

-Höl;[0 ]

¡
B 2

¡


¢¢¯̄̄
(P)

≤ 

2 || 

In particular, 2
¡


¢ → B in  (P) for all   ∞ as || → 0, with

respect to either -Hölder rough path metric.

Proof. Define  by 1 := 12 −  and note that   1  12. Write

1 2    for constant which may depend on  (and tacitly on ). We have,

for any  ∈ [1∞) 0 ≤    ≤  and dissection  of [0  ] ¯̄̄


³
B − 2

¡


¢


´¯̄̄
(P)

≤ 1 ||12−1
³√

 |− |1
´

  = 1 2

by the previous result (proposition 13.21). Also,

E (kBk)1 ≤ 2

³√
 |− |12

´
≤ 3 (

√
 |− |)

from basic scaling and integrability of enhanced Brownian motion and both

together easily imply that

E
³°°°2 ¡

¢


°°°´1 ≤ 4 (
√
 |− |) 

We can then appeal to theorem A.14 in the appendix to see that¯̄̄̄
¯̄ sup
∈[0 ]

¯̄̄


³
B − 2

¡


¢


´¯̄̄
|− |

¯̄̄̄
¯̄
(P)

≤ 5

2 ||12−1 = 5


2 ||

and also ¯̄
-Höl

¡
2
¡


¢
B
¢¯̄
(P) ≤ 6

12 ||2 

Exercise 13.23 Write  for the piecewise linear approximation of Brown-

ian motion, associated to  = ( :  = 0     ). Corollary 13.22 tells

us, in particular, that

-Höl;[0 ]
¡
B 2

¡
2
¢¢ ≤  ()

µ
1



¶
where  () ∞ a.s. (and in fact has an exponential tail) and   12−.
Show that the factor (1)


can be improved to

1

12− ln
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13.3.4 Limits of Wong-Zakai type with modified Lévy-area

We formulate the following result for random rough paths which are the

limits of "their piecewise linear approximations". Although the example

we have in mind here is enhanced Brownian motion (in which case  ∈
(13 12)   ∈ {2 3    } and  (P)/-Hölder convergence was estab-
lished in the previous section) it applies to the bulk of stochastic processes

which admit a lift to rough path.

Definition 13.24 Let  ∈ (0 1] and assume X = X () has sample paths

in -Höl
0

¡
[0  ]  [1]

¡
R
¢¢
; write  = 1 (X) for its projection to a

process with values in R.
(i) Let  ≥ [1] and let () = ( : ) be a sequence of dissections of

[0  ] such that

∀ ∈ N : sup
∈N

¯̄̄°°[1] ¡
¢°°

-Höl;[0 ]

¯̄̄
(P)

 ∞

∞
¡
[1]

¡


¢
X
¢ → 0 in probability as →∞.

If ( ()) ⊂ 1-Höl
¡
[0  ] R

¢
such that, for all 12

P
 () :=  (

 ())0 ⊗ 
¡
 ()

¢−1
0

takes values in the center of 
¡
R
¢
whenever  ∈  then we say that

() is an approximation on () with perturbations (P
) on level  to

the random rough path X.

(ii) Let  ∈ (0 1] and [1] =  ≥ [1]. We say that an approximation
() on () with perturbations (P

) on level  to the random rough

path X ∈ -Höl
¡
[0  ]  [1]

¡
R
¢¢
is min ( )-Hölder comparable (with

constants 1 2 3) if for all 

  


+1 ∈ , all  and all  ∈ [1∞)

||
1-Höl;[ 


+1]

≤ 1
¯̄


¯̄
1-Höl;[ 


+1]

+ 2
¯̄
+1 − 

¯̄−1¯̄°°P


°°¯̄
(P)

≤ 3 |− | for all   ∈ [0  ] 

Theorem 13.25 Let   ∈ (0 1] and [1] =  ≥ [1]. Assume X =

X () has sample paths in -Höl
0

¡
[0  ]  [1]

¡
R
¢¢
and write  = 1 (X)

for its projection to a process with values in R; let () be an approxima-

tion on ()with perturbations (P
) on level  to X.

(i) If the approximation is min ( )-Hölder comparable (with constants

1 2 3) then for all   min ( )

∀ ∈ [1∞) : sup
∈N

¯̄̄
k ()k-Höl;[0 ]

¯̄̄
(P)

∞

12 It is not assumed that P () ∈ center of 

R

when  ∈ .
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(ii) If P
 → P in probability for all  ∈ ∪∈N dense in [0  ] then, for

all such ,


³
 (

)0   (X)0 ⊗P0
´
→ 0 in probability.

iii) If the assumptions of both (i) and (ii) are met then, for all  

min ( ),

-Höl;[0 ] ( (
) X)→ 0 in  for all  ∈ [1∞)

where  := logP ∈ V ¡R¢ ≡ g ¡R¢∩¡R¢⊗ andX = exp (log ( (X)) + ).

Proof. (i) By a standard Garsia-Rodemich-Rumsey or Kolmogorov argu-

ment, the assumption on
¯̄°°P



°°¯̄
(P)

implies, for any ̃  , the existence

of 3 ∈  for all  ∈ [1∞) so that

∀   in [0  ] :
°°P



°° ≤ 3 () |− |̃ 

We can pick ̃ large enough so that
h
1̃

i
= [1] =  and   min

³
 ̃

´
.

We can then apply theorem 12.18 with ̃ instead of  and learn that there

exists a deterministic constant  such that

sup

k ()k

min(̃)-Höl ≤ 

µ
sup


°°[1] ¡
¢°°

-Höl
+ 1 + 3

¶


Taking -norms finishes the uniform -bound.

(ii) From theorem 12.18


³
 (

)0   (X)0 ⊗P0
´
≤ 

³


¡


¢
0

  (X)0

´
+
¡
P
0P0

¢
which, from the assumptions, obviously converges to 0 (in probability) for

every fixed  ∈ ∪.

(iii) From general facts, of -convergence of rough paths (cf. appendix

A.3.2; inspection of the proofs shows that convergence in probability for all

 in a dense set of [0  ] is enough) implies the claimed convergence.

Remark 13.26 The assumptions on  and P guarantee that the ()

remain, at min ( )-Hölder scale, comparable to the piecewise linear ap-

prxoximations. In particular, the assumption on ||
1-Höl;[ 


+1]

=
¯̄̄
̇
¯̄̄
∞;[ +1]

is easy to verify in all examples below. The intuition is that, if we assume

that  runs at constant speed over any interval  =
£
  


+1

¤
,  = (


 ),

it is equivalent to saying that

length (|) ≤ 1length
¡
 |

¢
+ 2 ||

( = 1

¯̄̄
 


+1

¯̄̄
+ 2

¯̄
+1 − 

¯̄
)
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Remark 13.27 In both examples below we have  = 1 . It is theo-

rem 12.18, from which theorem 13.25, was essentially obtained as corollary

which suggests the need for the slightly looser condition [1] =  .

Example 13.28 (Sussmann) Take any sequence of dissection of [0  ] 

say () with mesh || → 0 and X () such as in theorem 13.25. The

piecewise linear approximation  is nothing but the repeated concaten-

tation of linear chords connecting the points ( :  ∈ ). For some fixed

v ∈ V ¡R¢,  ∈ {2 3    } we now construct Sussmann’s non-standard
approximation  as (repeated) concatenation of linear chords and "geo-

desic loops". First, we require  () =  () for all  ∈  = ( : ).

For intermediate times, i.e.  ∈ ¡−1  ¢ for some  we proceed as fol-

lows: For  ∈ [−1
¡
−1 + 

¢
2] we run linearly and at constant speed

from 
¡
−1

¢
such as to reach  ( ) by time

¡
−1 + 

¢
2. (This is the

usual linear interpolation between 
¡
−1

¢
and  ( ) but run at dou-

ble speed.) This leaves us with the interval [
¡
−1 + 

¢
2  ] for other

purposes and we run, starting at  ( ) ∈ R, through a "geodesic"  :

[
¡
−1 + 

¢
2  ] → R associated to exp

¡
v
¯̄
 − −1

¯̄¢ ∈ 
¡
R
¢
.

Since   1, 1
¡
exp

¡
v
¯̄
 − −1

¯̄¢¢
= 0 and so this geodesic path re-

turns to its starting point in R; in particular


¡¡
−1 + 

¢
2
¢
=  ( ) =  ( ) 

It is easy to see (via Chen’s theorem) that this approximation satisfies the

assumptions of theorem 13.25 with

P
 :=  (

) ⊗ 
¡


¢−1

= v(−) ∀  ∈ 

(so that
¯̄
P


¯̄

=
¯̄
P


¯̄
. |− |1 first for all   ∈  and then, easy

to see, for all  ) and deterministic limit P0 = v  = 1 . Indeed,

the length of  over any interval  =
£
−1 




¤
is obviously bounded by

the length of the corresponding linear chord plus the length of the geodesic

associated to exp (v2) = exp (v ||), which is precisely equal to

kexp (v ||)k = ||1 kexp (v)k =: 2 ||1 

An application of theorem 13.25, applied to X = B, i.e. enhanced Browian

motion, gives the following convergence result. For any   1 we have

-Höl ( (
)   (B)⊗ v·)→ 0 in  for all  ∈ [1∞)

Observe that  for 1 ∈ [ + 1) this is a genuine rough path conver-

gence. In section 12.2 we have identified RDEs driven by

(00v·) (B) =  (B)⊗ v·

as RDEs driven by B with an additional drift.
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Example 13.29 (McShane) Given  ∈ 
¡
[0  ] R2

¢
, an interpolation

function  =
¡
1 2

¢ ∈ 1
¡
[0 1] R2

¢
with  (0) = (0 0) and  (1) = (1 1)

and a fixed dissection = () of [0  ] we define the McShane interpolation

̃ ∈ 
¡
[0  ] R2

¢
componentwise by

̃
;
 :=  + ∆()

µ
− 

 − 

¶
   = 1 2

The points  
 ∈  denote the left-, resp. right-, neighbouring points of

 in the dissection and

∆ ( ) :=

½
 , if 1


2


≥ 0
3−  , if 1


2


 0

As a simple consequence of this definition, for    in [ +1]

2
¡
̃
¢

= exp

µ
̃ +

¯̄̄
1+1

¯̄̄ ¯̄̄
2+1

¯̄̄


µ
− 

+1 − 


 − 

+1 − 

¶¶
where  ( ) ≡ 

 is the area increment of  over [ ] ⊂ [0 1]. Con-
sider now X () = B () = exp ( +) ∈ -Höl

0

¡
[0 1]  [1]

¡
R2
¢¢
with

 ∈ (13 12) and take any ()∈N with || → 0. (We know from sec-

tion 13.3.3 that 2
¡


¢
converges to B in -Hölder rough path topology

and in  for all .) It is easy to see (via Chen’s theorem) that McShane’s

approximation to two-dimensional Brownian motion satisfies the assump-

tions of theorem 13.25 with  = 12,  = 2. Indeed, writing

 := ̃

for McShane’s approximations, it is clear that for any   

P
 = exp

µ¯̄̄
1

¯̄̄ ¯̄̄
2

¯̄̄
×

µ
− 

 − 

− 

 − 

¶¶
with  = 

and for two points    in the relevant increment is given by

P


= exp

Ã


01

X
=+1

¯̄̄
1
+1

¯̄̄ ¯̄̄
2
+1

¯̄̄!


It is easy to see that
P

=+1

¯̄̄
1
+1

¯̄̄ ¯̄̄
2
+1

¯̄̄
converges, in 2 say, to

its mean

2



X
=+1

(+1 − ) =
2


| − | 

while
°°°P



°°°

≤ ̃ | − |12 follows directly from

°°°P


°°° ∼ ³P
=+1

¯̄̄
1
+1

¯̄̄ ¯̄̄
2
+1

¯̄̄´12
and¯̄̄̄
¯

X
=+1

¯̄̄
1
+1

¯̄̄ ¯̄̄
2
+1

¯̄̄¯̄̄̄¯


≤
X

=+1

¯̄̄
1
+1

¯̄̄


¯̄̄
2
+1

¯̄̄

=  | − | 
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In fact,
¯̄°°P



°°¯̄

≤ ̃ |− |12 for all   since for    in [ +1]

°°P


°°


=

Ã
E

¯̄̄̄¯̄̄
1+1

¯̄̄ ¯̄̄
2+1

¯̄̄


µ
 − 

+1 − 


− 

+1 − 

¶¯̄̄̄2!1
=  (+1 − )

12

¯̄̄̄
− 

+1 − 

¯̄̄̄
≤  |− |12 

At last, for any  ∈ , we have ||1-Höl;[+1] ≤
¯̄
0
¯̄
∞
¯̄


¯̄
1-Höl;[+1]

.

This shows that all assumptions of theorem 13.25 are satisfied ane we have,

for all  ∈ [0 12),
-Höl (2 (

)  exp ( + + Γ))→ 0 in  for all  ∈ [1∞)
where  the usual  (2)-valued Lévy’s area and

Γ =

Ã
0 2




01

− 2



01 0

!
∈  (2) .

13.3.5 Convergence of 1D Brownian motion and its -delay

A real-valued Brownian motion  and its -delay  ≡  (·− ) give rise to

the R2-valued process

 7→ (  ) :=
¡
− 

¢


We shall assume   0. On a sufficiently small time interval (of lenght ≤ ),

it is clear that  and  have independent Brownian increments so that¡
  :  ∈ [ + ]

¢
has the distribution of a 2-dimensional standard Brownian motion ( :  ∈ [0 ]).
This suggests to define the stochastic area increments of ( ) as


 =

1

2

µZ 



· − ·


¶
=

Z 



· −
1

2


In particular, we can define the2
¡
R2
¢
-valued continuous process (X

 :  ≥ 0)
as
¡
0· 0·

¢
enhanced with the area process 

0· so that

logX
 =

µ
0
0

¶
+

µ
0 

0

−
0 0

¶


It is left for the reader to check, as a simple consequence of Chen’s

relation, that the area-component of X
 = (X


)
−1 ⊗X

 is indeed given

by 
. We then have
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Lemma 13.30 There exists   0 such that

sup
∈(01]

sup
∈[0 ]

E

"
exp

Ã

 (X

X

 )
2

|− |

!#
∞

Proof. We estimate¯̄



¯̄
(P)

≤
¯̄̄̄Z 



·
¯̄̄̄
(P)

+
1

2

¯̄


¯̄
(P)

≤
¯̄̄̄Z 



·
¯̄̄̄
(P)

+
1

2

¯̄
−−

¯̄
2(P)

¯̄


¯̄
2(P)

≤
¯̄̄̄Z 



·
¯̄̄̄
(P)

+ 1 |− | 

since
¯̄


¯̄
2(P)

 |− |12 =
¯̄
01

¯̄
2(P)

= 
¡
12

¢
, cf. lemma A.18. Thus

it will be enough to show that¯̄̄̄Z 



·
¯̄̄̄
(P)

=  ((− ) ) 

To this end, we first observe that by stationary of Brownian increments

we may replace ( ) by (0 − ). In other words, it suffices to estimate

-moments of the continuous martingale

 =

Z 

0

0·

Noting hi =
R 
0

¯̄
−−

¯̄2
 the exponential martingale inequality gives

P (  ) ≤ P
¡
   hi ≤ 2

¢
+ P

¡hi  2
¢

≤ exp

Ã
−1
2

()
2

2

!
+ P

³
 ||2∞;[0]  2

´
= exp

µ
−1
2


¶
+ P

³
||2∞;[01]  

´


The same argument applies to − and we see that ||  has an expo-
nential tail. Equivalently,¯̄̄̄

1



Z 

0

0·
¯̄̄̄
(P)

=  ()

which is what we wanted to show.

An appeal to general regularity results for stochastic processes (see sec-

tion A.4 in the appendix) then gives
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Proposition 13.31 Let  ∈ [0 12). Then there exists   0 such that

sup
∈(01]

E
h
exp  kXk2-Höl;[0 ]

i
∞

and

sup
∈(01]

E
h
exp  kXk221-var;[0 ]

i
∞

Theorem 13.32 Let  be 1-dimensional Brownian motion with -delay

 ≡  (·− ), lifted to 2
¡
R2
¢
-valued geometric -Hölder rough path,

 ∈ (13 12) given by

X
 = exp

¡¡
0 0

¢
;

0

¢


Set also

X̃ := exp(( ) ;−2)
Then, for any  ∈ [1∞) we have¯̄̄

-Höl;[0 ]

³
X X̃

´¯̄̄
(P)

→ 0 as → 0

Proof. Thanks to proposition A.16 of the appendix, in presence of uniform

-Hölder bounds (which we established in proposition 13.31, it suffices to

show that

logX
 ≡

¡
0− 0;


0

¢→ ( −2) as → 0

in probability and pointwise, i.e. for fixed  ∈ [0  ]. Clearly it is enough to
focus on the area. Using,Z 

0

0· →
Z 

0

0·

(in probability and pointwise as → 0), easily seen from Itô’s isometry, we

have


0 =

Z 

0

0· −
1

2
00

→
Z 

0

0· −
1

2

¡
0

¢2
=

1

2

³¡
0

¢2 − 
´
− 1
2

¡
0

¢2
= −1

2


and the proof is finished.
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13.4 Weak approximations

We now turn to weak approximations of Enhanced Brownian motion B

and prove a Donsker-type theorem in the Brownian rough path setting.

In later chapters on Gaussian resp. Markov processes we shall encounter

other weak convergence results which may be applied to enhanced Brown-

ian motion and thus deserve to be briefly mentioned here: From general

principles on Gaussian rough paths, we have for instance that enhanced

fractional Brownian motion B converges weakly to B as  → 12 (re-

call that Brownian motion is fractional Brownian with Hurst parameter

 = 12). Similarly, a sequence of Markov processes () on R with
(uniformly elliptic) generator of divergence form ∇ · (∇), enhanced with
suitable stochastic area to a 2

¡
R
¢
-valued process X , will be seen to

converge weakly to B provided that 2 →  the ×  identiy matrix. In

all these cases weak convergence holds with respect to a rough path metric

(namely, -Hölder topology with any   12). The interest in such results

is that weak convergence is preserved under continuous maps; applied to

the Lyons-Itô map in rough path topology all these weak convergence re-

sults translate immediately to weak convergence results in which the limit

of certain (random ODEs/RDEs) is identified as RDE solution driven by

B, i.e. as the solution to a Stratonovich SDE.

13.4.1 Donsker’s theorem for enhanced Brownian Motion

Consider a random walk in R, given by the partial sums of a sequence of
independent random-variables ( :  = 1 2 3    ), identically distributed,


D
=  with zero-mean and unit covariance matrix, E ( ⊗ ) = . Donsker’s

theorem (e.g. [138]) states that the rescaled, piecewise-linearly-connected,

random-walk


()
 =

1

12

³
1 + · · ·+ [] + (− []) []+1

´
converges weakly to standard Brownian motion, on 

¡
[0 1] R

¢
with sup

topology. It was observed by Lamperti in [93] that this convergence takes

place in -Hölder topology, for   (− 1) 2 provided E
³
||2

´
 ∞

  1; and this is essentially sharp. In particular, for convergence in -

Hölder for any   12 one needs finite moments of any order. We now

extend this to a rough path setting. More precisely, we show weak conver-

gence in homogenous -Hölder norm of the lifted rescaled random walk to

2
¡
R
¢
-valued enhanced Brownian motion B. Observe that this implies

a weak Wong-Zakai-type theorem: ODEs driven by  () converge weakly

(in -Hölder topology) to the corresponding Stratonovich SDE solution.
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Theorem 13.33 (Donsker’s theorem for EBM) Assume E = 0 and
E (||)  ∞ for all  ∈ [1∞) and   12. Then 2(

()
· ) converges

weakly to B, in 0-Höl
¡
[0 1]  2

¡
R
¢¢


We shall, in fact, prove a more general theorem that deals with random

walks on groups. More precisely, Chen’s theorem implies

2

³
 ()

´

= −12

³
1 ⊗ · · ·⊗ [] ⊗ (−[])[]+1

´
where  denotes dilation on 2

¡
R
¢
and  =

³
1  

⊗
2

´
, the usual step-2

exponential map. Observe that (ξ) =
¡

¢
is an independent, identically

distributed sequence of 2
¡
R
¢
-valued random variable centered in the

sense that

E (1 (ξ)) = E = 0

(1 is the projection from 2
¡
R
¢ → R). Let us also observe that the

shortest path which connects the unit element 1 ∈ 2
¡
R
¢
with  is

precisely  so that piecewise linear interpolation on R lifts to geodesic
interpolation on 2

¡
R
¢
. This suggests the following Donsker-type theo-

rem:

Theorem 13.34 Let (ξ) be a centered IID sequence of 2
¡
R
¢
-valued

random variables with finite moments of all orders,

∀ ∈ [1∞) :  (kξk) ∞

and consider the rescaled random walk defined byW
()
0 = 1 and

W
()
 = −12

³
ξ1 ⊗ · · ·⊗ ξ[]

´
for  = []

for  ∈ ©0 1

 2

   

ª
, piecewise-geodesically-connteced in between (i.e.W

()
 |[   +1 ]

is a geodesic connectingW
()


andW

()

(+1)
). Then, for any   12,W()

converges weakly to B, in 0-Höl
¡
[0 1]  2

¡
R
¢¢


Proof. Following a standard pattern of proof, weak convergence follows

from convergence of the finite-dimensional-distributions and tightness (here

in -Hölder topology).

Step 1: (Convergence of the finite-dimensional-distributions) This is an

immediate consequence of a central limit theorem on free nilpotent groups

(see comments to this chapter).

Step 2: (Tightness) We need to find positive constants    such that

for all   ∈ [0 1]

sup

E
h

³
W()

 W()


´i
≤  | − |1+ 
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so that we can apply Kolmogorov’s tightness criterion (corollary A.12 in

the appendix) to obtain tightness in -Hölder rough path topology, for any

  . Using basic properties of geodesic interpolation, we see that it is

enough to consider   ∈ ©0 1

 2

   

ª
and then, of course, there is no loss

of generality in taking [ ] = [0 ] for some  ∈ {0     }. It follows
that what has to be established reads

1

2
 [kξ1 ⊗ · · ·⊗ ξk] ≤ 1

¯̄̄̄




¯̄̄̄1+


uniformly over all  ∈ N and 0 ≤  ≤ , and with  arbitrarly close to

12. To this end, it is enough to show that for all  ∈ {1 2    }

(∗) : E
h
kξ1 ⊗ · · ·⊗ ξk4

i
= 

¡
2
¢

since we can then take  = 4  = 2−1 and of course  = (2− 1)  (4) ↑
12 as  ↑ ∞. Thus, the proof is finished once we show (∗) and this is the
content of the last step of this proof.

Step 3: Let  be a polynomial function on 2(R) i.e. a polynomial in
1; 2; where

 =
¡
1; 2; ; 1 ≤  ≤  1 ≤    ≤ 

¢ ∈ g2 ¡
¢

is the log-chart of 2(R),  7→  = log (). We define the degree ◦ by

agreeing that monomials of form¡
1;
¢ ¡

2;
¢

have degree
P

 + 2
P

 . An easy application of the Campbell-Baker-

Hausdorff formula reveals that

 :  7→ E ( ( ⊗ ξ))−  () .

is also a polynomial function, of degree ≤  − 2. For instance,


³
 7→ ¡

2;
¢´

is seen to contain terms
¡
2;

¢−1
and

¡
2;

¢−2 ¡
1;

¢2
etc (all of which

are of degree 2− 2). Now, for any  ∈ {1 2    },

kk4 ∼
X


¯̄
1;
¯̄4
+
X


¯̄
1;

¯̄2
=

X


¡
1;
¢4

+
X


¡
1;

¢2
=:  ()
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where  is a polynomial of degree 4. Recalling the definition of the oper-

ator  and using independence we have,

E [ (ξ1 ⊗ · · ·⊗ ξ)] = E
£
E
£
 ((ξ1 ⊗ · · ·⊗ ξ−1)⊗ ξ) | ξ1  ξ−1

¤¤
= E

£
 (ξ1 ⊗ · · ·⊗ ξ−1) +  (ξ1 ⊗ · · ·⊗ ξ−1)

¤
=  =

= ( + 1) (1)

=
X
≥0

µ




¶
  (1)

But the function  :  7→ E( (⊗ ξ))− () is a polynomial function of

degree at most ◦ − 2 = 4− 2. Hence ◦  ≤ ◦ − 2 = 2(2− ) and

the above sum contains only a finite number of terms, more precisely

E [ (ξ1 ⊗ · · ·⊗ ξ)] =
2X
=0

µ




¶
  (1)

Since each of these terms is (2), as  →∞, we are done.

Exercise 13.35 Generalize theorem 13.33 to a random walk with E () = 0
and arbitrary non-degenerate covariance matrix.

13.5 Cameron—Martin theorem

For the readers convenience, we state a general fact of Gaussian analy-

sis, theorem D.2 in the appendix, in a Brownian context. Recall that the

Cameron—Martin space for -dimensional Brownian is given by (cf. section

1.4.1)

H =
12
0

¡
[0  ] R

¢
=

½Z ·

0

̇ : ̇ ∈ 2 [0 1] R
¾
. (13.14)

and has the Hilbert structure given by h iH =
D
̇ ̇

E
2



Theorem 13.36 Let  be -dimensional Brownian motion on [0  ]. Let

 ∈ H be a Cameron—Martin path. Then the law of  is equivalent to

the law of  () ≡  + . (These laws are viewed as Borel measures on

0
¡
[0  ] R

¢
, denoted by W and ()∗W ≡W respectively.) In fact,

W

W
= exp

ÃZ 

0

̇ − 1
2

Z 

0

¯̄̄
̇

¯̄̄2


!




358 13. Brownian Motion

Almost surely, enhanced Brownian motionB has sample paths in -Höl
¡
[0  ]  2

¡
R
¢¢

for any  ∈ [0 12) By interpolation, we also have that a.s. B takes

values in the Polish space 0-Höl
¡
[0  ] 2

¡
R
¢¢
and in fact in the

closed subspace of paths starting at the unit element of 2 and we write

0-Höl

¡
[0  ]  2

¡
R
¢¢
for this space. We viewB as 0-Höl

¡
[0  ]  2

¡
R
¢¢
-

valued random variable; the law of B is then a Borel probability measure

on 0-Höl
¡
[0  ]  2

¡
R
¢¢
.

Theorem 13.37 Let B be a 2
¡
R
¢
-valued enhanced Brownian motion

on [0  ]. Let  ∈ H be a Cameron Martin path. Then the law of  (B) is

equivalent to the law of B.

Proof. We can assume that the underlying probability space is Wiener

space 0
¡
[0  ] R

¢
equipped withWiener-measureW. In particular, Brown-

ian motion is the coordinate map  ( ) =  (). The law of  is W and

we write W for the law of  + . From Cameron—Martin theorem, we

know that the measures are equivalent, W ∼ W. Now, B is a measur-

able map from 
¡
[0  ] R

¢→ 0-Höl
¡
[0  ]  2

¡
R
¢¢
 It is easy to see

that (using Stratonovich calculus or, more elementary, the 2-convergent

Riemann-Stieltjes sum for the area) that

B (·+ ) = B a.s. (13.15)

and hence the law of B is B∗W = short notation for the image measure

of W under B. On the other hand, the law of B is B∗W. Equivalence of
measure implies equivalence of image measures, and we find B∗W ∼B∗W.

The proof is now easily finished.

Let us elaborate a bit further on property (13.15).

Proposition 13.38 Let  =  () be a R-valued Brownian motion and
B be the corresponding 2

¡
R
¢
-valued enhancement, realized as limit of

lifted piecewise linear approximations, say -Höl;[0 ]
¡
B 2

¡


¢¢ → 0

in probability. Then

P ({ : B ( + ) ≡ B () for all  ∈ H}) = 1

Proof. As in in the proof of theorem 13.37 we assume that Brownian

motion is realized as the coordinate map on Wiener space,  ( ) =  (),

under Wiener measure W. It is clear that

2
¡
 ( + )

¢
= 2

¡
 + 

¢
= 

¡
2
¡


¢¢
(13.16)

where   etc denotes the piecewise linear approximation of the re-

spective path based on some dissection . By passing to a subsequence, if

necessary, we may assume that

lim
→∞

2
¡
 ()

¢
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(with respect to -Höl) exists forW-almost surely , the limit being, by de-
finition, the geometric -Hölder rough path B (). Fixing such a , chosen

from a set of full W-measure, we note that, for any  ∈ H, the sequence¡
2
¡
 ( + )

¢
:  = 1 2   

¢
is also convergent. Indeed, from (13.16) and basic continuity properties

of the translation operator (x) 7→ x we see that, always in -Hölder

rough path topology,

2
¡
 ( + )

¢→  (B ()) as →∞

On the other hand, we have

B ( + ) = lim2
¡
 ( + )

¢


thanks to existence of the limit on the right-hand-side and the very realiza-

tion of B as limit of lifted piecewise linear approximations. This, of course,

allows to identify

B ( + ) =  (B ())

and we stress the fact that  was chosen in set of full measure independent

of . This concludes the proof.

13.6 Large deviations

Let  denotes -dimensional standard Brownian motion. If is rather ob-

vious that  → 0 in distribution as  → 0. The same can be said for

Enhanced Brownian motion B provided scalar multiplication by  on R is
replaced by dilation  on 2

¡
R
¢
, i.e. B→  in distribution as  → 0.

It turns out that, to leading order, the speed of this convergence can be

very precisely computed. This is a typical example of a large deviations

statement for sample paths. We assume in this section that the readers is

familiar with rudiments of large deviations as collected in the appendix.

Adopting standard terminology, the goal of this section is the prove a large

deviation principle for Enhanced Brownian motion B in suitable rough

path metrics. There is an obvious motivation for all this. The contraction

principle will imply - by continuity of the Itô-Lyons maps and without any

further work - a large deviation principle for rough differential equations

driven by Enhanced Brownian motion. Combined with the fact that RDEs

driven by enhanced Brownian motion are exactly Stratonovich stochastic

differential equation, this leads directly to large deviations for SDEs, better

known as Freidlin—Wentzell estimates.
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13.6.1 Schilder’s theorem for Brownian motion

Let  denote -dimensional standard Brownian motion on [0  ]. If  ≡
()∗ P denotes the law of , viewed as Borel measure on 0

¡
[0  ] R

¢
,

the next theorem can be summarized in saying that ()0 satisfies a

large deviation principle on the space 0
¡
[0  ] R

¢
with rate function .

(When no confusion arises, we shall simply say that ()0 satisfies a

large deviation principle). All subsequent large deviation statements will

involve the good rate function (cf. Exercise 13.40)

 () =

½
1
2
h iH if  ∈ H

+∞ otherwise

where H denotes the Cameron—Martin space for  as defined in (13.14).

We now show that ()0 satisfies a large deviation principle in uniform

topology with good rate function . This is nothing than a special case of

general large deviation result for Gaussian measures on Banach spaces, see

section D.2 in the appendix. However, in an attempt to keep the present

chapter self-contained we include the following classical proof based on

Fernique estimates.

Theorem 13.39 (Schilder) Let  be -dimensional Brownian motion on

[0  ]. For any measurable  ⊂ 0
¡
[0  ] R

¢
we have

− (◦) ≤ lim inf
→0

2 logP [ ∈ ] ≤ lim sup
→0

2 logP [ ∈ ] ≤ − ¡̄¢ 
(13.17)

Here, ◦ and ̄ denote the interior and closure of  with respect to uniform
topology.

Proof. For simplicity of notation we assume  = 1. We write 0 ([0 1])

instead of 0
¡
[0 1] R

¢
and assume  = 1 since the extension to   1

only involves minor notational changes.

(Upper bound)Write  for a generic path in 0 ([0 1]) and let 
 denote

the piecewise linear approximation of  interpolated at points in  =

{ :  = 0    }.
Step 1: We define  := h iH. In other words,

 =

Z 1

0

|̇ |2  = 

X
=1

¯̄
 − (−1)

¯̄2


Under  = ()∗ P, the random variabble  is distributed like 
22 with

 degrees of freedom and so

 [ ≥ ] =
1

22 Γ ()

Z ∞
2

−22−1
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Therefore, for arbitrary   we have

lim sup
→0

2 log (  ) ≤ −2

For  open and non-empty,  := inf {h iH :  ∈  ∩H} ∞ and so

 [ ∈ ] =  [ ∈  ∩H] ≤  [h iH ≥ ] 

From the preceding tail estimate on  = h iH it plainly follows

that

lim sup
→0

2 log [ ∈ ] ≤ −2 = −1
2
 () .

Step 2: We fix  ∈ (0 12). From our Fernique estimates (corollary

13.15),  := 2 ||-Höl;[01] has a Gauss tail and so there exists 1  0

such that



h
| − |∞;[01] ≥ 

i
= P

h
| −|∞;[01] ≥ 

i
≤ P

∙


µ
1



¶
≥ 

¸
≤ P [ ≥ ] ≤ 

1
exp

³
−1 ()

2
´


This shows that piecewise linear approximations are exponentially good in

the sense

lim sup
→0

2 log

h
| − |∞;[01] ≥ 

i
≤ −122 → −∞ as →∞

(13.18)

Step 3: Write  ( ) ≡ { ∈ 0 ([0 1]) : |− |∞  }. Given a closed set
 its open -neighbourhood is defined as ∪ { ( ) :  ∈ }. Clearly,

 ( ) ≤ 
£
 () ∈  

¤
+ 

h
| − |∞;[01] ≥ 

i
and by combining the estimates obtained in the first two steps we see that

lim sup
→0

2 log ( ) ≤ max
¡− ¡ 

¢
−2

¢


Now let  → ∞ and then  → 0. The convergence 
¡
 
¢ →  ( ) is

standard, see lemma C.1.

(Lower bound) It is enough to consider an open ball of fixed radius 

centered at some  ∈ H. Define  = −−1 and  =
©
 ∈ 

¡
0 −1

¢ª
.
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By the Cameron—Martin theorem, theorem 13.36,

P [ ∈  ( )] = P
£
 ∈ 

¡
0 −1

¢¤
E
µ
exp

∙
−1


Z 1

0

̇ − 1

22

Z 1

0

¯̄̄
̇

¯̄̄2


¸
;

¶
= −()

2

E
µ
exp

½
−1


Z 1

0

̇

¾
;

¶
≡ −()

2

E
µµ
exp

∙
−1


Z 1

0

̇

¸


¶
P () 

≥ −()
2

P () = −()
2

(1 +  (1)) 

In the last line we used symmetry ( and − having identical distribu-

tions implies E
³³R 1

0
 

´
= 0 for all deterministic integrands  such as

−−1̇), and Jensen’s inequality

E
µµ
exp

∙Z 1

0



¸


¶
≥ expE

µµZ 1

0

 

¶
= 1

Exercise 13.40 Show that

 7→
½

1
2
h iH if  ∈ H

+∞ otherwise

is a good rate function. (Hint: compactness of level-sets follows from equicon-

tinuity and Arzela-Ascoli).

13.6.2 Schilder’s theorem for enhanced Brownian motion

Let Φ :  ∈ 
¡
[0  ] R

¢ 7→   denote the piecewise linear approxima-

tion map along the dissection  given by { :  = 0 }. Clearly,
Φ () satisfies a large deviation principle, as can be seen from elemen-

tary -dimensional Gaussian considerations, or Schilder’s theorem and the

contraction principle applied to the continuous (linear) map Φ. We have

seen in section 13.3.3 that, for any  ∈ [0 12), and there exists positive
constants  =     0 such that for all  ∈ [1∞),¯̄

-Höl;[0 ] (2 (Φ ()) B)
¯̄
(P)

≤ 
√


¯̄̄̄
1



¯̄̄̄
 (13.19)

As an almost immediate consequence, we see that piecewise linear approx-

imations are exponentially good in the following sense.

Lemma 13.41 For any   0 and  ∈ [0 12) we have
lim

→∞
lim sup

→0
2 logP

¡
-Höl;[0 ] (2 ◦Φ ()  B)  

¢
= 0
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Proof. We define  = 
¯̄
1


¯̄
 Using inequality (13.19), we estimate

P
¡
-Höl;[01] (2 (Φ ())  B)  

¢
= P

µ
-Höl;[0 ] (2 (Φ ()) B) 





¶
≤

µ




¶−√




≤ exp
h
 log

³


√

´i



and after choosing  = 12 we obtain, for  small enough,

2 logP
¡
-Höl;[01] (2 (Φ ())  B)  

¢ ≤ log³


´


Now it suffices to take the lim sup with → 0 and note that log ()→
−∞ as →∞

We also need the following (uniform) continuity property on level sets of

the rate function. As will be seen in the proof below, this is a consequence

of

||1-var;[] ≤ |− |12 ||H  (13.20)

and general continuity properties of the lifting-map  in variation metrics.

We recall that the good rate function  is defined by

 () =

½
1
2
h iH if  ∈ H

+∞ otherwise

Lemma 13.42 For all Λ  0 and  ∈ [0 12) we have

sup
{:()≤Λ}

-Höl,[0 ] (2 (Φ ())  2 ())→ 0 as →∞

Proof. Without loss of generality, we take  = 1 First observe that

k2 (Φ ())k1-var[] ≤ |Φ ()|1-var[]
≤ ||1-var[]
≤
√
2Λ |− |12 

Hence, we see that interpolation allows us to restrict ourselves to the case

 = 0 Furthermore, proposition 8.15 allows us to actually replace -Höl
by ∞ Then, we easily see that

∞ (2 (Φ ())  2 ()) ≤ −1
max
=0


³
2 (Φ ()) 


 2 () 



´
+

−1
max
=0

³
k2 (Φ ())k0[   +1

 ]
+ k2 ()k0[   +1

 ]

´
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Clearly,

k2 (Φ ())k0[   +1
 ]

≤ k2 (Φ ())k1-var[   +1
 ]

≤
√
2Λ−12

and similarly,

k2 ()k0[+1] ≤
√
2Λ−12

Then, because Φ () 

=  


 using equivalence of homogeneous norms

and the equality

2 () 

− 2 (Φ ()) 


=

−1X
=

2 (Φ ()) 



we have

−1
max
=0


³
2 (Φ ()) 


 2 () 



´
≤ 1

−1
max
=0

¯̄̄̄
¯̄−1X
=0

2 ◦ 2 () 

 +1


¯̄̄̄
¯̄
12

≤ 1

⎛⎝−1X
=0

¯̄̄
2 ◦ 2 () 



+1


¯̄̄⎞⎠12

≤ 3

⎛⎝−1X
=0

||2
1-var[   +1

 ]

⎞⎠12

≤ 3 ||121-var,[01]

³
−1
max
=0

||
1-var[   +1

 ]

´12
≤ 4Λ

12−14

In particular, we see that

sup
{:()≤Λ}

∞ (2 (Φ ())  2 ()) ≤ 5Λ
12−14

which concludes the proof.

Theorem 13.43 For any  ∈ [0 12), the family (B :   0) satisfies a
large deviation in homogenous -Hölder topology. More precisely, viewing

P := (B)∗ P as Borel measure on the Polish space (
0-Höl
0

¡
[0  ]  2

¡
R
¢¢
 -Höl),

the family (P :   0) satisfies a large deviation principle on this space with

good rate function, defined for  ∈ 
0-Höl
0

¡
[0  ]  2

¡
R
¢¢
, given by

 () =
1

2
h1 ()  1 ()iH if 1 () ∈ H
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Proof. We once again assume  = 1 without loss of generality. We know

from section 13.3.2 that B is the almost-sure -Höl-limit of lifted piecewise

linear approximation, based on the dyadics dissections = (2
 :  = 0     2)

for instance. We may assume that the underlying probability space is the

usual -dimensional Wiener space 0
¡
[0 1] R

¢
so that P is Wiener mea-

sure and  () = . At the price of modifying B on set of probability zero,

we can and will assume that

B () := lim
→∞

2
¡
 ()

¢
with respect to -Höl

(arbitrarily defined on the null set where this limit does not exist) so that

B is well-defined on H ⊂ 1-var and coincides with the map  7→ 2 (),

based on Riemann—Stieltjes integration13. We approximate the measurable

map B (·) by

 ∈ 0
¡
[0 1] R

¢ 7→ 2 (Φ ()) ∈ 
0-Höl
0

¡
[0 1]  2

¡
R
¢¢


which is a continuous map (for fixed ) as is easily seen from continuity

of the two maps

 ∈ 0
¡
[0 1] R

¢ 7→ Φ () ∈ 
01-Höl
0

¡
[0 1] R

¢


 ∈ 1-Höl0

¡
[0 1] R

¢ 7→ 2 () ∈ 1-Höl0

¡
[0 1]  2

¡
R
¢¢


The extended contraction principle, section C.2 in the appendix, implies

the required large deviation principle for enhanced brownian motion pro-

vided we check (i) exponential goodness of these approximations and (ii) a

(uniform) continuity property on level sets of the rate function. But these

properties were the exact content of lemmas 13.41 and 13.42 above.

It should be noted that the proof of theorem 13.43 use little specifics of

(enhanced) Brownian motion and only relies on reasonably good ("Gaussian")

estimates of piecewise linear approximations and some regularity of the

Cameron-Martin space: (13.19), (13.20). Indeed, as will be discussed in

15.7, an almost identical proof carries through in a general Gaussian (rough

path) setting.

We also note that it would be sufficent to prove theorem 13.43 in uni-

form topology, i.e. for  = 0, by appealing to so-called inverse contraction

principle, section C.2 in the appendix. We have

Proposition 13.44 Assume theorem 13.43 holds for  = 0. Then it also

holds for any  ∈ [0 12).
Proof. By the inverse contraction principle all we have to do is to check

that {B} is exponentially tight in -Hölder topology. But this follows

13More generally, the hap  7→ lim→∞ 




is well-defined on -var ,  2,

and coincides with the step- Young lift of .
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from the compact embedding of

0-Höl ¡[0  ]  2 ¡R¢¢ → 0-Höl
¡
[0  ]  2

¡
R
¢¢

and Gauss tails of kBk0-Höl where   0  12, i.e.

∃  0 : P [kBk0-Höl  ] ≤ exp ¡−2¢ 
Indeed, defining the following precompact sets in -Hölder topology,

 =
n
 : ||0-Höl ≤

p


o


exponential tightness follows from

2 log [P (

 )] = 2 logP

h
kBk0-Höl 

p


i
= 2 logP

"
kBk0-Höl 

r


2

#
≤ −

Exercise 13.45 (Schilder for EBM via Itô calculus) The purpose of

this exercise is to give a direct proof of theorem 13.43 using martingale

techniques. Thanks to proposition 13.44, we only need to consider the uni-

form topology.

(i) Define the  ()-valued approximations to Lévy’s area process,


 :=

1

2

Z 

0

[] ⊗  −
Z 

0

 ⊗[]

Use the fact that  7→   is a martingale to show that they give rise to

exponentially good approximations to {B}:

lim
→∞

lim→02 logP
£
∞;[0 ]

¡
exp

¡
 + 2

¢
 B

¢ ≥ 
¤
= −∞

(ii) Define  ()

 =

1
2

R 
0
[] ⊗  −

R 
0
 ⊗ [] for any  ∈ H.

Show that for all Λ  0

lim
→∞

sup
{∈H:()≤Λ}

∞;[0 ] (exp+ ()

 2 ()) = 0

(iii) Deduce a large deviation principle for enhanced Brownian motion in

uniform topology. More precisely, show that P = (B)∗ P viewed as Borel
measure on the Polish space

¡
0
¡
[0  ] 2

¡
R
¢¢
 ∞

¢
satisfies a large de-

viation principle with good rate function  (y) =  (1 (y)).
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Exercise 13.46 The purpose of this exercise is to give a direct proof of

theorem 13.43 using Markovian techniques. Again, thanks to proposition

13.44, it suffices to consider the uniform topology.

Let p (  ) denote the transition density for enhanced Brownian motion

seen as a Markov process on 2
¡
R
¢
. Use Varadhan’s formula (cf. section

E.5 in the appendix

lim
→0

2 logp (  ) = − ( )2

and the fact that 2
¡
R
¢
is a geodesic space to establish a large deviation

principle for enhanced Brownian motion in uniform topology.

Exercise 13.47 (Strassen’s law) Let B denote enhanced Brownian mo-

tion B on [0 1]. Establish the following functional version of the law of

iterated logarithm for B in -Hölder (rough path) topology,   12: let

 () =
p
 ln ln (1) for  small enough, and show that

 ∈ [0 1] 7→  1
()

B· ()

is relatively compact as a random variable with values in 0-Höl
¡
[0 1]  2

¡
R
¢¢

with the compact set of limit points as  → 0 given by 2 (K) where
K = {2 () ∈ H : ||H ≤

√
2}.

13.7 Support theorem

13.7.1 Support of Brownian motion

Almost surely, -dimensional Brownian motion  ∈ -Höl
¡
[0  ] R

¢
for

 ∈ [0 12) and hence we also have that  belongs almost surely to the

Polish space 0-Höl
¡
[0  ] R

¢
 and in fact in the closed subspace of

paths started at 0, 
0-Höl
0

¡
[0  ] R

¢
. Then  can then be viewed as


0-Höl
0 -valued random variable and its law of  is a Borel probability

measure on 
0
0

¡
[0  ] R

¢


Definition 13.48 Let  be a Borel probability measure on some Polish

space ( ). The (topological) support of  is the smallest closed set of full

measure.

We recall thatH =
12
0

¡
[0  ] R

¢
denotes the Cameron—Martin space

for Brownian motion. Let us also recall (cf. theorem 13.36) that, for any

 ∈ H, the law of  () = + is equivalent to the law of . Let us record

some simple properties of . Thanks to H → 12-Höl, and   12, it is

a continuous map of 
0
0

¡
[0  ] R

¢
into itself and bijective with inverse

−. In particular, the image of any open sets under  is again open.
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Corollary 13.49 Let  be a Cameron—Martin path and  ∈ 0
¡
[0  ] R

¢
.

Then if  belongs to the support of the law of  then so does  () 

Proof. Write N () for all open neighbourhoods of . To show that  ()

is in the support, it suffices to show that

∀ ∈ N ( ()) : P ( ∈  )  0.

Fix  ∈ N ( ()). By continuity, there exists  ∈ N () so that  () ⊂
 . From the above remark,  () ∈ N ( ()). Thus

P ( ∈  ) ≥ P ( ∈  ())

= P (− ∈ )

and from Cameron—Martin the last expression if positive if and only if

P ( ∈ ) is positive. But this is true since  ∈ N () and  is in the

support.

Theorem 13.50 Let  ∈ (0 12). The topological support of the law of
Brownian motion on [0  ] in -Hölder topology is precisely 

0
0

¡
[0  ] ;R

¢
.

Proof. Almost surely,  () ∈ 
0
0

¡
[0  ] ;R

¢
which is closed in -

Hölder topology. Therefore, the support of the law of  is included in


0
0

¡
[0  ] ;R

¢


Vice-versa, the support contains (trivially!) one point, say

 ∈ 
0
0

¡
[0  ] ;R

¢


From the (defining) properties of the space 0 , there are smooth paths

{} with  (0) = 0 so that

−  = − ()→ 0 in -Hölder topology.

Any such  is a Cameron Martin path and so − () ∈ support for all
. By definition, the support is closed (in -Hölder topology) and therefore

0 ∈ support. But then any translate  (0) =  belongs to the support, for

all Lipschitz (in fact, Cameron Martin) path . Since Lipschitz paths are

dense in 0
¡
[0  ] ;R

¢
, taking the closure yields

0
¡
[0  ] ;R

¢ ⊂ supp (law of ) .

13.7.2 Recalls on translations of rough paths

We just used the translation map  () =  +  for R-valued paths 
and . Assume both  and  are Lipschitz, started at 0, and consider the

step-2 lift: x ≡ 2 (), and  (x) ≡ 2 ( ()). From definition of 2,

 (x) = 1 +
¡
x1 + 

¢
+

µ
x2 +

Z ·

0

⊗ +

Z ·

0

⊗ + 2 ()

¶
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The following proposition is an easy consequence of the results of section

9.4.6.

Proposition 13.51 Let  ∈ (13 12]. The map x 7→  (x) can be ex-

tended to a continuous map of 0
¡
[0 1]  2

¡
R
¢¢
into itself and  also

denotes this extension. It is bijective with inverse −. In particular, the
image of any open sets under  is again open.

13.7.3 Support of enhanced Brownian motion

Following section 13.5 we recall that B∗P, the law of B, can be viewed as a
Borel probability measure on 0

¡
[0  ]  2

¡
R
¢¢
,  ∈ [0 12). Moreover

we saw that the law of  (B) is equivalent to the law of B when  ∈ H is

a Cameron Martin path. As a consequence we have

Proposition 13.52 Let  ∈ H be a Cameron Martin path and x ∈ supp (B∗P).
Then  (x) ∈ supp (B∗P) 
Proof. With the properties of x 7→  (x) we established in Proposition

13.51 and

(law of B) ∼ (law of  (B)) 
the proof given earlier for Brownian motion (Corollary 13.49) adapts with

no changes.

Lemma 13.53 Let  ∈ (0 12). There exists x ∈ supp (P∗B) and () ⊂
H so that

k−xk-Höl;[0 ] → 0 as →∞

Remark 13.54 Note that k−Bk-Höl;[0 ] → 0 does not follow as a

deterministic consequence from -Höl;[0 ] (B 2 ())→ 0.

Proof. If  denotes the piecewise linear approximation based on a nested

sequence of dissections, we saw that

 ()→ B a.s. (pointwise)

with uniform -Hölder bounds. In fact, the essential observation was that

E
∙Z 

0

̃|F
¸
=

Z 

0

̃


where F = 
³
 ̃ :  ∈ 

´
. The arguments given in section 13.3.2 also

give

E
∙Z 

0

̃
¯̄̄
 ( :  ∈ ) ∨ (̃ :  ∈ [0  ] )

¸
=

Z 

0

̃

E
∙Z 

0

̃
¯̄̄
 ( :  ∈ [0  ]) ∨ (̃ :  ∈ )

¸
=

Z 

0

̃
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(both integrals on the right-hand-side make sense as Riemann-Stieltjes in-

tegrals) and also

−B→ 0 a.s. (pointwise)

with uniform -Hölder bounds. The usual interpolation finishes the proof.

Indeed, we could have started with ̃ ∈ ( 12), get uniform ̃-bounds

and use interpolation to obtain −B → 0 in -Hölder topology. This

statements holds a.s. and we can take any x = B () for  in a set of full

measure.

Theorem 13.55 Let  ∈ (0 12). The topological support of the law of
2
¡
R
¢
-valued enhanced Brownian motion on [0  ] with respect to -Höl

is precisely 
0
0

¡
[0  ] ;2

¡
R
¢¢
.

Proof. Thanks to proposition 13.52 and lemms 13.53, the argument is the

same as the one for -dimensional Brownian motion, as given in the proof

of theorem 13.50.

13.8 Support theorem in conditional form

13.8.1 Brownian motion conditioned to stay near the origin

We want to condition -dimensional standard Brownian motion  to stay

-close to the origin over the time interval [0 1]. In other words, we want

to condition with respect to the event

n
||∞[01]  

o
=

⎧⎨⎩ sup
∈[01]

vuut X
=1

¡



¢2
 

⎫⎬⎭  (13.21)

Despite the equivalence of norms on R, Brownian motion does care how
it is confined and it is important that we use the Euclidean norm on R.
(See proposition 13.8, which we shall use below.) From theorem 13.50, we

know that
n
||∞[01]  

o
has positive probability, but the next lemma

gives precise quantitative bound.

Lemma 13.56 Let   0 denote the lowest eigenvalue of −1
2
∆ with Dirich-

let boundary conditions on  (0 1), the boundary of the Euclidean unit

ball. Then there exits a constant   0 such that

1


exp

µ
− 

2

¶
≤ P

h
||∞[0]  

i
 (13.22)

Proof. By Brownian scaling it suffices to consider  = 1. Let  ( )

denote the Dirichlet heat kernel for  (0 1). Then,

P
h
||∞[0]  1

i
=

Z
(01)

 (0 ) 



13. Brownian Motion 371

Recall that the lowest eigenvalue is simple and that the (up to multiplica-

tive constants unique) eigenfunction  (·) corresponding to  can be taken
positive14, continuous (in fact: smooth15) and 2-normalized so thatZ

(01)

2 ()  = 1

In particular,

 () = 
Z
(01)

1 ( ) () 

≤ 

sZ
(01)

1 ( )
2


sZ
(01)

2 () 

≤ 
p
2 ( ) ≤  (4)

−4

and the proof is finished with the estimate

0   (0) = 
Z
(01)

 (0 ) () 

≤ (4)
−4

(+1)
Z
(01)

 (0 ) 

We shall need to complement lemma 13.56 with an upper estimate and

write P to indicate that Brownian motion  is started at  (0) = .

Lemma 13.57 Let   0 denote the lowest eigenvalue of −1
2
∆ with Dirich-

let boundary conditions on the Euclidean unit ball  (0 1). Then there exits

a constant   0 such that

sup
∈(01)

P
h
||∞[0]  

i
  exp

µ
− 

2

¶
 (13.23)

Proof. Again, by Brownian scaling it suffices to consider  = 1. Let  ∈
 (0 1), the Euclidean ball  (0 1) ⊂ R. From symmetry considerations

(cf exercise 13.58 below) we see that

P
h
||∞[0]  1

i
≤ P0

h
||∞[0]  1

i
=

Z
(01)

 (0 ) 

where  (· ·) denotes the Dirichlet heat kernel for  (0 1). Using  ( ) =
 ( ) and writing  for the associated semigroup on 2 ( (0 1)) we

14See e.g. [68, Thm 8.38].
15This follows from standard elliptic regularity theory.
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haveZ
(01)

 (0 )  =

Z
(01)

ÃZ
(01)

−1 ( ) 1 (0 ) 

!


≤
p
| (0 1)|

¯̄̄̄
¯
ÃZ

(01)

−1 (· ) 1 (0 ) 
!¯̄̄̄
¯
2((01))

≤
p
| (0 1)| |−11 (0 ·)|2((01))

≤
p
| (0 1)|−(−1) |1 (0 ·)|2((01))

=
p
| (0 1)|−(−1)

p
2 (0 0)

as required.

Exercise 13.58 Let  denote Brownian motion on R equipped with Euclid-
ean distance. Show that for all  ∈  (0 1),

P
h
||∞[0]  1

i
≤ P0

h
||∞[0]  1

i


(Hint: use symmetry).

We can now define the conditional probabilities

P (•) := P
³
• | ||∞[01]  

´


(Since the conditioning event has positive probability, this notion is ele-

mentary.)

Lemma 13.59 (Increments over Small Times) There exists   0

such that for all   0 and 0    1,

P
µ
∃0 ≤    ≤ 1 |− |  2 :

kBk
|− |  

¶
≤  exp

"
− 1


µ


1−2

¶2#


Proof. Step 1: Suppose there exists a pair of times   ∈ [0 1] such that

   |− |  2 and
kBk
|− |  

Then there exists a  ∈ {1  §12¨} so that [ ] ⊂ £( − 1) 2 ( + 1) 2¤.
In particular, the probability that such a pair of times exists is at most

d12eX
=1

P
³
kBk-Höl;[(−1)2(+1)2]  

´
(13.24)
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We will see in step 2 below that each term in this sum is exponentially

small with , namely bounded by

P
³
kBk-Höl;[(−1)2(+1)2]  

´
≤  exp

"
− 1


µ


1−2

¶2#
(13.25)

for some positive constant . Since there are only
§
12

¨
terms in this sum,

it suffices to making  slightly bigger to control the entire sum and this

finishes the proof of lemma 13.59, subject to proving (13.25).

Step 2: We now show that for any 1  2 in [0 1] with 2 − 1 ≤ 22
we have

P
³
||B||[12]  

´
  exp

"
− 1


µ


1−2

¶2#


(Applied to 1 = ( − 1) 2 2 = ( + 1) 2 we will then obtain the estimate
(13.25), as desired.) Writing out the very definition of P leads immediately
to

P
³
||B||[12]  

´
≤

P0
³
||B||-Höl[12]  ; ||0[01]  ; ||0[21]  

´
P0
h
||0[01]  

i




By using the Markov-property, this equals

E0
h
P(2)

³
||0[01−2]  

´
; ||B||-Höl[12]  ; ||0[01]  

i
P0
£
0[01]  

¤
≤ 1

−2E0
h
−(1−2)

−2
; ||B||-Höl[12]  ; ||0[01]  

i
where 1 the product of the respective multiplicative constansts of lemma

13.56 and lemma 13.57. Using independence of (enhanced) Brownian in-

crements, see Proposition 13.12, the last equation line equals

= 1
2

−2
P0
³
||B||-Höl[02−1]  

´
P0
³
||0[01]  

´
≤ 2

(2−1)−2P0
³
||B||-Höl[02−1]  

´
as another application of lemma 13.56. Using 2−1 ≤ 22 this expression
is bounded by

≤ 2
2P0

³
||B||-Höl[022]  

´
≤ 2

23 exp

"
− 1
3

2

(22)
1−2

#
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where we used scaling and Fernique estimates for Enhanced Brownian mo-

tion in the last step. The proof is now finished.

Lemma 13.60 (Increments over Large Times) There exists   0

such that for all   0 and 0   small enough, namely such that (13.27)

is satsified,

P
µ
∃0 ≤    ≤ 1 |− | ≥ 2 :

kBk
|− |  

¶
≤  exp

Ã
− 1


µ
2

1−2

¶2!


Proof. Let us first recall Lipschitz equivalence of homogenous norms,

kBk ∼ | −| ∨
q
||

We can thus establish lemma 13.60 by estimating

P
Ã
∃  ∈ [0 1]  |− | ≥ 2 :

| −|
|− | ∨

p||
|− |  

!

≤ P
Ã
∃  ∈ [0 1]  |− | ≥ 2 : 21−2 ∨

p||
|− |  

!
(13.26)

Two observations come to our help. First, upon assuming  small enough,

namely such that

21−2   (13.27)

we have

21−2 ∨
p| ()|
|− |   ⇐⇒

p| ()|
|− |  

Seccondly, ||∞[01] ≤  implies that the area-increments become "almost"

additive. More precisely, cf. (13.7),

 = ( −)− 1
2
[ ] =⇒ || ≤ | −|+ 22

and it follows that

||
|− |2

≤ | −|
|− |2

+ 22−4

≤ | −|
2 |− | +

2

2


where we used |− | ≥ 2 and (13.27). Putting things together shows that

(13.26) is equal to

= P
Ã
∃  ∈ [0 1]  |− | ≥ 2 :

||
|− |2

 2

!

≤ P
µ
∃  ∈ [0 1] : | −|

2 |− | 
2

2

¶
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and it is of course enough to consider

P
µ
∃  ∈ [0 1] : | − |

2 |− | 
2

2

¶
= P

µ
||-Höl;[01] 

2

2
2
¶

(13.28)

where  is one component of the Lévy’s area,

 ≡ 

 =

1

2

µZ 

0

 −
Z 

0



¶
for fixed  6=  in {1  }. Proposition 13.8 tells us that there exists a one
dimensional Brownian motion, say  , such that

 = ( ()) with  () :=
1

4

Z 

0

¡
(

)
2 + (

)
2
¢


and  is independent of the process (
· )
2 + (


· )2 and so independent

of ||∞;[01]. In order to control the Hölder norm of  we use a basic fact

about composition of Hölder functions,

| ◦ |()-Höl ≤ | |-Höl
³
||-Höl

´


with the remark that | |-Höl can be replaced by the -Hölder norm of 

restricted to the range of . Applying this to  ◦  yields

||-Höl;[01] ≤ | |-Höl;[0(1)]
³
||Lip;[01]

´


On the conditioning event
n
||∞[01] ≤ 

o
we have both  (1) and ||Lip;[01] ≤

24 ≤ 2 and so we can continue to estimate (13.28):

P
µ
||-Höl;[01] 

2

2
2
¶
≤ P

µ
| |-Höl;[02] 

2

2

¶
= P

µ
| |-Höl;[02] 

2

2

¶
= P

µ
1−2 | |-Höl;[01] 

2

2

¶


From the second to the third line above, when replacing P by P, we cru-
cially used that  is independent of (

· )
2 + (


· )2 and so independent of

the radial process (·) and in particular of ||∞[01]. The proof of lemma

13.60 is then finished with Fernique estimates, i.e. Gaussian integrability

for the -Hölder norm of  .
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Remark 13.61 Fix any    in [0 1] with the property that  −  ≥ 2.

Then

P
Ã
kBk
|− |12

 

!
≤ P

µ kBk
|− |  1−2

¶
≤  exp

µ
− 1

4
¶

for   2.

The last estimate comes from lemma 13.60, applied with 1−2 instead of
 and noting that condition (13.27) is satisfied for   2.

We are now able to state the main result of this section.

Theorem 13.62 Let  ∈ [0 12). Then, for any   0,

lim
→0

P
³
kBk-Höl;[01]  

´
= 0

Proof. An obvious consequence of lemmas 13.59 and 13.60.

Exercise 13.63 (i) Let  be a fixed increasing function such that  ()

=
p
 log (1) in a positive neighbourhood of 0. Prove that there exists

  0 such that

sup
∈(01)

E exp
³
 kBk-Höl,[01]

´
∞

where kBk-Höl;[0 ] = sup∈[0 ]  (BB)  (− ).

(ii) Show that there exists   0 such that

sup
∈(01)

E exp
³
 kBk221-var;[01]

´
∞

Hint: It suffices to establish

∃  0 : sup
∈(01]

sup
∈[0 ]

E
Ã
exp

Ã

kBk2
|− |

!!
∞

The case  −  ≤ 2 follows from argument of the proof of lemma 13.59,

line by line with   instead of 1 2 and ||B||-Höl[02−1] replaced by
kBk  |− |12; also noting that

P
Ã
kBk
|− |12

 

!
≤ (const)P

Ã
kBk
|− |12

 

!
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13.8.2 Intermezzo on rough path distances

Recall that 2 maps a sufficiently regular R-valued path started at 0 into
the 2

¡
R
¢
-valued path 1 +  (·) + R ·

0
⊗ . We then have

Proposition 13.64 Let X = exp ( +) ∈ -Höl
0

¡
[0 1]  2

¡
R
¢¢
and

 ∈ 1-var0

¡
[0 1] R

¢
. Then there exists a constant  such that¯̄̄


³
X 2 ()

´
−
°°°(−X)°°°¯̄̄ ≤ 

q
| − |-Höl ||1-var;[] |− |

In particular, when  ∈ H ≡
12
0

¡
[0 1] R

¢
this implies

|-Höl (X 2 ())− k−Xk-Höl | ≤ 

q
||H | − |-Höl 

Proof. By symmetry of the Carnot—Caratheodory norm and the triangle

inequality it follows that

|kk− kk| =
¯̄°°−1°°− kk¯̄ ≤ 

¡
−1 

¢
= k⊗ k 

We apply this with

 = X−1⊗(2 ()) = exp
Ã
−1

 +  − +
| {z }−12 £1

 −  
¤!

and

 = (−X) = exp

Ã
1
 −  + −

| {z }−12
Z 



[·  ( − )]− 1
2

Z 



[· − · ]

!


By the Campbell-Baker-Hausdorff formula, noting the cancellation of the

indicated terms,

⊗ = exp
µ
−1
2

£
1
 −  

¤− 1
2

Z 



[·  ( − )]− 1
2

Z 



[· − · ]
¶

and it follows that
¯̄̄

³
X 2 ()

´
−
°°°(−X)°°°¯̄̄ is less or equal than

a constant times

¯̄£
1
 −  

¤¯̄12
+

¯̄̄̄Z 



[·  ( − )]

¯̄̄̄12
+

¯̄̄̄Z 



[· − · ]
¯̄̄̄12



The first term is estimated via¯̄£
1
 −  

¤¯̄ ≤ 2 | − |-Höl ||1-var;[] |− | =: ∆
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for the third we note that¯̄̄̄Z 



(· − ·)⊗ 

¯̄̄̄
≤ ||1-var;[] sup

∈[]
| − |

≤ ||1-var;[] | − |-Höl |− |

so that
R 

[· − · ] is also bounded by ∆ and a similar bound is

obtained for the middle term after integration by parts. The final statement

comes from

||1-var;[] ≤ ||H |− | 12 

13.8.3 Enhanced Brownian motion under conditioning

We now condition -dimensional standard Brownian motion  to stay -

uniformly close to a given path  over the time interval [0 1] and ask what

happens to Enhanced Brownian motion B when → 0. To this end, let us

write out the conditioninge event in more detail,

n
| − |∞[01]  

o
=

⎧⎨⎩ sup
∈[01]

vuut X
=1

¡

 − 

¢2
 

⎫⎬⎭
and introduce the notation

P (•) = P
³
• | | − |∞[01]  

´


We assume that  ∈ H ≡ 
12
0

¡
[0 1] R

¢
, the Cameron—Martin space.

The following lemma shows that between B and the lift of  can be mea-

sured in equivalent ways.

Lemma 13.65 Given  ∈ H and   12. Then, for any   0

lim
→0

P
¡
-Höl;[01] (B 2 ())  

¢
= 0 iff lim

→0
P

³
k−Bk-Höl;[01]  

´
= 0

Proof. Immediate from Proposition 13.64, noting that | − |-Höl is dom-
inated by either quantity

-Höl;[01] (B 2 ())  k−Bk-Höl;[01] 

Lemma 13.66 Given  ∈ H and   12. Then, for any   0

P
³
k−Bk-Höl;[01]  

´
≤
r
P
h
kBk-Höl,[01]  

ir
E
h
exp

³
−2 [̇]

´i
where we write 

h
̇
i
≡ R 1

0
̇ =

P
=1

R 1
0
̇


.
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Proof. From proposition 13.38, (−B) () = B ( − ) a.s. and we pro-

ceed by the Cameron—Martin therorem. A drift term − corresponds to
the Radon-Nikodym density

 = exp

µ
−[̇]− 1

2

Z 1

0

¯̄̄
̇

¯̄̄2


¶
which will allow to write out P in terms of E0. We first note that by
symmetry,

E
hR 1
0
̇

n
||∞[01]  

oi
P
h
||∞[01]  

i =
E
h
− R 1

0
̇

n
|−|∞[01]  

oi
P
h
|−|∞[01]  

i
which shows that E

³
[̇]

´
= 0. From Jensen’s inequality we then have

E
³
−[̇]

´
≥ expE

³
−[̇]

´
= 1

After these short preparations, we can write

P
³
k−Bk-Hölder,[01]  

´
=

E
h


n
kBk-Hölder,[01]  

o
∩
n
||∞[01]  

oi
E
h


n
||∞[01]  

oi
=

E
h
−[̇]

n
kBk-Hölder,[01]  

oi
E
h
−[̇]

i
≤ E

h
−[̇]

n
kBk-Hölder,[01]  

oi


Cauchy—Schwarz finishes the proof.

We can now state the main result of this section.

Theorem 13.67 Given  ∈ 20
¡
[0 1] R

¢
and   12. Then, for any

  0

lim
→0

P
¡
-Höl;[01] (B 2 ())  

¢
= 0 (13.29)

Proof. Combining the previous two lemmas gives the desired conclusion

provided

lim
→0

E
h
exp

³
−2[̇]

´i
∞.

When  ∈ 20
¡
[0 1] R

¢
this is very easy; it suffices to write  := −2̇ ∈ 1

so that

|[]| =
¯̄̄̄Z 1

0



¯̄̄̄
=

¯̄̄̄
11 −

Z 1

0



¯̄̄̄
≤ 2 ||∞[01] × |̇|∞[01] 
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The reader may suspect that the restriction to  ∈ 20
¡
[0 1] R

¢
$ H

in the previous statement was unnecessary. The extensions to  ∈ H turns

out to be rather subtle and is discussed in the following

Exercise 13.68 Show that for all  ∈ 2
¡
[0 1] R

¢
then

E [exp ( [])] ≤ E [exp (| []|)]

Hint: a classical correlation inequality [31, Thm 2.1] states that for any

i.i.d. family of standard Gaussian () and any convex, symmetric set  ⊂


P [|1|   (1 ) ∈ ] ≤ P [|1|  ]P [(1 ) ∈ ] 

(13.30)

Solution 13.69 It suffices to show for any   0 and   0

P (| ()|  ) ≥ P (| ()|  ) (13.31)

since then

E (exp  ()) ≤ E (exp | ()|) =
Z ∞
0

P (| ()|  ) 

≤
Z ∞
0

P (| ()|  )  = E (exp | ()|) 

To show inequality (13.31), let () denote an orthonormal basis for 
2
¡
[0 1] R

¢
such that 1 =  Set  :=

R 1
0
 and denote by  the infinite vector

whose components are . Note that the  are standard, i.i.d. normal

random variables. Let  be a convex, symmetric set in ∞ and denote by

 its projection on . Clearly,  is convex and symmetric and (13.30)

applies to it. By dominated convergence,

P [|1|    ∈ ] ≤ P [|1|  ]P [ ∈ ] 

Therefore, choosing  :=
n
||∞[01]  

o
and noting that  is both sym-

metric and convex, we obtain inequality (13.31).

13.9 Appendix: Infinite 2-variation of Brownian
motion

Let  denote -dimensional standard Brownian motion. We now show that

||2-var;[0 ] = +∞ a.s. The importance of this statement is that it rules

out a stochastic integration based on Young integrals.
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Lemma 13.70 (Vitali covering) Assume a set  ⊂ [0 1] admits a "Vi-
tali cover"; that is, a (possibly uncountable) family I = {} of closed in-
tervals (with non-empty interior) in (0 1) so that for every  ∈    0

there exists an interval  ∈ I with length ||   and  ∈ . Then, for every

  0, there exist disjoint intervals 1      ∈ I such that16

|\ (1 ∪ · · · ∪ )|   (13.32)

.

Proof. We start by taking any interval 1 ∈ I and assume that 1     
have been defined. If these intervals cover  the construction is trivially fin-

ished. Otherwise, we set  := sup {|| :  ∈ I  disjoint of 1 ∪ · · · ∪ }and
note  ∈ (0 1]. We can then pick +1 ∈ I, disjoint of 1 ∪ · · · ∪ , with
|+1|  2. Assuming the construction does not finish trivially, we ob-

tain a family ( :  ∈ N) of closed, disjoint intervals in (0 1). Clearly,
∞X
=1

|| ≤ |∪∞=1+1| ≤ 1 (13.33)

and we can pick  ∈ N such that
P∞

 ||  5; with this choice of

 we now verify (13.32). To this end, take any  ∈ \ (1 ∪ · · · ∪ ) and
then  ∈ I, disjoint of 1 ∪ · · · ∪ , with  ∈ . There exists an integer

 ≥ + 1 such that  is disjoint of 1 ∪ · · ·∪ −1 but  ∩  6= ∅; otherwise
|| ≤ −1  2 || for all , in contradiction to (13.33). We also have || ≤
−1  2 || and thinking of  as "ball" of radius |2| it is then clear
from  ∈   ∩  6= ∅ that  is also contained in a "ball" with the same

center but radius 5 |2|. In other words,  is contained in some interval 
with || = 5 ||. By our choice of  we then see that |\ (1 ∪ · · · ∪ )| ≤P∞

=+1 ||  

Theorem 13.71 Let  denote -dimensional Brownian motion on [0  ].

Assume that for some function , defined in a positive neighbourhood of 0,

2 (log log 1)

 ()
→ 0 as  ↓ 0.

Then sup
P

∈ 
¡¯̄
+1

¯̄¢
= +∞ where the sup runs over all dissec-

tions of [0  ]. In particular, for any  ≤ 2 we have ||-var;[0 ] = +∞
with probability one.

Proof. Without loss of generality, we may take  = 1 and argue on

one-dimensional Brownian motion . From Khintchine’s law-of-iterated-

logarithm, see (A.21), there exists a deterministic constant  ∈ (0∞) such

16We write |·| for Lebesgue measure. If  is not measurable, statement and proof

remain valid if |·| is understood as outer Lebesgue measure.
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that with probability one,

lim sup
↓0

||
̄ ()

= 

where ̄ () =
p
 log log 1 is well-defined for  small enough. (The fact

that  = 212 is irrelevant for the argument.) For every fixed ,
¡
+ :  ≥ 0

¢
is a Brownian motion and so it is clear that (for fixed ) with probability

one

lim sup
↓0

¯̄
+

¯̄
̄ ()

= 

Noting that ̄ () := 2 (log log 1) is the asympotic inverse of ̄ at 0,

this implies P ( ∈ ) = 1 where

 =
n
 ∈ (0 1) : ̄ ¡¯̄+¯̄¢  

2
 for some  ∈ (0 )

o


A Fubini argument applied to the product of P and Lebesgue measure |·|
on (0 1) shows that P (||) = 1. But then  := ∩0 = ∩1 also
satisfies P (||) = 1 and since for each  ∈  there are arbitrarily small

intervals [ + ] such that ̄
¡¯̄
+

¯̄¢
 2 this family of all such

intervals forms a Vitali cover of . We can fix   0 and discarding all

intervals of lenght ≥  still leaves us with a Vitali cover of . By Vitali’s

covering lemma, there are disjoint intervals [  + ] for  = 1     ,

with   , of total length
P

=1  arbitrary close to 1 and in particular

≥ 12, say. We can complete the endpoints of these disjoint intervals to a
dissection  = () of [0 1] with mesh ≤  andX



̄
³¯̄̄
 +1

¯̄̄´
≥

X


̄
¡¯̄
+

¯̄¢
≥

X


2

≥ 4

On the other hand, writing∆ ( ) = inf∈ 
³¯̄̄
 +1

¯̄̄´
̄
³¯̄̄
 +1

¯̄̄´
,

sup
=()

X



³¯̄̄
 +1

¯̄̄´
≥

X
∈


³¯̄̄
 +1

¯̄̄´
≥ ∆ ( )

X


̄
³¯̄̄
 +1

¯̄̄´
≥ ∆ ( ) 4

It is now an easy consequence of (uniform) continuity of  on [0  ] and

the assumption ̄ → 0 that ∆ ( ) → +∞ as  → 0. This finishes the

proof.
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The case  = 2 should be compared with finite quadratic variation of

Brownian motion in the commonly used sense of semi-martingale theory.

The reader can find a proof in [138, Section II.2.12].

Theorem 13.72 Let  denote Brownian motion on [0  ]. If () is a

sequence of nested (i.e. ⊂ +1) dissections of [0  ] such that ||→ 0

as →∞. Then

lim
→∞

X
∈

¯̄̄
+1

¯̄̄2
=  almost-surely.

If we drop the nestedness assumption convergence holds in probability.

13.10 Comments

Section 13.1 The definition and basic properties of Brownian motion are

classical. Among the many good textbooks, let us mention the classics [138],

[87], [139], [83] and [154]. The definition of Lévy area based on stochastic

integration appears in [83, 128] or [117, p.216]. Lévy’s original (martingale)

construction, discussed in exercise 13.5, only uses discrete-time martingale

techniques and corresponds to a Karhunen-Lóeve-type convergence result

which extends to other Gaussian processes (see section 15.5.3). A com-

pletely different Markovian construction of Lévy area will be in the later

chapter on Markovian processes, starting with section 16.1. At last, 13.1.3

follows [83].

Section 13.2: The name enhanced Brownian motion first appears in

[108]. Once it is identified as a special case of a left-invariant Brownian

motion on a (free, nilpotent) Lie group, properties as those given in propo-

sition 13.12 are well-known (e.g. [140] or the works of Baldi, Ben Arous).

Rough path regularity of enhanced Brownian motion was established in un-

published thesis work [150]. Following the monograph [113] it follows from

showing the dyadic piecewise linear approximations converge in -variation

(rough path) metric. Our exposition here is a simple abstraction of [58],

based on general Besov-Hölder-embedding type results for path with values

in metric spaces.

Section 13.3: Geodesic approximations were introduced in the rough

path context in [59]; the resulting convergence results are trivial but worth

noting. Rough path convergence of dyadic piecewise linear approximations

to Brownian motion was established in unpublished thesis work [150], see

also [113] and underwent several simplifications, notable [65]. Exercise 13.23

is taken from [82]. Non-standard approximations to Brownian motion were

pioneered by McShane [119] and Sussmann [163]; the corresponding sub-

section is taken from [54]

Section 13.4: The discussion of Donsker’s theorem for Enhanced Brown-

ian motion is taken from [16].
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Section 13.5: The Cameron—Martin theorem for Brownian motion is a

classical. See [154] for instance. The proper abstract setting is for Gaussian

measures on Banach spaces and (cf. appendix on Gaussian analysis and the

references therein). Theorem 13.37 is a simple observation and appears in

[58].

Section 13.6: Large deviations for Brownian motion in uniform topol-

ogy were obtained by Schilder [91]. Extensions to Hölder topology are dis-

cussed in [5]; one can even do without any topology, [95]. Large devia-

tions for EBM were first established in -variation rough path topology

[94]; the 1-Hölder case was obtained in [58]. Proposition 13.44 is taken

from [61]. Exercise 13.45 follows the usual martingale arguments of the

Freidlin-Wentzell estimates; exercise 13.46 a special case of the large devi-

ation principle established in section 16.7. Exercise 13.47 follows from the

same arguments as in the Brownian motion case, [5].

Section 13.7:

The support description of Brownian motion itself is a trivial conse-

quence of the Cameron—Martin theorem. The support description of EBM

is subtle because of Lévy’s area. Based on correlation inequalities, it was

first obtained in [94] in -variation topology. The arguments were simpli-

fied and strenghtened to 1-Hölder (resp. Lévy-modulus) topology in [65]

(resp. [58]); the present discussion is a further streamlining.

Section 13.8: This discussion in this section follow closely [53]. The

subtle gap between 2 and H as discussed in exercise 13.68 was noted in

the Onsager-Machlup context [148] but seems new in the support context.

Appendix: The infinite 2-variation of Brownian motion, not to be confused

with finite "quadratic variation" of Brownian motion, is well-known, e.g.

[52, Ch.1]; our slightly sharper result is taken from [164].
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Continuous (Semi)martingales

We have seen in the previous chapter that Brownian motion  can be

enhanced to a stochastic process B = B () for which almost every re-

alization is a geometric 1-Hölder rough path (and hence a geometric

-rough path),  ∈ (2 3). In this chapter, we show that any continuous, -
dimensional semimartingale, say  =+ where is a continuous local

martingale and  a continuous path of bounded variation on any compact

time interval, admits a similar enhancement with -variation rough path

regularity,  ∈ (2 3).
In fact, it suffices to construct a lift of  , denoted byM, since then the

lift of  is then given deterministically via the translation operator, S =

M. Note that convergence of lifted piecewise linear approximations, in

the sense that1

-var;[0 ]
¡
2
¡


¢
S
¢→→∞ 0 in probability

is readily reduced to showing the convergence

-var;[0 ]
¡
2
¡


¢
M

¢→→∞ 0 in probability.

Indeed, since
¯̄
  − 

¯̄
(1+)-var;[0 ]

→→∞ 0 follows readily from propo-

sition 1.31 plus interpolation, it suffices to use basic continuiuty properties

of the translation operator (x) 7→ x as map from

-var
¡
[0  ] R

¢× -var
¡
[0  ]  2

¡
R
¢¢ 7→ -var

¡
[0  ]  2

¡
R
¢¢


valid for 1 + 1  1. After these preliminary remarks we can and will

focus our attention to continuous local martinales. We assume the reader

is familiar with the basic aspects of this theory.

14.1 Enhanced continuous local martingales

We writeM
0loc

¡
[0∞)R¢ orM

0loc

¡
R
¢
for the class of R-valued con-

tinuous local martingales  : [0∞) → R null at 0, defined on some
filtered probability space (ΩF (F) P). We define the process hi : Ω ×
[0∞) → R component-wise, with the  component being defined as

1As usual,  denotes the piecewise linear approximation to a path  based on

some dissection  ∈ D [0  ].
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the the "usual" bracket (or quadratic variation) process

 
® ≡   

®
of (the real-valued, continues local martingale)  ; that is, the unique

real-valued continuous increasing process such that
¡
 
¢2− 

®
is a con-

tinuous local martingale null at zero.2

The area-process  : Ω×[0∞)→  () is defined by Itô- or Stratonovich

stochastic integration



 =

1

2

µZ 

0

 



 −

Z 

0

 





¶
=

1

2

µZ 

0

 
 ◦  

 −
Z 

0

 
 ◦  



¶
   ∈ {1     } ;

the equality being a consequence of the the fact that the covariation

  

®
is symmetric in  . (As is well-known, Itô- and Stratonovich integrals differ

by 12 the covariation between integrand and integrator3.) We note that

the area-process is a vector-valued continuous local martingale. By disre-

garding a null-set we can and will assume that  and  are continuous.

Definition 14.1 If is a R-valued local martingale, defineM := exp ( +)

to be its lift, and observe that M has sample paths in 
¡
[0∞) 2 ¡R¢¢.

The resulting class of enhanced (continuous, local) martingales is denoted

byM
0loc

¡
2
¡
R
¢¢
.

The lift is compatible with the stopping and time-changes.

Lemma 14.2 Let  be a R-valued local martingale, and M its lift.

(i) Let  be a stopping time. Then, M : →M∧ is the lift of  : →
∧ .
(ii) Let  be a time-change, that is, a family   ≥ 0 of stopping times
such that the maps  7→  are a.s. increasing and right-continuous. If 

is constant on each interval
£
− 

¤
, then  ◦  is a continuous local

martingale and its lift is M ◦ 
Proof. Stopped processes are special cases of time-changed processes (take

 = ∧ ) so it suffices to show the second statement. Tis follows from the

compatibility of a time change  and stochastic integration with respect to

a continuous local martingale, constant on each interval
£
− 

¤
4 . The

lift is of course a special case of stochastic integration.

The lift is also compatible with respect to scaling and concatenation of

(local martingale) paths.

Lemma 14.3 Let  be a R-valued local martingale, and M its lift. If

 : 
2
¡
R
¢→ 2

¡
R
¢
is the dilation operator (see definition 7.13), then

2 See e.g. [138, Ch. 4, Thm (1.8)] or [140, p.54].
3 See e.g. [156].
4 see proposition V.1.5. (ii) of [138] for example.
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M is the lift of the martingale 

Proof. Left to the reader.

14.2 The Burkholder-Davis-Gundy inequality

Definition 14.4  : R+ → R+ is moderate if
(i)  is continuous and increasing,

(ii)  () = 0 if and only if  = 0 and

(iii) for some (and then for every)   1,

sup
0

 ()

 ()
∞

A few properties of moderate functions are collected in the following

lemma.

Lemma 14.5 (i)  7→  () is moderate if and only if  7→ 
¡
12

¢
is

moderate.

(ii) Given   0 : −1 ≤  ≤  =⇒ ∃ =  (  ) :

−1 () ≤  () ≤  () 

(iii) ∃ : ∀   0 :  (+ ) ≤  [ () +  ()] 

Proof. (i),(ii) are left to the reader. Ad (iii): Without loss of generality,

we assume   ; then  (+ ) ≤  (2) ≤ 1 () by moderate growth

of  .

We now recall the classical Burkholder-Davis-Gundy inequality for local

martingales.5

Theorem 14.6 (Burkholder—Davis—Gundy ) Let  be a moderate func-

tion,  ∈M
0loc

¡
R
¢
some local martingale. Then there exists a constant

 =  ( ) such that

−1E
³

³
|hi∞|12

´´
≤ E

µ


µ
sup
≥0

||
¶¶
≤ E

³

³
|hi∞|12

´´


Observe that if one knows the above statement only for R valued mar-
tingales, then using the norm on R || = max

©¯̄
1
¯̄
 

¯̄

¯̄ª
 the R

Burkholder-Davis-Gundy inequality is a simple consequence of Burkholder-

Davis-Gundy inequality for M
0loc (R), applied componentwise. Lemma

14.5 shows that one can switch to Lipschitz equivalent norms.

5A proof can be found in [140, p93] for instance.
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In section 14.5 we shall need a Burkholder-Davis-Gundy-type upper

bound for real-valued discrete-time martingales. To state, let us first define

the -variation of a discrete-time martingale () as

| |-var ≡
"
sup
()%

X


¯̄
+1 − 

¯̄#1


A proof of the following lemma can be found in [101, Prop. 2b] for  = 1.

The extension to dimension   1 is straight-forward.

Lemma 14.7 Let  be moderate, and  : N→ R a discrete martingale .
If 1     ≤ 2 or 1 =  = , there exists a constant  =  ( ),

E
³

³
| |-var

´´
≤ E

⎡⎣
⎛⎝"X



|+1 − |
#1⎞⎠⎤⎦ 

We now derive the Burkholder-Davis-Gundy inequality for enhanced (con-

tinuous, local) martingales.

Theorem 14.8 (BDG for enhanced martingales) Let  be a moder-

ate function,M ∈M
0loc

¡
2
¡
R
¢¢
be the lift of some local martingale  .

Then there exists a constant  =  ( ) so that

−1E
³

³
|hi∞|12

´´
≤ E

µ


µ
sup
≥0

kMk
¶¶
≤ E

³

³
|hi∞|12

´´


Proof. The lower bound comes from kMk ≥ ||, monotonicity of
 and the classical Burkholder-Davis-Gundy lower bound. For the upper

bound we note that sup≥0 kMk ≤ 2 sup≥0 kMk. By equivalence of
homogeneous norm,

kMk ≤ 1

³
||+ ||12

´
and using " (+ ) .  ()+ ()", combined with the classical Burkholder-

Davis-Gundy upper bound, it suffices to show that,

E
µ


µ
sup
≥0

||12
¶¶
≤ 2E

³

³
|hi∞|12

´´


But this is easy using the fact that 
³
(·)12

´
is moderate and  itself is a

martingale with bracket¯̄


®


¯̄
=

¯̄̄̄
1

4

µZ 

0

¯̄
 
¯̄2


 
®
+

Z 

0

¯̄
 
¯̄2


 
®¶− 1

2

Z 

0

  

  

®¯̄̄̄
≤ 1 sup

≥0
||  |hi|
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to which we can apply the Burkholder-Davis-Gundy inequality:

E
µ


µ
sup
≥0

||12
¶¶

≤ 2E
³

³
|hi∞|14

´´
≤ 3E

µ


µ
sup
≥0

||12 × |hi∞|14
¶¶

≤ 4E
µ


µ
sup
≥0

||+ |hi∞|12
¶¶

≤ 5E
µ


µ
sup
≥0

||
¶¶

+ E
³

³
|hi∞|12

´´
≤ 6E

³

³
|hi∞|12

´´


Here, we used " () ≤ 
¡
2 + 2

¢
. 

¡
2
¢
+ 

¡
2
¢
" and, of course,

the classical Burkholder-Davis-Gundy upper bound in the last step.

14.3 -variation rough path regularity of enhanced
martingales

We now show that every M ∈ M
0loc

¡
2
¡
R
¢¢
is a geometric -rough

path for  ∈ (2 3). In other words, for every   0 ,

kMk-var;[0 ] ∞ a.s. (14.1)

The Burkholder-Davis-Gundy inequality on the group allows for an elegant

proof of this.

Proposition 14.9 (Enhanced martingale, -variation regularity) Let

  2 and M ∈M
0loc

¡
2
¡
R
¢¢
. Then, for every   0

kMk-var;[0 ] ∞ a.s.

Proof. There exists a sequence of stopping times  that converges to

∞ almost surely, such that  and hi are bounded (for instance,
 = inf{ : ||   or |hi|  } will do). Since

P
³
kMk-var;[0 ] 6= kMk-var;[0∧]

´
≤ P (   )→ 0 as →∞

it suffices to consider the lift of a bounded continuous martingale with

bounded quadratic variation. We can work with the 1-norm on R, || =P
=1 ||  The time change  () := inf { : |hi|  } may have jumps

but continuity of |hi| ensures that | hi() | = . From the definition of
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 and the Burkholder-Davis-Gundy inequality on the group, both hi and
M are constant on the intervals

£
− 

¤
. It follows thatX =M() defines

a continuous6 path from [0 |hi |] to 2
¡
R
¢
and from the invariance of

the -variation with respect to time changes, we have

kXk
-var[0|hi |] = kMk-var[0 ] 

As argued in the beginning of the proof, we may assume that |hi | ≤ 

for some deterministic  large enough. Therefore,

P
³
kMk-var[0 ]  

´
(14.2)

= P
³
kXk

-var[0|hi |]   |hi | ≤ 
´

≤ P
³
kXk-var[0]  

´


We go on to show that X is in fact Hölder continuous. For 0 ≤  ≤  ≤ ,

we can use the Burkholder-Davis-Gundy inequality on the group, theorem

14.8, to obtain

E
³
kXk2

´
= E

³°°M()()

°°2´ ≤ E
³¯̄̄
hi() − hi()

¯̄̄´


Observe that¯̄̄
hi() − hi()

¯̄̄
=

X


³
 
®
()
−  

®
()

´
=

¯̄̄
hi()

¯̄̄
−
¯̄̄
hi()

¯̄̄
= − 

Thus, for all  ∞ there exists a constant  such that

E
³
kXk2

´
≤  |− | 

We can now apply theorem A.11 to see that kXk1-Höl;[0] ∈  for all

 ∈ [1∞) and

P
³
kXk-var[0]  

´
≤
E
³
kXk-var[0]

´


≤
E
³
kXk1-Höl;[0] 1

´


tends to zero as  →∞. Together with (14.2) we see that kMk-var[0 ] 
∞ with probability 1 as claimed.

6From Lemma 2, X is the lift of  ◦  which is a continuous local martingale. This
is another way to see continuity of X.
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14.4 Burkholder-Davis-Gundy with -variation
rough path norm

Following a classical approach to Burkholder-Davis-Gundy type inequali-

ties, we first prove a Chebyshev-type estimate.

Lemma 14.10 There exists a constant  such that for all continous local

martingales  , for all   0

P
³
kMk-var;[0∞)  

´
≤ 

E (|hi∞|)
2

 (14.3)

where M denotes the lift of 

Proof. If suffices to prove the statement when  = 1 (the general case

follows by considering  with lift 1M). The statement then reduces

to

∃ : ∀ : P
h
kMk-var;[0∞)  1

i
≤ E (|hi∞|) 

Assume this is false. Then for every , and in particular for () ≡ 2,there

exists  ≡ () with liftM() such that the condition is violated, i.e. we

have:

2 E
h¯̄̄D

 ()
E
∞

¯̄̄i
 P

∙°°°M()
°°°
-var;[0∞)

 1

¸


Set  = P
h°°M()

°°
-var;[0∞)  1

i
,  = [1 + 1] ∈ N and note that

1 ≤  ≤ 2. Observe that


2E
h¯̄̄D

 ()
E
∞

¯̄̄i
≤ P

∙°°°M()
°°°
-var;[0∞)

 1

¸
=  ≤ 2

We now "expand" the sequence
¡
 () :  = 1 2   

¢
by replacing each

 () with  independent copies of 
(). This yields another sequence

of continuous local martingales, say
¡
 () :  = 1 2   

¢
. Writing N() for

the lift of  () we clearly see that,X


P
∙°°°N()

°°°
-var;[0∞)

 1

¸
=
X


 = +∞;

while X


E
h¯̄̄D

 ()
E
∞

¯̄̄i
=
X


E
h¯̄̄D

 ()
E
∞

¯̄̄i
≤
X


2

2
∞

Thus, if the claimed statement is false, there exists a sequence of mar-

tingales  with lift N each defined on some filtered probability space¡
Ω

¡F


¢
P

¢
with the two propertiesX



P
∙°°°N()

°°°
-var;[0∞)

 1

¸
= +∞ and

X


E
h¯̄̄D

 ()
E
∞

¯̄̄i
∞
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Define the probability space Ω =
N∞

=1Ω
 the probability P =

N∞
=1 P



and the filtration (F) on Ω given by

F =
Ã
−1O
=1

F 
∞

!
⊗ F

(−) ⊗
⎛⎝ ∞O
=+1

F
0

⎞⎠ for  − 1 ≤   

where  () = 1− 1 maps [0 1]→ [0∞]. Then, a continuous martingale
on (Ω (F) P) is defined by concatenation,

 =

−1X
=1

 ()
∞ +

()

(−) for  − 1 ≤   

and hence its lift N satisfies

N =

Ã
−1O
=1

N()
∞

!
⊗N()

(−)

We also observe that, again for  − 1 ≤   ,

hi =
−1X
=1

D
 ()

E
∞
+
D
 ()

E
(−)



In particular, hi∞ =
P




 ()

®
∞ and, using the second property of the

martingale sequence, E (|hi∞|) ∞. Define the events

 =
n
kNk-var;[−1]  1

o


Then, using the first property of the martingale sequence,X


P () =
X


P
µ°°°N()

°°°
-var;[0∞)

 1

¶
=∞

Since the events { :  ≥ 1} are independent, the Borel-Cantelli lemma
implies that

P ( infinitely often) = 1

Thus, almost surely, for all   0 there exists a finite number of increasing

times 0 · · ·   ∈ [0∞) so that
X
=1

°°N−1

°°  

and kNk-var;[0∞) must be equal to +∞ with probability one. We now

define a martingale  by time-change, namely via  () =  (1− ) for

0 ≤   1 and  () =∞ for  ≥ 1,
 :  7→ ()
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Note that E (|hi∞|)  ∞ so that  can be extended to a (continu-

ous) martingale indexed by [0∞] and  is indeed a continuous martin-

gale with lift X. Since lifts interchange with time changes, kXk-var;[01] =
kNk-var;[0∞) = +∞ with probability one. But this contradicts the -

variation regularity of enhanced martingales.

The passage from the above Chebyshev-type estimate to the full Burkholder-

Davis-Gundy inequality is made possible by the following lemma. The proof

can be found in [140, p.94].

Lemma 14.11 (Good inequality) Let  be nonnegative random vari-

ables, and suppose there exists   1 such that for all   0   0

P (     ) ≤  ()P (  )

where  () & 0 when  & 0. There, for each moderate function  there

exists a constant  depending only on    such that

E ( ()) ≤ E ( ( )) 

We now derive establish the Burkholder-Davis-Gundy inequality for en-

hanced (continuous, local) martingales in homogenous -variation norm.

Theorem 14.12 (BDG inequality in homogenous -variation norm)

Let  be a moderate function, M ∈M
0loc

¡
2
¡
R
¢¢
the lift of some local

martingale  and   2. Then there exists a constant  =  (  ) so

that

−1E
³

³
|hi∞|12

´´
≤ E

³

³
kMk-var;[0∞)

´´
≤ E

³

³
|hi∞|12

´´


Proof. Only the upper bound requires a proof. Fixing    0 and   1

we define the stopping times

1 = inf
n
  0 kMk-var;[0]  

o


2 = inf
n
  0 kMk-var;[0]  

o


3 = inf
n
  0 |hi|12  

o


with the convention that the infimum of the empty set if ∞ Define the

local martingale  =3∧2(+2)∧3 and its lift N; note that  ≡ 0 on
{2 =∞}. It is easy to see that

kMk-var;[03] ≤ kMk-var;[03∧2] + kNk-var 

where kNk-var ≡ kNk-var;[0∞). By definition of the relevant stopping
times,

P
³
kMk-var   |hi∞|12 ≤ 

´
= P (1 ∞ 3 =∞) 
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On the event {1 ∞ 3 =∞} one has
kMk-var;[03]  

and, since 2 ≤ 1, one also has kMk-var;[03∧2]. Hence, on {1 ∞ 3 =∞} 
kNk-var ≥ kMk-var;[03] − kMk-var;[03∧2] ≥ ( − 1)

Therefore, using (14.3),

P
³
kMk-var   |hi∞|12 ≤ 

´
≤ P

³
kNk-var ≥ ( − 1)

´
≤ 

( − 1)2 2
E (|hi∞|) 

From the definition of  , for every  ∈ [0∞],
hi = hi3∧2(+2)∧3 

On {2 =∞} we have hi∞ = 0 while on {2 ∞} we have, from defin-

ition of 3,

|hi∞| =
¯̄̄
hi3∧23

¯̄̄
=
¯̄
hi3 − hi3∧2

¯̄
≤ 2

¯̄
hi3

¯̄
= 222

It follows that

E (|hi∞|) ≤ 222P (2 ∞) = 222P
³
kMk-var  

´
and we have the estimate

P
³
kMk-var   |hi∞|12 ≤ 

´
≤ 22

( − 1)2
P
³
kMk-var  

´


An application of the good -inequality finishes the proof.

14.5 Convergence of piecewise linear
approximations

Recall that  denotes the piecewise-linear approximation to some con-

tinuous R-valued path , based on some dissection  of [0  ]. Given

 ∈M
0loc

¡
R
¢
the same notation applies (path-by-path) and we write

 = (). The next lemma involves no probabilty.

Lemma 14.13 Let  ≥ 1 and x : [0  ] → 2
¡
R
¢
a weak geometric -

rough path. Set  = 1 (x) and let  be a dissection of [0  ]. Then there

exists a constant  =  () such that

°°2 ¡¢°°-var;[0 ] ≤  kxk-var;[0 ]+
Ã
max
()⊂

X



³
x+1  2

¡

¢
+1

´!1
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Proof.We first note that
°°°2 ¡¢°°° ≤ 3−1 h¯̄̄ ¯̄̄ + °°°2 ¡¢°°° + ¯̄¯̄i.

Now let () be a dissection of [0  ], unrelated to . Recall that 
 resp.

 refers to the right- resp. left-neighbours of  in .

31−
X


°°°2 ¡¢+1°°°
≤

X


h¯̄̄






¯̄̄
+
¯̄̄
+1

¯̄̄i
+
X


°°°2 ¡¢

+1

°°°
≤ 2

¯̄

¯̄
-var;[0 ]

+ max
()⊂

X


°°°2 ¡¢ +1°°°
≤ 21 ||-var;[0 ] + max

()⊂

X


°°°2 ¡¢ +1°°° 
Trivially, ||-var;[0 ] ≤ kxk-var;[0 ]. On the other hand, using (+ )

 ≤
2−1 ( + ) when    0, the triangle inequality gives

21− max
()⊂

X


°°°2 ¡¢+1°°° ≤ max
()⊂

X



³
x+1  2

¡

¢
+1

´
+kxk-var;[0 ] 

Taking the supremum over all possible subdivision () finishes the proof.

Lemma 14.14 Let  be a moderate function, M ∈M
0loc

¡
2
¡
R
¢¢
the

lift of some local martingale  . Assume 2  0   ≤ 4. Then there exists
a constant  =  ( 0  ) so that for all dissections  = {} of [0  ] 

E

⎡⎣
⎛⎝Ã max

()⊂

X



³
M+1  2

¡


¢
+1

´!1⎞⎠⎤⎦
≤ E

⎡⎣
⎛⎝ÃX



°°M+1

°°0!10⎞⎠⎤⎦ 
Proof. For fixed  there are    so that  =  and +1 =  . Then

M+1 =

−1O
=

exp
¡
+1 ++1

¢
 2

¡


¢
+1

=

−1O
=

exp
¡
+1

¢


From equivalence of homogenous norms we have


³
M+1  2

¡


¢
+1

´
=

°°°M−1+1 ⊗ 2
¡


¢
+1

°°°(14.4)
=

°°°°°exp
Ã
−1X
=

+1

!°°°°°
≤ 1

¯̄̄̄
¯
−1X
=

+1

¯̄̄̄
¯
12
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The idea is to introduce the (vector-valued) discrete-time martingale

 =

−1X
=0

+1 ∈  ()

so that

max
()⊂

X



³
M+1  2

¡


¢
+1

´
≤ 1 max

{1}⊂{1#}

X


¯̄
+1 − 

¯̄2
which can be rewritten asÃ

max
()⊂

X



³
M+1  2

¡


¢
+1

´!1
≤ 

1
1

q
| |2-var 

Noting that  ◦ √· is moderate and that 1  02  2 ≤ 2, Lemma 14.7
yields

E
h
 ◦ √·

³
| |2-var

´i
≤ 2E

⎡⎣ ◦ √·
⎛⎝ÃX



|+1 − |
02

!20⎞⎠⎤⎦
= 2E

⎡⎣ ◦ √·
⎛⎝ÃX



¯̄
+1

¯̄02!20⎞⎠⎤⎦
≤ 3E

⎡⎣
⎛⎝ÃX



°°M+1

°°0!10⎞⎠⎤⎦ 
Theorem 14.15 Let  be a moderate function,M ∈M

0loc

¡
2
¡
R
¢¢
the

lift of a local martingale  Then there exists a constant  =  (  )

so that for all dissections  of [0  ] 

E
³

³°°2 ¡

¢°°
-var;[0 ]

´´
≤ E

³

³
|hi |12

´´


Proof. From Lemma 14.13,

°°2 ¡
¢°°

-var;[0 ]
≤ 1 kMk-var;[0 ]+1

Ã
max
()⊂

X



³
M+1  2

¡


¢
+1

´!1
.

Using " (+ ) .  ()+ ()" and the above lemma, with 0 = 1+2

for instance, we obtain

E
h

³°°2 ¡

¢°°
-var

´i
≤ 2E

h

³
kMk-var

´i
+ 2E

⎡⎣
⎛⎝ÃX



°°M+1

°°0!10⎞⎠⎤⎦
≤ 3E

h

³
kMk-var

´i
+ 3E

h

³
kMk0-var

´i
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The proof is now finished with the Burkholder-Davis-Gundy inequality on

the group in - (resp. 0)-variation norm.

Theorem 14.16 Assume that  is a continuous local martingale with lift

M ∈M
0loc

¡
2
¡
R
¢¢
 If

| |∞;[0 ] ∈  (Ω) for some  ≥ 1, (14.5)

then, -var;[0 ]
¡
2
¡


¢
M

¢
converges to 0 in  If is a continuous

local martingale, then convergence holds in probability.

Remark 14.17 If   1, Doob’s maximal inequality implies that (14.5)

holds for any -martingale.

Proof. Observe first that when  =  ∈ , as in the last lemma,


¡
M 2

¡


¢


¢ ≤ 1

¯̄̄̄
¯
−1X
=0

+1

¯̄̄̄
¯
12



The path 
· restricted to [ +1] is a straight line with no area, hence

2
¡


¢

= exp

µ
− 

+1 − 
+1

¶


and

∞
¡
M 2

¡


¢¢
= max


sup

∈[+1]

³
M ⊗M 2

¡


¢

⊗ 2

¡


¢


´
= sup

∈[0 ]

°°°2 ¡
¢−1

⊗ 2

¡


¢−1

⊗M ⊗M

°°°
≤ max


sup

∈[+1]

°°°³2 ¡
¢


´°°°
+max


sup

∈[+1]

³°°°2 ¡
¢−1

⊗M

°°°+ kMk
´

≤ 2 sup
0−≤||

kMk+ 1max


¯̄̄̄
¯
−1X
=

+1

¯̄̄̄
¯
12

≤ 2 sup
0−≤||

kMk+ 21max


¯̄̄̄
¯
−1X
=0

+1

¯̄̄̄
¯
12
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Now, using the classical Burkholder-Davis-Gundy inequality, we have



⎛⎝max


¯̄̄̄
¯
−1X
=0

+1

¯̄̄̄
¯
2
⎞⎠ ≤ 2

⎛⎝Ã−1X
=0

¯̄
+1

¯̄2!4
⎞⎠

≤ 3

⎛⎝Ã−1X
=0

°°M+1

°°4!4
⎞⎠

≤ 3

⎛⎝µmax


°°M+1

°°4¶Ã−1X
=0

°°M+1

°°3!4
⎞⎠ 

Hölder’s inequality, theorem 14.12 and theorem 14.8 then lead us to



⎛⎝max


¯̄̄̄
¯
−1X
=0

+1

¯̄̄̄
¯
2
⎞⎠

≤ 3

µ
max


°°M+1

°°¶14
⎛⎝Ã−1X

=0

°°M+1

°°3!3
⎞⎠34

≤ 3

µ
max


°°M+1

°°¶14 ³kMk3-var;[0 ]´34
≤ 4

Ã
sup

0−≤||
kMk

!14
 (kMk∞)

34


This proves that


³
∞

¡
M 2

¡


¢¢´
(14.6)

≤ 5

Ã
sup

0−≤||
kMk

!14
 (kMk∞)

34

+5

Ã
sup

0−≤||
kMk

!


Since M is almost surely continuous, and hence uniformly continuous on

[0  ],

sup
0−≤||

kMk→ 0 a.s. with ||→ 0;

by dominated convergence (with kMk∞ ∈ , seen by (14.5) and Burkholder-

Davis-Gundy inequality on the group), this convergence also holds in .

Hence, using (14.6), we see that that ∞;[0 ]
¡
M2

¡


¢¢ → 0 in .

Recall from proposition 8.15 that

0;[0 ]
¡
M2

¡


¢¢ ≤ 6∞;[0 ]
¡
M2

¡


¢¢
+6

¯̄
kMk∞ ∞;[0 ]

¡
M2

¡


¢¢¯̄12
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It suffices to use Cauchy-Schwarz,

E
³¯̄
kMk∞ ∞;[0 ]

¡
M2

¡


¢¢¯̄2´ ≤ E (kMk∞)12 E³∞;[0 ] ¡M2
¡


¢¢´12
to see that 0

¡
M2

¡


¢¢→ 0 in . We then use interpolation (lemma

8.16) to see that for 2  0  ,

-var;[0 ]
¡
M 2

¡


¢¢
≤ 70

¡
M2

¡


¢¢1− 0


µ
kMk

0


0-var;[0 ] +
°°2 ¡

¢°° 0
0-var;[0 ]

¶


Hence

E
³
-var;[0 ]

¡
2
¡


¢
M

¢´
≤ 


7E
µµ
kMk

0


0-var;[0 ] +
°°2 ¡

¢°° 0
0-var;[0 ]

¶
0
¡
M2

¡


¢¢1−0


¶
Using Hölder’s inequality with conjugate exponents 1 (0) and 1 (1− 0)
gives

E
³
-var

¡
2
¡


¢
M

¢´ ≤ 8E
³
kMk0-var +

°°2 ¡
¢°°

0-var

´0 h
E
³
0
¡
M2

¡


¢¢´i1−0


But now it suffices to remark, using our Burkholder-Davis-Gundy estimates

(theorems 14.12 and 14.15, that

max

"
E
³
kMk0-var;[0 ]

´
 sup
∈D[0 ]

E
³°°2 ¡

¢°°
0-var;[0 ]

´#
≤ 9E

³
|hi |2

´
≤ 10E

³¯̄̄
| |∞;[0 ]

¯̄̄´


and the last term is finite by assumption. We proved that -var
¡
2
¡


¢
M

¢→
0 in  for any martingale  s.t. | |∞;[0 ] ∈ . At last, if  is a local

martingale one obtains convergence in probability by a simple localization

argument.

14.6 Comments

Local (and semi)martingales, including the classical Burkholder-Davis-Gundy

inequality, are discussed in many textbooks, see e.g. [138],[140] and [156].

Proposition 14.7 was strenghtened in [132, Theorem 2.1. (ii)] 1 ≤  =   2.

Rough path regularity of enhanced martingales and certain convergence

results were first established in [27]. The proof of the Burkholder-Davis-

Hundy inequality for enhanced martingales in -variation rough path norm
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follows closely [101] and is taken from [62], as is the rough path convergence

of piecewise linear approximation.

An interesting recent application of rough paths to semimartingale theory

was given in [45]: the authors construct a stochastic area between the local

time  7→  of a real-valued semimartingale and a deterministic function

 =  () of finite -variation,   3; as application, to obain a generaliza-

tion of the Tanaka—Meyer formula.



15

Gaussian Processes

We have seen in a previous chapter that -dimensional Brownian motion 

can be enhanced to a stochastic process B = B () for which almost every

realization is a geometric 1-Hölder rough path (and hence a geometric -

rough path),  ∈ (2 3). Now,  is a continuous, centered Gaussian process,

with independent components
¡
1     

¢
, whose law is fully determined

by its covariance function

 ( ) = E ( ⊗)

= diag ( ∧       ∧ ) 
Let us note that this covariance function,  =  ( ), has finite 1-variation

(in 2D sense; where the variation of  is based on its rectangular incre-

ments, cf. section 5.5).

In the present chapter, our aim is to replace Brownian motion by a -

dimensional, continuous, centered Gaussian process  with independent

components
¡
1    

¢
; again, its law is fully determined by its covari-

ance function. In particular, we want to construct a reasonable lifted process

X with geometric rough (sample) paths (in short: Gaussian rough path)

and study its probabilistic properties. We shall see that this is possible

whenever the covariance function has finite -variation (in 2D sense), for

some  ∈ [1 2), so that X is a geometric -rough path for   2. This

also leaves considerable room to deal with Gaussian processes (with sample

path behaviour) worse than Brownian motion.

The main tools in this chapter are 2D Young theory (cf. section 6.4) and

then integrability of Gaussian chaos and 2-expansions (the essentials of

which are collected in appendix D).

15.1 Motivation and outlook

Let  =
¡
1
     


 :  ∈ [0  ]

¢
be a -dimensional, continuous and cen-

tered Gaussian process with independent components. By a trivial repara-

metrization,  7→  , we can and will take  = 1. The law of such a

process is fully characterized by its covariance function,

 ( ) = diag
¡
E
¡
1


1


¢
    E

¡






¢¢
   ∈ [0 1] 

To explain the main idea, assume at first that  has smooth sample

paths so that  can be lifted canonically via iterated integration. With
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focus on the first set of iterated integrals, assuming 0 = 0 for simpler

notation, we can write

E

Ã¯̄̄̄Z 

0







¯̄̄̄2!
=

Z
[0]2

 ( )
2


 ( ) 

≡
Z
[0]2

 ( )  ( ) 

where  is the covariance function of 
. The integral which appears on

the right hand side above can be viewed as a 2-dimensional (short: 2D)

Young integral. From the Young-Lóeve-Towghi inequality (theorem 6.19)

we see that under the assumption   2 we have

E

Ã¯̄̄̄Z 

0







¯̄̄̄2!
≤ (const)× ||-var;[01]2 | |-var;[01]2

≤ (const)× ||2-var;[01]2 

This gives us uniform 2-bounds provided the covariance of the process has

finite -variation in 2D sense with  ∈ [1 2). It is then relatively straight-
forward to define Z

 ⊗ 

(... and then a "natural" lift of  to a geometric rough path X ... ) in

2-sense, as long as  has covariance with finite -variation in 2D sense.

Recall that latter means1

||
-var;[01]2

= sup
X


¯̄̄̄


µ
 +1
0  

0
+1

¶¯̄̄̄
= sup

X


¯̄̄
E
h¡
+1 −

¢ ³
0+1 −0

´i¯̄̄
∞

One should note that the assumption  ∈ -var
³
[0 1]

2
´
really encodes

some information about the decorrelation of the increments of . In the

extreme case of uncorrelated increments (example: Brownian motion or

2-martingales) the double-sum reduces to the summation over  = . (In

particular, one sees that the covariance of Brownian motion has finite  = 1

variation in 2D sense.)

The Gaussian nature of  starts to play a rôle when turning 2-esimates

to -estimates for all   ∞, an essentially free consequence of Wiener—
Itô chaos integrability. This will be seen to imply (rough path) regularity

1The sup runs over all dissections (·) =  (0·) = 0 of [0 1]. If one takes the sup
only over , so that both  and 

0
 =  are taken from , then this will still suffices to

controls the -variation of ; see lemma 5.58.
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for X and also "Fernique" estimates by which we mean Gaussian tails of

homogenous rough path norms of X. Another useful consequence is the

fact that, assuming finite -variation of , the Cameron—Martin space H
is continuously embedded in the space of finite -variation paths. When

 ∈ [1 2), the standing assumption in a Gaussian rough path setting, we
see that Cameron—Martin paths are fully accessible to Young-theory. This

in turn is crucial for various results, including rough path convergence of

Karhunen—Loève approximations, large deviation and support statements.

(Further applications towards Malliavin calculus will be discussed in a later

chapter.)

15.2 One-dimensional Gaussian processes

Throughout in this section,  will be a real-valued centered Gaussian

process on [0 1] with continuous sample paths and (continuous) covariance

 =  ( ) = E (). We note that the law of  induces a Gaussian

measure on the Banach space  ([0 1] R).

15.2.1 -variation of the covariance

For a covariance function, as a function of two variable ( ) ∈ [0 1]2 7→
 ( ), we have a well-defined concept of -variation (in the 2D sense) as

discussed in section 5.5. We start with some simple examples.

Example 15.1 (Brownian motion) Standard Brownian motion on [0 1]

has covariance

BM ( ) = min ( ) 

Trivially, ( ) ∈ [0 1]2 7→ BM ( ) has finite -variation with  = 1,

controlled by

 ([ ]× [ ]) := |( ) ∩ ( )| =
Z
[]×[]

= () 

where  is the Dirac mass. Since 
³
[ ]

2
´
= |− |  we see that  is a

Hölder-dominated 2D control (in the sense of definition 5.55).

Example 15.2 (Gaussian martingales) Any continuous Gaussian mar-

tingale  has a deterministic bracket2 . Since

( () :  ≥ 0) D= ¡hi :  ≥ 0
¢

2 See e.g. [138, Chapter IV, (1.35).].
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we see that

 ( ) = min {hi  hi} = himin() 
But the notion of -variation is invariant under reparametrization and it

follows that  has finite 1-variation since BM has finite 1-variation3 .

Exercise 15.3 (Gaussian Bridge processes) Gaussian Bridge processes

are immediate generalisations of the Brownian Bridge: given a continuous,

centered Gaussian process  on [0 1] with covariance  of finite -variation

the corresponding bridge is defined as

Bridge () :=  ()−  (1)

with covariance Bridge .

Prove that Bridge has finite -variation, and that if  has its -variation

controlled by a Hölder-dominated 2D control then the same is true for

Bridge .

Exercise 15.4 (Ornstein-Uhlenbeck) Show that the usual (real-valued)

Ornstein-Uhlenbeck (stationary or started at a fixed point) has covariance

of finite 1-variation, controlled by a Hölder-dominated 2D control.

We now turn to fractional Brownian motion  on [0 1] with Hurst

paramter  ∈ (0 1). It is a zero-mean Gaussian process with covariance

 ( ) = E
³
 




´
=
1

2

³
2 + 2 − |− |2

´


For Hurst parameter  12, fractional Brownian Motion has Hölder sam-

ple paths with exponent greater than 12 which is, in the context of rough

paths, a trivial case. We shall therefore make the standing assumption

 ≤ 12
noting that this covers Brownian motion with  = 12.

Proposition 15.5 (fractional Brownian motion) Let  be fractional

Brownian motion of Hurst parameters  ∈ (0 12] Then, its covariance
is of finite 1 (2)-variation, controlled by

 (· ·) :=
¯̄


¯̄1(2)
1(2)-var;[··]×[··]  (15.1)

3One should note that 2-martingales (without assuming a Gaussian structure) have

orthogonal increments i.e.

E () = 0 if       

and this alone will take care of the (usually difficult to handle) off-diagonal part in the

variation of the covariance ( ) 7→ E ().
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Moreover, there exists a constant  =  () such that, for all    in

[0 1], ¯̄


¯̄
1(2)-var;[]2

≤  |− | 1
2

so that  is a Hölder-dominated control.

Proof. Let  = {} be a dissection of [ ], and let us look atX


¯̄̄
E
³
+1


+1

´¯̄̄ 1
2



For a fixed  and  6=  as  ≤ 1
2
 E
³
+1


+1

´
is negative, hence,

X


¯̄̄
E
³
+1


+1

´¯̄̄ 1
2

≤
X
 6=

¯̄̄
E
³
+1


+1

´¯̄̄ 1
2

+ E
µ¯̄̄
+1

¯̄̄2¶ 1
2

≤
¯̄̄̄
¯̄E
⎛⎝X

 6=
+1


+1

⎞⎠¯̄̄̄¯̄
1
2

+ E
µ¯̄̄
+1

¯̄̄2¶ 1
2

≤

⎛⎜⎝2 1
2
−1

¯̄̄̄
¯̄E
⎛⎝X



+1

+1

⎞⎠¯̄̄̄¯̄
1
2

+ 2
1
2
−1E

µ¯̄̄
+1

¯̄̄2¶ 1
2

⎞⎟⎠
+E

µ¯̄̄
+1

¯̄̄2¶ 1
2

≤ 

¯̄̄
E
³
+1




´¯̄̄ 1
2

+ E
µ¯̄̄
+1

¯̄̄2¶ 1
2



Hence,

X


¯̄̄
E
³
+1


+1

´¯̄̄ 1
2 ≤ 

X


E
µ¯̄̄
+1

¯̄̄2¶ 1
2

+

X


¯̄̄
E
³
+1




´¯̄̄ 1
2



The first term is equal to  |− |  so we just need to prove that
X


¯̄̄
E
³
+1




´¯̄̄ 1
2 ≤  |− |  (15.2)
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To achieve this, it will be enough to prove that for [ ] ⊂ [ ] 
¯̄̄
E
³





´¯̄̄
≤  | − |2 

First recall that as 2  1 if 0     then (+ )
2 − 2 ≤ 2 

Hence, using this inequality and the triangle inequality,¯̄̄
E
³





´¯̄̄
= 

¯̄̄
(− )

2
+ (− )

2 − ( − )
2 − (− )

2
¯̄̄

≤ 

³
(− )

2 − (− )
2
´
+ 

³
( − )

2 − (− )
2
´

≤ 2 ( − )
2



Exercise 15.6 We say that a real-valued Gaussian process  on [0 1] sat-

isfies the Coutin—Qian conditions, if for some  ∈ (0 1)    0 and all

 

E
³
||2

´
≤  |− |2  (15.3)

|E (++)| ≤  |− |2−2 2 for 0    −  (15.4)

Let  be the 2D control for the covarance of fBM, as defined in (15.1).Show

that, for all  ≤  and  ≤  in [0 1],

|E ()| ≤  ([ ]× [ ])2 

and conclude that the covariance of  has finite 1 (2)-variation, con-

trolled by a Hölder-dominated 2D control.

Solution 15.7 Working as in lemma 5.58, at the price of a factor 3
1
2
−1

we can restrict ourselves to the cases  =  ≤  =  and  ≤  ≤  ≤ 

The first case is given by assumption (15.3), so let us focus on the second

one. Assume first we can write −  =  − =  and that −   

Then,

E () =

−1X
=0

−1X
=0

E
¡
++(+1)++(+1)

¢
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Using the triangle inequality and our assumption,

|E ()| =

−1X
=0

−1X
=0

¯̄
E
¡
++(+1)++(+1)

¢¯̄
≤ 

−1X
=0

−1X
=0

|(+ )− (+ )|2−2 2

≤ 

−1X
=0

−1X
=0

Z +

+(−1)

Z +(+1)

+

| − |2−2 

≤ 

Z −

−

Z 



| − |2−2 

≤ 

¯̄̄
E
³
−−




´¯̄̄


Letting  tends to 0 by continuity, we easily see that

|E ()| ≤ 

¯̄̄
E
³





´¯̄̄


which implies our statement for  ≤  ≤  ≤  That concludes the proof.

15.2.2 A Cameron—Martin / variation embedding

As in the last section,  is a real-valued centered Gaussian process on

[0 1] with continuous sample paths hence induces a Gaussian measure

on the Banach space  ([0 1] R). From general principles (see appen-

dix on Gaussian analysis) the associated Cameron—Martin space4 H ⊂
 ([0 1] R) consists of paths  7→  = E () where  is an element

of the 2-closure of span { :  ∈ [0 1]}, a Gaussian random variable. We

recall that if ̃ = 
³
̃·

´
denotes another element in H, the inner prod-

uct h 0iH = E (0) makes H a Hilbert space. The following embedding

theorem will prove crucial in our later applications to support theorems

and large deviations.

Proposition 15.8 Assume the covariance  : ( ) 7→ E () is of fi-

nite -variation (in 2D sense) for  ∈ [1∞). Then H is continuously

embedded in the space of continuous paths of finite -variation. More, pre-

cisely, for all  ∈ H and all    in [0 1] 

||-var;[] ≤
q
h iH

q
-var;[]2 

4Equivalently: reproducing kernel Hilbert space.
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Proof. Let  = E () and assume, without loss of generality, that

h i12H = ||2 = 1. Let () be a dissection of [ ]  Let 0 be the
Hölder conjugate of . Using duality for -spaces, we have5⎛⎝X



¯̄
 +1

¯̄⎞⎠1

= sup
||


0≤1

X


 +1 = sup
||


0≤1

E

⎛⎝
X


 +1

⎞⎠
≤ sup

||

0≤1

sX


E
¡
 +1+1

¢
(Cauchy-Schwarz)

≤ sup
||


0≤1

vuuut⎛⎝X


¯̄

¯̄0 ||0

⎞⎠ 1
0
⎛⎝X



¯̄
E
¡
 +1+1

¢¯̄⎞⎠ 1


≤
⎛⎝X



¯̄
E
¡
 +1+1

¢¯̄⎞⎠1(2)

≤
q
-var;[]2 

The proof is then finished by taking the supremum over all () ∈ D [ ].

Remark 15.9 Assume that the -variation of  is controlled by a Hölder-

dominated control, i.e.

∀   in [0 1] : 


-var;[]2
≤  |− |

Then proposition 15.8 implies that

|| ≤ ||-var;[] ≤ ||H12 |− |1(2)

which tells us thatH is continuously embedded in the space of 1 (2)-Hölder
continuous paths (which can also be seen directly from  = E ()

and Cauchy-Schwarz). The point is that 1 (2)-Hölder only implies 2-

variation regularity, in contrast to the sharper result of proposition 15.8.

Remark 15.10 Let HBM denote the Cameron—Martin space of real-valued
Brownian motion ( :  ∈ [0 1]); defined as the set of all paths  7→  =

E () where  is in the 2-closure of span { :  ∈ [0 1]}. As is well-
known (see example D.3)HBM is identified with the Sobolev space 12

0 ([0 1] R).

5The case  = 1 may be seen by directly by taking  = 

 +1


.
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It is worth noting that proposition 15.8 implies ||1-var;[] ≤  |− |12

with  =
q
h iHBM

; and this property alone, using

|| 12 = sup
()∈D[01]

ÃX


¯̄
+1

¯̄2
 |+1 − |

!12

implies the (important) estimate || 12 ≤
q
h iHBM

.

Remark 15.11 ConsiderH
fBM ≡ H  the Cameron—Martin space of frac-

tional Brownian motion with Hurst paramter . It can be useful to know

that that smooth paths started at the origin are contained in H . In fact,

one even has (e.g. [36, 59])

10
¡
[0  ] R

¢ ⊂ H  (15.5)

Let us now focus on the interesting regime  ∈ (0 12]. Proposition 15.8
immediately gives

H → 1(2)-var

which shows that fractional Cameron—Martin paths have finite  ∈ [1 2)
variation as long as   ∗ = 14. In fact, one can do a little better and
show that for any  ∈ (12 12 +) 

H →
2
0 → 1-var 

The first embedding is well-known: From [36] and the references therein

we know that H is continuously embedded in the potential space +
+122

,

which we need not define here, and from [47, 36] one has +
+122

⊂ 2; a

direct proof can be found in [60]. The second embedding is a Besov-variation

embedding, see corollary A.3 in the appendix.

15.2.3 Covariance of piecewise-linear approximations

Let  be a centered real-valued continuous Gaussian process on [0 1] with

covariance  =  assumed to be of finite -variation, dominated by some

2D control function . We now discuss what happens to (the -variation

of) the covariance of piecewise-linear approximations to . To this end, let

 = ( )  ̃ = (̃ ) be dissections of [0 1] and write 
 for the piecewise-

linear approximation to i.e.
 =  for  ∈  and is linear between

two successive points of . If ( )× ( ) ⊂ (   +1)× (̃   ̃ +1) we set,
consistent with definition 5.63,

̃

µ
 

 

¶
: = E

µZ 



̇
 

Z 



̇̃
 

¶
=

− 

 +1 −  
×  − 

̃ +1 − ̃ 


µ
   +1
   +1

¶
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In particular,  :=  is then precisely  i.e. the covariance of .

Proposition 15.12 (Covariance of piecewise-linear approximations)

Let  be continuous, centered, real-valued continuous Gaussian process on

[0 1] with covariance  assumed to be of finite -variation. Let  ̃ ∈
D [0 1]. Then

³
̃

´
is jointly Gaussian with covariance

(̃) :

µ




¶
7→
⎛⎝ E

¡

 



¢
E
³

 ̃



´
E
³
̃
 



´
E
³
̃
 ̃



´ ⎞⎠
of finite -variation. Moreover,¯̄̄

(̃)

¯̄̄
-var;[01]2

≤ 491− 1
 ||-var;[01]2 

Proof. It is easy to check that
³
̃

´
is jointly Gaussian. Observe

that, using the notation of definition 5.63,

(̃) =

Ã
 ̃

̃ ̃̃

!


It then follows from proposition 5.64 that each component of this matrix

has finite -variation in 2D sense, controlled by 9−1 | |-var .
We now go a bit further in our analysis of piecewise lienar approxima-

tion and show that Hölder-domination of the -variation (on the "diagonal"

[ ]
2
) remains valid when switching from  =  to () (this will

only be used in section 15.5.1 for establishing Hölder convergence of piece-

wise linear approximations). As usual, given  ∈ [0 1]  we write  for the
greatest element of  such that  ≤  and  the smallest element of 

such that   .

Lemma 15.13 Let  be continuous, centered, real-valued continuous Gaussian

process on [0 1] with covariance  Then,

(i) For all 1 1,2 2 ∈ ¯̄

¯̄
-var;[11]×[22] ≤ 9

1− 1
 ||-var;[11]×[22] 

(ii) For all   ∈ [0 1], with  ≤   ≤  for all   ∈ ¯̄

¯̄
-var;[]×[] ≤ 9

1− 1


¯̄̄̄
− 

 − 

¯̄̄̄
E
³¯̄


¯̄2´12 ||12
-var;[]2



(iii) For all 1 1 2 2 ∈ [0 1], with 1 ≤ 1 1 ≤ 1  2 ≤ 2 2 ≤ 2 ¯̄

¯̄
-var;[11]×[22] ≤

¯̄̄̄
1 − 1

1 − 1

¯̄̄̄ ¯̄̄̄
2 − 2

2 − 2

¯̄̄̄ ¯̄
E
¡
1122

¢¯̄
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Proof. (i) This follows from 15.12; indeed there is no difference in the

argument between working with [0 1]
2
or rectangles whose interval end-

points are elements of . (ii) The second estimate is a bit more subtle.

Take   ∈ [0 1], with  ≤   ≤    ∈  () and () subdivi-

sions of [ ] and [ ]  Then, if 

 = E

³

+1




´
 we know from

proposition 15.8 that

¯̄


¯̄
-var;[]

≤
¯̄

¯̄12
-var;[]

E
³¯̄



¯̄2´12
≤ 9−1

+1 − 

 − 
||12

-var;[]2
E
³¯̄


¯̄2´12
Hence, for a fixed X


¯̄̄
E
³

+1


 +1

´¯̄̄
≤

¯̄


¯̄
-var;[]

≤
µ
9−1

+1 − 

 − 
||12

-var;[]2
E
³¯̄


¯̄2´12¶


Summing over  and taking the supremum over all dissections ends the

proof of the second estimate. We leave the easy proof of the third estimate

to the reader.

Proposition 15.14 (Hölder estimate in piecewise-linear case) Let 

be continuous, centered, real-valued continuous Gaussian process on [0 1]

with covariance  assumed to be of finite -variation. Then

| |-var;[]2 ≤  |− | for all    in [0 1]

implies, for some constant  =  (),¯̄
()

¯̄
-var;[]2

≤  |− | for all    in [0 1] 

Proof. We need to estimate the -varation of the all entries of (),µ




¶
7→
µ
E () E

¡





¢
E
¡

 

¢
E
¡

 



¢ ¶
and focus on the lower-right entry, which is precisely  . By scaling we

assume, without loss of generality, that  = 1. Then, by an argument

similar to the proof of proposition 5.64 (or exercise 5.11 for the analogous

one-dimensional case), we may estimate its -variation over some [ ]
2

(with the property that  ≤ ) in terms of the -variation of 
 over
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smaller rectangles, namely

1

9−1
¯̄

¯̄
-var;[]2

≤
¯̄

¯̄
-var;[]2

+
¯̄

¯̄
-var;[]×[]

+
¯̄

¯̄
-var;[]×[] +

¯̄

¯̄
-var;[]×[]

+
¯̄

¯̄
-var;[]×[] +

¯̄

¯̄
-var;[]×[]

+
¯̄

¯̄
-var;[]×[] +

¯̄

¯̄
-var;[]×[]

+
¯̄

¯̄
-var;[]

2 

The proof is then easily finished with lemma 15.13 and the fact that, for

 ≤   ≤ , we have estimates of the form¯̄̄̄
− 

 − 

¯̄̄̄
E
³¯̄


¯̄2´12 ≤
¯̄̄̄

− 

 − 

¯̄̄̄ ¯̄
 − 

¯̄1(2)
=

¯̄̄̄
− 

 − 

¯̄̄̄1−12
|− |1(2)

≤ |− |1(2) 
Similar arguments apply to the -variation of ( ) 7→ E

¡





¢
E
¡

 

¢
with details left to the reader. The proof is then finished.

15.2.4 Covariance of mollifier approximations

Let  be centered real-valued continuous Gaussian process on [0 1] with

covariance  =  assumed to be of finite -variation, dominated by some

2D control function . We now consider mollifier approximations. To this

end, let us first extend  from [0 1] to (−∞∞) by setting  ≡ 0 for

  0 and  ≡ 1 for   1. As a simple consequence of this, for any

rectangle  ⊂ R2,
| |-var; = | |-var;∩[01]2  (15.6)

Then, given a "mollifier" probability measure  on R, compactly supported,
we define



 =

Z
− () ;

we also recall the notation (cf. proposition 5.68)

̃
µ

 

 

¶
=

Z Z


µ
−  − 

−   − 

¶
 () ̃ () 

Proposition 15.15 (Covariance of mollifier approximations) Let 

be continuous, centered, real-valued continuous Gaussian process on [0 1]

with covariance  assumed to be of finite -variation, controlled by

 () = ||-var; for any rectangle  ⊂ R2
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Let  be a compactly support probability measure on R. Then  is a

Gaussian process with covariance of finite -variation controlled by .

Moreover,  →  (pointwise) along any sequence  −→ 0, the Dirac

measure at zero6 . If ̃ denotes a another compactly supported probability

measusres on R, then
¡
 ̃

¢
is jointly Gaussian with covariance

(̃) :

µ




¶
7→
⎛⎝ E (



 ) E

³



̃


´
E
¡
 ̃





¢
E
³
 ̃


̃


´ ⎞⎠
of finite -variation, controlled by a 2D control ̂ which satisfies¯̄

(̃)

¯̄
-var;[01]2

≤ ̂
³
[0 1]

2
´1

≤ 441
³
[0 1]

2
´


Remark 15.16 We shall apply with  ̃ given by   where  :=
1


¡



¢
and  ∈ ∞ (RR+), supported on [−1 1] with total mass R  ()  =

1. Note that  converges to the Dirac measure at zero, as  → 0.

Proof. We leave it to the reader to check that , and then
¡
 ̃

¢
,

are Gaussian processes. Proposition 5.68 then implies all statements, noting

that

(̃) =

µ
̃ ̃

̃ ̃̃

¶


has finite -variation controlled by ̂̃ = 4
¡
 + ̃ + ̃̃ + ̃̃

¢
.

15.2.5 Covariance of Karhunen-Loève approximations

Let  be centered real-valued continuous Gaussian process on [0 1] with

covariance  =  assumed to be of finite -variation, dominated by some

2D control function . We now consider Karhunen-Loève approximations,

also know as 2-approximations. The situation here is more subtle as for

piecewise linear or mollifier approximations. We will focus on the impor-

tant case  ∈ [1 2), although we only obtain uniform 2-variation bounds

rather than uniform -variation bounds (there is a world of difference as

will seen in the next section:   2 allows for many uniform estimates

which do not hold  = 2). For a precise statement, we need some nota-

tions: H ⊂  ([0 1] R) denotes the Cameron-Martin space, for which we
fix an orthonormal basis

¡
 :  ∈ N¢. From general principles H embedds

isometrically into a (Gaussian) subspace of 2 (P),

 ∈ H 7→  () ∈ 2 (P)

and there is an 2-expansion/approximation of the following type, where

 is the Paley-Wiener map (cf. appendix D.3).

6That is, for all bounded continuous functions  , lim→∞

 =  (0) 
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Definition 15.17 (Karhunen-Loève approximation) For a fixed or-

thonormal basis
¡
 :  ∈ N¢ in H ⊂  ([0 1] R) consider the 2-expansion

of ,

 =
X
∈N


 convergent a.s. and in 2 (P) ,

where  := 
¡

¢
  ∈ N, is a sequence of independent standard normal

random variables. For a fixed set  ⊂ N, define
F =  (  ∈ ) and 

 = E [|F] 
The sequence

¡
{1} :  ∈ N¢ is then call Karhunen-Loève approxima-

tion to .

Remark 15.18 Observe that  7→ 
 is a Gaussian process in its own

right with covariance function

 ( ) :=  ( ) := E
£

 




¤
=
X
∈



.

Lemma 15.19 Let  be continuous, centered, real-valued continuous Gaussian

process on [0 1] with covariance  assumed to be of finite -variation, for

some  ≥ 1. Then, for all subset  of N,

| |-var;[]2 ≤ (1 +min {||  ||}) | |-var;[]2 
| |2-var;[]2 ≤ ||2-var;[]2 

Proof. We first prove the first inequality, assuming that || ∞ so that

 =
X
∈

 ⊗ 

It is then clear from proposition 15.8, using ||H = 1, that

| ⊗ |-var;[]2 ≤ ||2-var;[] ≤ ||-var;[]2 
and it follows from the triangle inequality that

| |-var;[]2 ≤ ||-var;[]2 +
X
∈

| ⊗ |-var;[]2

≤ (1 + ||) ||-var;[]2 
The case || ∞ is similar but easier and left to the reader. We now turn

to the proof of the second inequality: let  = () a dissection of [ ] and

set 
 = 

+1
 Let  =

¡


¢
be a positive symmetric matrix, and let

us estimate
¯̄̄P

 E
¡

 




¢¯̄̄
. To this end, note

E
¡

 




¢
=
X
∈

E ()E () =
1

2

X
∈

E
¡¡
2 − E

¡
2
¢¢


¢
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so thatX


E
¡

 




¢
=
1

2

X
∈

E

⎛⎝¡2 − E ¡2¢¢X




⎞⎠ 

As  is symmetric, we can write  =  with  the identity matrix,

and a diagonal matrix which contains the (non-negative) eigenvalues ()

of . Simple linear algebra givesX


 = ()

 () =

X


 ()
2


and we can computeX


E
¡

 




¢
=

X
∈

X



1

2
E
³¡
2 − E

¡
2
¢¢
()

2


´
=

X



X
∈

E ( ())
2

≤
X


E
³
()

2


´
(Parseval inequality)

= E
³
()


 ()

´
=

X


E ()

≤ ||2 ||2-var;[]2  (Hölder inequality)

(Note that finite  ∈ [1 2)-variation of  implies finite 2-variation of ).

We now apply this estimate with  = E
¡

 




¢
and findsX



¯̄
E
¡

 




¢¯̄2 ≤ ||2-var 
The proof is finished by taking the supremum over all dissections of [ ].

15.3 Multidimensional Gaussian processes

Any R-valued centered Gaussian process  =
¡
1 

¢
with contin-

uous sample paths gives rise to an abstract Wiener space (HP) with
 = 

¡
[0 1] R

¢
and H ⊂ 

¡
[0 1] R

¢
. If H denotes the Cameron—

Martin space associated to the one dimensional Gaussian process  and

all
©
 :  = 1  

ª
are independent then H ∼= ⊕=1H. Recall that H

embeds isometrically into a (Gaussian) subspace of 2 (P),

 ∈ H 7→  () ∈ 2 (P) 
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15.3.1 Wiener chaos

From section D.4 of the appendix, there is a (orthogonal) decomposition of

the form

2 (P) = ⊕∞=0W() (P) 

The subspaces W (P) are known as homogenous Wiener chaos of order 
and C (P) := ⊕=0W() (P) denotes theWiener chaos (or non-homogenous
chaos) of order . Our interest in Wiener chaos comes from the fact that

C (P) is precisely the closure (in probability, say) of polynomials of de-
gree less equal than  in the variables  () where () ⊂ H is any fixed

orthonormal basis. In particular, any polynomial in 

for finitely many

 ∈ {1     } and  ∈ [0 1] is an element of C (P) for sufficiently large
.

Proposition 15.20 Assume the R-valued continuous centered Gaussian
process  =

¡
1 

¢
has sample paths of finite variation and have

 () ≡ X denote its natural lift to a process with values in 
¡
R
¢ ⊂


¡
R
¢
.Then, for  = 1  and any   ∈ [0 1] the random variable

 (X) is an element in the th (in general, not homogenous) Wiener

chaos7 .

Proof.  (X) is given by  iterated integrals which can be written out

in terms of (a.s. convergent) Riemann-Stieltjes sums. Each such Riemann-

Stieljes sum is a polynomial of degree at most  and of variables of form

. It now suffices to remark that the (not necessarily homogenous) 
th

Wiener chaos contains all such polynomials and is closed under convergence

in probability.

As a special case of the Wiener chaos integrability, see (D.5) in section

D.4, we have

Lemma 15.21 Let  ∈ N and  ∈ C (P). Then, for   2, we have

||2 ≤ || ≤ ||2 (+ 1) ( − 1)2 

A simple but useful consequence is that, for random-variables  ∈
C (P) we have

||2 ≤  () | |2 ||2  (15.7)

(There is nothing special about 2 here, but this is how we usually use it.)

We now discuss some more involved corollaries.

Corollary 15.22 Let  be a random element of 
¡
R
¢
such that for all

1 ≤  ≤  the projection  () is an element of the  Wiener chaos.

Let  be a positive real. Then, the following statements are equivalent:

7 Stricltly speaking, the

R
⊗

-valued chaos.
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(i) There exists a constant 1  0 such that for all  = 1   there exists

 =  () ∈ [1∞) : | ()| ≤ 1
;

(ii) there exists a constant 2  0 such that for all  = 1   and for all

 ∈ [1∞) : | ()| ≤ 2

2 ;

(iii) there exists a constant 3  0 and there exists  ∈ [1∞) : E (kk)1 ≤
3;

(iv) there exists a constant 4  0 such that for all  ∈ [1∞) : E (kk)1 ≤
4

1
2 

When switching from  to the  statement, the constant  depends only

on  and  .

Proof. Clearly, (iv)=⇒(iii), (ii)=⇒(i), and Lemma 15.21 shows (i)=⇒(ii).
It is therefore enough to prove (ii)=⇒(iv), (iii)=⇒(i),
(ii)=⇒(iv): By equivalence of homogeneous norm, we have

kk ≤ 1

max
=1

| ()|1 

so that,

E (kk)1 ≤ 2

max
=1

³
E
³
| ()|

´´1
≤ 3

³

max
=1

¡


2 

¢´1
≤ 4

1
2 

(iii)=⇒(i): By equivalence of homogeneous norm, we have

| ()|1 ≤ 5 kk 

Hence,

E
³
| ()|0

´0 ≤ 5E (kk0)0 ≤ 6


Proposition 15.23 LetX be a continuous 
¡
R
¢
-valued stochastic process

and  a control function on [0 1]. Assume that for all    in [0 1] and

 = 1   , the projection  (X) is an element in the 
 Wiener chaos

and that, for some constant ,

| (X)|2 ≤  ( )

2  (15.8)

Then,

(i) there exists a constant  0 =  0 () such that for all    in [0 1]

and  ∈ [1∞)
| (XX)| ≤  0

√
 ( )

1
2 ; (15.9)
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(ii) if   2 then kXk-var;[01] has a Gaussian tail. More precisely, if
 (0 1) ≤  then there exists  =  ( )  0 such that

E exp
³
 kXk2-var;[01]

´
∞; (15.10)

(iii) if  ( ) ≤  |− | for all    in [0 1] we may replace kXk-var;[01]
in (15.10) by kXk1-Höl;[01].
Proof. (i) is a clear consequence of corollary 15.22 and (iii) follows from a

(probabilistic) Besov-Hölder embedding, theorem A.13, in the appendix. At

last, (ii) follows from (iii) by reparametrization. Indeed, assuming without

loss of generality that  (0 1)  0, super-addivity of controls implies

∀   in [0  ] :  ( ) ≤  (0 1)

∙
 (0 )

 (0 1)
−  (0 )

 (0 1)

¸
and we may define

³
X̃ : 0 ≤  ≤ 1

´
by requiring that

X̃(0)(01) = X

(Note that  (0 )  (0 1) =  (0 )  (0 1) =⇒  ( ) = 0 =⇒
X|[] ≡ X a.s. from (15.8) and X̃ is indeed well-defined.) Clearly, X̃

satisfies the assumptions for (iii) with  =  (0 1) and we conclude with

invariance of variation norms under reparametrization,

kXk-var;[01] =
°°°X̃°°°

-var;[01]
≤
°°°X̃°°°

1-Höl;[01]


Remark 15.24 (Lévy modulus and exact variation) In the setting of

proposition 15.23 and under a Hölder-assumption on , i.e.

∀   in [0 1] :  ( ) ≤  |− |

it is immediate from (15.8), cf. lemma A.18, that there exists  =  () 

0 so that

sup
∈[01]

E exp

Ã

 (XX)

2

|− |1

!
∞

In the language of appendix A.4 this shows that X satisfies the "Gaussian

integrability condition (2)". From the general results of that appendix it

then follows that X has a.s. Lévy-modulus type regularity and also finite

2-variation. In fact, the same reparametrization argument that was used

in the proof of proposition 15.23 shows that finite 2-variation holds

without Hölder-assumption on . We note that, at least for  = 1, the

interest in generalized variation regularity comes from section 10.5..
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Proposition 15.25 Let XY be two continuous 
¡
R
¢
-valued stochas-

tic processes and  a control function on [0 1]. Assume that for all  

 in [0 1] and  = 1   (X) and  (Y) are elements of the

 Wiener chaos and that, for some   0 and   0,

| (X)|2 ≤  ( )

2 and | (Y)|2 ≤  ( )


2  (15.11)

| (Y −X)|2 ≤  ( )

2  (15.12)

Then,

(i) there exists a constant 0 =  0 ( ) such that for all  ∈ [1∞)

| (Y −X)| ≤  0

2  ( )


2 ;

(ii) if   2 there exists a constant  00 = 00 (  ) such that¯̄
-var;[01] (XY)

¯̄

≤ 00max

n
1  

o√
 (15.13)

and, for all  = 1      , we have¯̄̄

()

-var;[0 ]
(XY)

¯̄̄

≤ 00


2 ; (15.14)

(iii) if  ( ) ≤  |− | for all    in [0 1] then we may replace

-var;[01] 
()

-var;[0 ]
in (15.13), (15.14) by 1-Höl;[01], 

()

1-Höl;[0 ]
re-

spectively.

Proof. (i) is a clear consequence of corollary 15.22 and (iii) follows from

a (probabilistic) Besov-Hölder "distance" comparison, theorem A.14. The

case (ii) then follows from (iii) by the same reparametrization argument

which we used in the proof of proposition 15.23.

Remark 15.26 Recall from definition 8.6 that the inhomogenous -variation

distance was given by

-var;[01] (XY) = max
=1


()

-var;[01]
(XY)

with


()

-var;[01]
(XY) = sup

()∈D[0 ]

ÃX


¯̄

¡
X+1 −Y+1

¢¯̄!



so that in the context of proposition 15.25 one has, for  ∈ (0 1]  ∈ [1∞)¯̄̄
-var;[01] (XY)

¯̄̄

≤  00


2 ¯̄

-var;[01] (XY)
¯̄

≤  001

√
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(Similarly with 1-Hölder distances provided  ( ) ≤ (const) × |− | .)
In other words, working with an "inhomogenous" -variation distance yields

linear estimates in  (which is useful, since by theorem 10.41 the Lyons-Itô

map is locally Lipschitz continuous in -var;[01]) while working with "ho-

mogenous" -variation distance -var has the advantage that the random-

variable -var;[01] (XY) has a Gaussian tail (which will be useful to es-

tablish "exponential goodness" of certain approximations in the context of

large-deviations, cf. section 15.7).

15.3.2 Uniform estimates for lifted Gaussian processes

As in the previous section, we consider a R-valued continuous centered
Gaussian process  with indepent components 1 . We shall as-

sume that the sample paths ( () :  ∈ [0 1]) are of finite variation. This
implies that iterated integrals of are well-defined as Riemann-Stieltjes in-

tegrals and we shall see that their second moments are controlled uniformly

(i.e with constants not depending on the finite-variation sample path as-

sumption!) using the estimates for 2D Young integrals (from section 6.4)

of the respective covariances which explains the standing assumption

∃ ∈ [1 2) : | |-var;[01]2 ∞

(Recall that ( ) = E ( ⊗) = diag (1      ) is the
¡
R ⊗ R¢-

valued covariance function of .) We shall also control the difference be-

tween (the iterated integrals) of a pair of Gaussian processes ( ) in

which case we will make the stronger assumption

∃ ∈ [1 2) :
¯̄
( )

¯̄
-var;[01]2

∞

The following exercise shows that the above assumption indeed implies that

 −  etc. have covariance of finite -variation and we shall use this

without further notice.

Exercise 15.27 Let  = (1     ) be a centered, -dimensional Gaussian

process, with covariance  of finite -variation controlled by some 2D con-

trol . Let  be a linear map from R into R, Then the covariance of 
has also finite -variation controlled by  where  =  ().

In a typical application below, ( ) is a (2)-dimensional, centered

Gaussian process in which all coordinate pairs
¡
1  1

¢
    

¡
  

¢
are

independent (think of  as the coordinate-wise piecewise-linear or mollifier

approximation to ) which allows to reduce parts of the analysis to  = 1.

We will need
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Lemma 15.28 Let ( ) be a 2-dimensional centered Gaussian process

with covariance  of finite -variation controlled by . Then, for fixed

   in [0 1], the function

( ) ∈ [ ]2 7→  ( ) := E ()

satisfies  ( ·) =  (· ) = 0 and has finite -variation. More precisely,

there exists a constant  =  () such that

| |
-var;[]2

≤ 
³
[ ]

2
´2



Proof. We fix   0   0 all in [ ]  Using

00 − = 00 +0 

we bound |E ((00 −) (00 −))| by

|E (0000)|+ |E (000)|
+ |E (000)|+ |E (00)|

To estimate the second expression, for example, we use a well-known iden-

tity for the product of Gaussian random variables8 ,

E (000) = E (0)E (00)

+E (0)E (00)

+E (0)E (00) 

to obtain

1



|E (000)| ≤  ([ ]× [ 0]) ([ 0]× [ 0])

+ ([ ]× [ 0]) ([ 0]× [ 0])
+ ([ ]× [ 0]) ([ 0]× [ 0])

≤  ([ ]× [ 0]) ([ 0]× [ ])
+ ([ ]× [ 0]) ([ 0]× [ ])
+ ([ ]× [ ]) ([ 0]× [ 0])

Working similarly with all terms, we obtain that this last expression con-

trols the -variation of ( ) ∈ [ ]2 → E ()  and the

bound on the -variation on [ ]
2


8This is a consequence of the so-called Wick formula for Gaussian random variables;

see also [113, lemma 4.5.1].
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Proposition 15.29 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process with in-

dependent components and with bounded variation sample paths,

(ii) the covariance of  is of finite -variation dominated by a 2D control

 for some  ∈ [1 2).
(iii) X = 3 () 

There exists  =  () such that for all    in [0 1]  for  = 1 2 3

| (X)|2(P) ≤ 
³
[ ]

2
´ 
2

Proof. From proposition 15.65 in the appendix to this chapter, it is enough

to prove

(a) E
³¯̄



¯̄2´ ≤ 
³
[ ]

2
´1

for all ;

(b) E
µ¯̄̄
X



¯̄̄2¶
≤ 

³
[ ]

2
´2

for   distinct;

(c) E
µ¯̄̄
X



¯̄̄2¶
≤ 

³
[ ]

2
´3

for   distinct;

(d) E
µ¯̄̄
X



¯̄̄2¶
≤ 

³
[ ]

2
´3

for    distinct.

The level-one esimate (a) is obvious. For the level-two estimate (b), we fix

 6=  and    0  0. Then, using independence of  and  ,

E
³
X

X


00

´
= E

ÃZ 



Z 0

0




0







!

=

Z 



Z 0

0
E
¡




0

¢
E
¡






¢
=

Z 



Z 

0


µ
 

0 

¶


µ




¶
≤  ([ ]× [0 0])2 by Young 2D estimate.

(b) follows trivially from setting  = 0  = 0 (the general result will be
used in the level 3 estimates, see step 2 below). We break up the level-

three estimates in several steps. Throught, the indices   (and then ) are

assumed to be distinct.

Step 1: For fixed    0  0 0  0 we claim that

E
³
X




00


00

´
≤  ([ ]× [0 0])1  ([ ]× [0 0])1 

Indeed, with E
³



00




´
≡ E

³



00̇




´
 we have

E
³
X




00


00

´
= E

µZ 







00


00




¶
=

Z 

=

E
¡




00
¢
E
³



00




´
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Since the 1D -variation of  7→ E
¡




00
¢
is controlled by ( ) 7→

 ([ ]× [0 0])  and similarly for  7→ E
³



00




´
, the (classical 1D)

Young estimate gives¯̄̄̄Z 

=

E
¡




00
¢
E
³



00




´¯̄̄̄
≤  ([ ]× [0 0])1  ([ ]× [0 0])1 

Step 2: For fixed    we claim that the 2D map ( ) ∈ [ ]
2 7→

E
¡
X
X




¢
has finite -variation controlled by

[1 2]× [1 2] 7→ 
³
[ ]

2
´
 ([1 2]× [1 2]) 

Indeed, using the level 2 estimate and step 1, for 1  2 1  2 all in

[ ],

E
¡¡
X
2
−X

1

¢ ¡
X
2
−X

1

¢¢
= E

¡¡
X
12

+
1


12

¢ ¡
X
12

+
1


12

¢¢
= E

¡
X
12

X
12

¢
+ E

¡
X
12


1


12

¢
+ E

¡

1


12

X
12

¢
+ E

¡

1


1

¢
E
¡

12


12

¢
≤  ([1 2]× [1 2])2
+  ([1 2]× [ 1])1  ([1 2]× [1 2])1
+  ([ 1]× [1 2])1  ([1 2]× [1 2])1
+  ([ 1]× [ 1])1  ([1 2]× [1 2])1

≤ 4
n

³
[ ]

2
´
 ([1 2]× [1 2])

o1


(Here we used that  can be taken symmetric.)

Step 3: We now establish the actual estimates and start with (d). For   

distinct, we have

E

Ã¯̄̄̄Z 



X





¯̄̄̄2!
=

Z Z
[]2

E
¡
X
X




¢
 ( ) 

By Young’s 2D estimate, combined with -variation regularity of the inte-

grand established in step 2, we obtain

E

Ã¯̄̄̄Z 



X





¯̄̄̄2!
≤ 

³
[ ]

2
´3



as desired. The estimate (c) follows from

E

Ã¯̄̄̄Z 



¡



¢2




¯̄̄̄2!
=

Z Z
[]2

E
³¡



¢2 ¡



¢2´
 ( )
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and Young’s 2D estimate, combined with -variation regularity of the in-

tegrand which follows as a special case of lemma 15.28 (the full generality

will be used in the next section).

Corollary 15.30 Let X   be as in the last proposition. Then,

(i) there exists a constant  =  () such that for all    in [0 1] and

 ∈ [1∞)

| (XX)| ≤ 
√
 ( )

1
2 ; (15.15)

(ii) if   2 then kXk-var;[01] has a Gaussian tail. More precisely, if
 (0 1) ≤  then there exists  =  ( )  0 such that

E exp
³
 kXk2-var;[01]

´
∞; (15.16)

(iii) if  ( ) ≤  |− | for all    in [0 1] we may replace kXk-var;[01]
in (15.16) by kXk1-Höl;[01].

Proof. An immediate consequence of the estimates of proposition 15.29

and proposition 15.23, applied with (1D) control ( ) 7→ 
³
[ ]

2
´
.

Our next task is the establish suitable moment estimates for the differ-

ence of the (first three) iterated integrals of two nice Gaussian processes.

Proposition 15.31 Let

(i) ( ) =
¡
1  1      

¢
be a centered continuous Gaussian process

with bounded variation sample paths, such that
¡
  

¢
is independent of¡

   
¢
when  6= ;

(ii) the covariance of ( ) is of finite -variation dominated by a 2D

control  for some  ∈ [1 2);
(iii) X = 3 () and Y = 3 () ;

(iv)   0 such that for all    in [0 1] 

|− |-var;[]2 ≤ 2
³
[ ]

2
´1



Then, for 
³
[0 1]

2
´
≤  there exists a constant  =  () such that

for all    in [0 1] and  = 1 2 3 we have

| (X −Y)|2(P) ≤ 
³
[ ]

2
´ 
2



15. Gaussian Processes 425

Proof. From proposition 15.66 in the appendix to the chapter, it is enough

to prove

(a) E
³¯̄
X
 −Y



¯̄2´ ≤ 
³
[ ]

2
´1

for all ;

(b) E
µ¯̄̄
X

 −Y



¯̄̄2¶
≤ 

³
[ ]

2
´2

for   distinct;

(c) E
µ¯̄̄
X

 −Y



¯̄̄2¶
≤ 

³
[ ]

2
´3

for   distinct;

(d) E
µ¯̄̄
X

 −Y



¯̄̄2¶
≤ 

³
[ ]

2
´3

for    distinct.

The level-one estimate (a) is obvious from

E
³¯̄

 −  



¯̄2´ ≤ |− |-var;[]2 ≤ |− |-var;[]2 ≤ 
³
[ ]

2
´1



For the level-two estimate (b) we fix  6= . By inserting/subtracting
R 







we have

¯̄̄
X

 −Y



¯̄̄2
2
≤ 2

¯̄̄̄
X

 −

Z 









¯̄̄̄2
2
+ 2

¯̄̄̄Z 







 −Y



¯̄̄̄2
2

≤ 2

⎧⎨⎩
¯̄̄̄Z 






µ

 −  

√


¶¯̄̄̄2
2
+

¯̄̄̄
¯
Z 



Ã

 −  

√


!
 



¯̄̄̄
¯
2

2

⎫⎬⎭
≤ 21

³
[ ]

2
´2

where the last estimate comes from application of proposition 15.29 to a

(2-dimensional) Gaussian process of the form ̃ =
¡


¡
 −  

¢

√

¢
.

(Note that ̃ has indeed independent components and covariance of finite

-variation, controlled by .) The level-three estimate (d), on the variance

ofX

 −Y

 , with    distinct and fixed, is proved in a similar fashion:

after adding/subtracting
R
[]

X

·  we are left with an integral of the

form
R
X

· ( −  )


and a second one of the formZ ¡

X
 −Y



¢
 

 =

Z Z

·

¡
 −  

¢
 +

Z Z ¡

· −  

·
¢
  

It then suffices to apply proposition 15.29 to a (3-dimensional) Gaussian

process of the form
¡
 

¡
 −  

¢

√

¢
.

It remains to proce the other level-three estimate (c) and we keep  6= 
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fixed throughout. We have¯̄̄
X

 −Y



¯̄̄2
2
≤ 2

¯̄̄̄Z 



¡



¢2

¡

 −  



¢¯̄̄̄2
2

+2

¯̄̄̄Z 



n¡



¢2 − ¡ 


¢2o
 



¯̄̄̄2
2



The variance of
R 


¡



¢2

¡

 −  



¢
can be written as 2D Young integral

and by lemma 15.28 and 2D Young estimates we obtain¯̄̄̄Z 



¡



¢2

¡

 −  



¢¯̄̄̄2
2
≤ 2 ( )

30


To deal with the other term, we first note that, again using lemma 15.28,

the -variation of

( ) 7→  ( ) ≡ 1

E
hn¡




¢2 − ¡ 


¢2on¡



¢2 − ¡ 


¢2oi
= E

"Ã

 −  

√


!¡

 +  



¢Ã
 −  

√


!¡

 +  



¢#

over [ ]
2
is controlled by a constant times 

³
[ ]

2
´2
; then, again using

2D Young estimates with 1+ 1  1, we see that¯̄̄̄Z 



n¡



¢2 − ¡ 


¢2o
 



¯̄̄̄2
2

= 

Z
[]2

 ( )   ( )

≤ 4
³
[ ]

2
´3



The proof is then finished.

Corollary 15.32 Let X = 3 () Y = 3 ()    as in the previous

proposition and in particular

|− |-var;[]2 ≤ 2
³
[ ]

2
´1

 (15.17)

Then

(i) there exists a constant  =  () such that for all    in [0 1] 

 ∈ [1∞) and  = 1 2 3

| (Y −X)|(P) ≤ 

2 

³
[ ]

2
´ 
2

;

(ii) if   2 then there exists a constant  0 = 0 ( ) such¯̄
-var;[01] (XY)

¯̄
(P)

≤  0max
n
13 

o√
 (15.18)
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and for  = 1 2 3 we have¯̄̄

()

−[01] (XY)
¯̄̄
(P)

≤  0

2 ; (15.19)

(iii) if  ( ) ≤  |− | for all    in [0 1] then -var;[01] 
()

−[01] in

(15.18), (15.19) may be replaced by 1-Höl;[01], 
()

1-Höl[01]
respectively.

Proof. An immediate consequence of the estimates of proposition 15.31

and proposition 15.25, applied with (1D) control ( ) 7→ 
³
[ ]

2
´
and

0 ∈ ( 2). For (ii), (iii) we may take 0 =  +min ( 4) 2 (so that 2 

20  ) so that  0 has no explicity dependence on 0.

Remark 15.33 Assume the covariance of ( ) is of finite -variation

dominated by a 2D control  for some  ∈ [1 2). Then, by interpolation,
for all 0   and

|− |0-var;[]2 ≤ |− |1−
0

∞  |− |
0

-var;[]2

≤ |− |1−
0

∞ 
³
[ ]

2
´10



But  also controls the 0-variation of the covariance of ( ) ; indeed,¯̄
( )

¯̄0
0-var;[]×[] ≤

¯̄
( )

¯̄0
-var;[]×[]

≤
¯̄
( )

¯̄0−
-var;[01]2

¯̄
( )

¯̄
-var;[]×[]

and hence, with  = 0−1, where
¯̄
( )

¯̄
-var;[01]2

≤ 
³
[0 1]

2
´
≤ ,

¯̄
( )

¯̄0
0-var;[]×[] ≤  ([ ]× [ ]) 

It follows that corollary 15.32 may be applied with parameter 0, control 
and

2 = |− |1−
0

∞ 

15.3.3 Enhanced Gaussian process

The uniform estimates of the previous section, proved under the assump-

tion of bounded-variation sample paths, allow for a simple passage to the

limit. Indeed, given a (-dimensional) continuous Gaussian processes ,

whose sample paths are not of bounded variation, but whose covariance

has finite -variation,  ∈ [1 2), we may considerable suitably smooth ap-
proximations () for which

sup



³
[0 1]

2
´
≤ 
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where  is 2D control which controls the -variation of (). (In

fact, we have seen already that the above supremum bound is satisfied for

either piecewise-linear or mollifier approximations.). Corollary 15.32 then

implies that 3 () is Cauchy-in-probability in 0-var
¡
[0 1]  3

¡
R
¢¢
,

for any   2, which leads us to the following result.

Theorem 15.34 (Enhanced Gaussian Process) Assume  =
¡
1    

¢
is a centered continuous Gaussian process with independent components.

Let  ∈ [1 2) and assume the covariance of  if of finite -variation dom-

inated by a 2D control  with 
³
[0 1]

2
´
≤ . Then, there exists a unique

continuous 3
¡
R
¢
-valued process X, such that:

(i) X "lifts" the Gaussian process  in the sense 1 (X) =  −0;

(ii) there exists  =  () such that for all    in [0 1] and  ∈ [1∞)

| (XX)| ≤ 
√

³
[ ]

2
´ 1
2

; (15.20)

(iii) (Fernique-estimates) for all   2 and 
³
[0 1]

2
´
≤ , there exists

 =  ( )  0, such that

E
³
exp

³
 kXk2-var;[01]

´´
∞;

and if 
³
[ ]

2
´
≤  |− | for all    in [0 1], then we may replace

kXk-var;[01] by kXk1-Höl;[01];
(iv) the lift X is natural in the sense that it is the limit of 3 (

) where

 is any sequence of piecewise-linear or mollifier approximation to 

such that ∞ () converges to 0 almost surely.

Definition 15.35 A 3
¡
R
¢
-valued process X as constructed above is

called enhanced Gaussian process; if we want to stress the underlying

Gaussian process we call X the natural lift of . Sample path realizations

of X are called Gaussian rough paths as is motivated by

(i) for  ∈ [1 32) we see that X has almost surely finite -variation, for

any  ∈ (2 3)  and hence so does its projection to 2 ¡R¢  which is there-
fore almost surely a geometric -rough path,

(ii) for  ∈ [32 2) we see that X has almost surely finite -variation, for

any  ∈ (2 4)  and is therefore almost surely a geometric -rough path.

Remark 15.36 With the notation of the above theorem, if  has a.s. sam-

ple paths of finite [1 2)-variation, X coincides with the canonical lift ob-

tained by iterated Young-integration of . If

X̃ = (1 1 (X)  2 (X)) ∈ 
0-var
0

¡
[0 1] 2

¡
R
¢¢
a.s.
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for   3 then X̃ is a geometric -rough path and X coincides with the

Lyons lift of X̃. Let us also observe that only point (iv) guarantees the

uniqueness of the lift. For  ∈ [3 4), if 1      is a basis of R

X̃ := X ⊗ exp ( [1 [1 2]])

would also satisfy conditions (i) to (iii). Similarly, for  ∈ [2 3) the Lyons
lift of the projection to 2

¡
R
¢
of  7→ X⊗exp ( [1 2]) would also satisfy

conditions (i) to (iii).

Proof. Fix a mollifier function  (·) and set  () =  () . Define

smooth approximations to , componentwise by convolution against ;

that is9,

 7→ 
 =

Z
− () 

so that 
 is a smooth function in . From proposition 15.15 there exists

1 = 1 () so that

sup


¯̄
()

¯̄
-var;[01]2

≤ 1 ||-var;[01]2 =: 1

and from corollary 15.32 (plus remark 15.33) we see that there exists   0

and 2 = 2 (  ) so that¯̄
-var;[01] (3 ()  3 ())

¯̄
(P)

≤ 1 |−
|∞ 

It follows that 3 () is Cauchy in probability as sequence of 
0-var
 -

valued random variables10 and so there exists X ∈ 0-var

¡
[0 1]  3

¡
R
¢¢

such that -var
¡
3
¡


¢
X
¢ → 0 in probability and from the uniform

estimates from Corollary 15.30 also in  for all  ∈ [1∞). From corollary

15.30 we have the estimate

| (3 ()  3 ())| ≤ 
√


³
[ ]

2
´ 1
2

(15.21)

for any 2D control  which controls the -variation of 
and in par-

ticular for  =  , the "-convolution of " from proposition 15.15.

Sending →∞ then shows that

| (XX)| ≤ 
√

³
[ ]

2
´ 1
2



Obviously, the increments X = X−1 ⊗ X are limits (in probability,

say) of 3 (
) and so, from proposition 15.20 and closedness of the

9We could also use piecewise linear (instead of mollifier) approximations.
10A Cauchy criterion for convergence in probability of r.v.s with values in a Polish

space is an immediate generalization of the corresponding real-valued case.
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Wiener-Itô chaos under convergence in probability,  (X) is indeed an

element of the  (not necessarily homogenous) Wiener-Itô chaos. The

statements of (ii),(iii) then follow directly from proposition 15.23, applied

with 1D control   7→ 
³
[ ]

2
´
.

For (iv), as of yet, our construction ofX may depend on the particular mol-

lifier function  Assume now that
¡
1  1      

¢
is Gaussian with

independent
©¡
  

¢
:  = 1     

ª
such that  has bounded variation

sample paths. Then¯̄
( )

¯̄
-var;[01]2

≤
¯̄
()

¯̄
-var;[01]2

+
¯̄
( )

¯̄
-var;[01]2

which is finite, whenever  ∈ -var  uniformly in  and uniformly over

all  given by (componentwise) piecewise-linear or mollifier approximation

to . (This follows from propositions 15.12 and 15.15 respectively.) We can

therefore, as in part (i), pass to the limit in¯̄
-var;[01] (3 ()  3 ( ))

¯̄
(P)

≤ 4 |− |∞
to learn that ¯̄

-var;[01] (X 3 ( ))
¯̄
(P)

≤ 4 |− |∞ .

When applied to  =  with ||→ 0 resp.  =  for any  → 0
the right-hand-side above tends to zero and the proof of (iv) is finished.

Theorem 15.34 asserts in particular that -dimensional Brownian motion

can be naturally lifted to an enhanced Gaussian process, easily identified

as enhanced Brownian motion (in view of (iv) and the results of section

13.3.3). Other examples are obtained by considering  independent (con-

tinuous, centered) Gaussian processes, each of which satisfies the condition

that its covariance is of finite -variation, for some   2. For example (cf.

proposition 15.5) one may take  independent copies of fractional Brown-

ian motion: the resulting R-valued fractional Brownian motion  can

be lifted to an enhanced Gaussian process ("enhanced fractional Brownian

motion", B) provided   14. Further examples are constructed by

consulting the list of Gaussian processes in section 15.2.

Exercise 15.37 In the context of theorem 15.34, show that

(i) there exists  =  ()  0 such that

sup
0≤≤1

E

⎛⎝exp
⎛⎝

"
 (XX)

 ( )
1
2

#2⎞⎠⎞⎠ ∞;

(ii) define a deterministic time-change from [0 1] onto itself, given by

 () = | |-var;[0]2  | |-var;[01]2
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and define the Gaussian process
³
̃ : 0 ≤  ≤ 1

´
by requiring that ̃() =

. Show that ̃ admits a natural lift X̃ so that

X̃() = X

and such that

sup
0≤≤1

E

⎛⎜⎝exp
⎛⎜⎝

⎡⎣
³
X̃ X̃

´
|− | 12

⎤⎦2
⎞⎟⎠
⎞⎟⎠ ∞;

(iii) Deduce from the results of appendix A.4 that for a suitable constant 

E
µ
exp

µ

°°°X̃°°°2

2-var;[01]

¶¶
∞

and then11

E
³
exp

³
 kXk22-var;[01]

´´
∞

Solution 15.38 (i) is a consequence of (15.20), cf. lemma A.18. (ii) As-

sume  (0 1) = 1 for simplicity. By definition of  and ̃ we see that

|̃ |-var;[()()]2 ≤ |̃ |-var;[0()]2 − |̃ |-var;[0()]2
= | |-var;[0]2 − | |-var;[0]2
= | |-var;[01]2 ( ()−  ())

which implies that ̃ has finite -variation controlled by ̃ = |̃ |-var;[··]×[··].
Clearly then, ̃

³
[ ]

2
´
≤  |− | and the claimed estimate follows from

(15.20), applied with ̃.

(iii) This is a straight-forward consequence of the results of appendix A.4

and invariance of (generalized) variation norms under reparametrization.

Theorem 15.39 Let ( ) =
¡
1  1      

¢
be a centered contin-

uous Gaussian process such that
¡
  

¢
is independent of

¡
   

¢
when

 6= . Let  ∈ [1 2) and assume the covariance of ( ) is of finite -

variation, controlled by a 2D control  with 
³
[0 1]

2
´
≤ , and write X

and Y for the natural lift of  and  . Assume also that

|− |-var;[]2 ≤ 2
³
[ ]

2
´1



11This sharpens the statement on finite -variation,   2, and is relevant (at least

when  = 1) as it allows for unique RDE solutions driven by X along Lip2-vector fields.
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Then

(i) there exists a constant  =  () such that for all    in [0 1] 

 ∈ [1∞) and  = 1 2 3

| (Y −X)|(P) ≤ 

2 

³
[ ]

2
´ 
2

; (15.22)

(ii) if   2 then there exists a constant  0 = 0 ( ) such¯̄
-var;[01] (XY)

¯̄
(P)

≤  0max
n
13 

o√
 (15.23)

and for  = 1 2 3 we have¯̄̄

()

-var[01]
(XY)

¯̄̄
(P)

≤ 0

2 ; (15.24)

(iii) if  ( ) ≤  |− | for all    in [0 1] then -var;[01] 
()

−[01] in

(15.18), (15.19) may be replaced by 1-Höl;[01], 
()

1-Höl[01]
respectively.

Proof. The statements are precisely those of corollary 15.32 but without

assuming that XY are the step-3 lift of processes with bounded-variation

sample paths. The proof is then completed with the same passage to limit,

along the lines of the previous proof.

Remark 15.40 As already noted in remark 15.33, estimates (15.22),(15.23),

(15.24) of theorem 15.39 applies in particular after replacing  by 0 ∈
( 2), such that 2  20  , and after replacing 2 by |− |1−

0

∞ . In

particular, there exists positive constants   depending only on  0 

such that ¯̄
-var;[01] (XY)

¯̄
(P)

≤  |− |∞
√


15.4 The Young—Wiener integral

Given a suitable -dimensional Gaussian process , assuming in particular

finite -variation of the covariance for some  ∈ [1 2), we have constructed
a Gaussian rough path X of finite -variation, any   2. At the same

we have seen that any  ∈ H, the associated Cameron-Martin space, has
finite -variation. Clearly, integrals of form

R
⊗ are well-defined Young-

integrals. However, cross integrals of formZ


are only well-defined as Young-integrals if 1 + 1  1, which would

require  ∈ [1 32). However, we can define the integral probabilistically,
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say in 2-sense, and it will suffices to look at the scalar-valued case. Let us

remark such cross-integral arise of if consider perturbations of the random-

variable X (·) in Cameron-Martin directions or when dealing with non-
centered Gaussian processes. We have

Proposition 15.41 (Young—Wiener integral) Assume  is a contin-

uous, centered Gaussian with covariance  of finite -variation. Let  ∈
-var ([0 1] R)  with −1 + −1  1. Then, for any piecewise-linear or

mollifier approximation () to  the indefinite integralZ 

0



converges, for each  ∈ [0 1], in 2 and its common limit is denoted byR 
0
. For all    in [0 1]  we have the Young-Wiener isometry,

E

Ã¯̄̄̄Z 





¯̄̄̄2!
=

Z
[]2

 ( ) 

and if  () = 0 we have the Young-Wiener estimate

E

Ã¯̄̄̄Z 





¯̄̄̄2!
≤  ||2-var;[] ||-var;[]2  (15.25)

At last, the process  7→ R 
0
 admits a continuous version with sample

path of finite -variation, for any   min ( 2).

Proof. When  has (piecewise) smooth sample paths, the Young-Wiener

isometry is obvious from

E

Ã¯̄̄̄Z 





¯̄̄̄2!
= E

µZ 



Z 





¶
=

Z
[]2

 ( ) 

Finite -variation of  implies that ⊗ has also finite -variation (now in

2D sense) and from the Young 2D estimates, it follows that

E

Ã¯̄̄̄Z 





¯̄̄̄2!
≤ 1 |⊗ |-var;[] ||-var;[]2

≤ 2 ||2-var;[] ||-var;[]2

where 1 2 depends on  . Replace  by  −, piecewise-linear or

mollifer approximation, yields

sup
∈[01]

E

Ã¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄2!
≤ 2 ||2-var;[01] |− |-var;[01]2 
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In fact, by choosing 0   small enough (so that 1+10  1) we can
use interpolation to see that (constants may now also depend on  and 0),

sup
∈[01]

E

Ã¯̄̄̄Z 

0

 −
Z 

0



¯̄̄̄2!
≤ 3 |− |0-var;[01]2
≤ 4 |− |1−0∞;[01]2 sup



¯̄
()

¯̄0
-var;[01]2

≤ 5 |− |1−0∞;[01]2 

where the last estimate is justified exactly as in step (i) of the proof of

theorem 15.34; that is, by means of proposition 15.15. It follows that³R 
0
 :  ∈ N

´
is Cauchy in 2 (P) and hence convergent. Then, similar

to step (iii) of the afore-mentioned proof, one sees that this limit does not

depend on a particular approximation. At last, the -variation regularity

is the content of exercise 15.43 below.

Remark 15.42 When  is Brownian motion,  = {=} and we recover
the Itô’s isometry for Itô-Wiener integrals.

Exercise 15.43 In the context of proposition 15.41, assuming in particu-

lar that  has covariance of finite -variation controlled by some 2D control

, show that
R
 admits a version which has finite -variation for any

  2.

Solution 15.44 Since  −  :=
R 

 is Gaussian, we have

| − |(P) ≤
¯̄̄̄Z 





¯̄̄̄
(P)

+ ||∞ ||(P)

≤ 1

"¯̄̄̄Z 





¯̄̄̄
2(P)

+ ||∞ ||2(P)
#

≤ 2

³
||-var;[] + ||∞

´
||12

-var;[]2

where 1 2 may depend on   . Setting  ( ) := ||
-var;[]2

yields

| − |(P) = 
³
| (0 )−  (0 )| 12

´
so that by Kolmogorov’s criterion  =  ◦  (0 ·)−1 is Hölder continuous
with any exponent less than 12. It follows that  (and then ) have the

claimed -variation regularity,   2.



15. Gaussian Processes 435

15.5 Strong approximations

15.5.1 Piecewise linear approximations

We now establish rate of convergence for piecewise-linear approximations

with focus. Those results are here for clarity, as we only need to put pieces

together to obtain them.

Theorem 15.45 Assume that  =
¡
1    

¢
is a centered continuous

Gaussian process with independent components and covariance  of finite

-variation,  ∈ [1 2), controlled by some 2D control . Fix an arbitrary

 ∈ (2 4)   ∈
³
0 1

2
− 1



´
and write X for the natural lift of , we have

for

(i) if 
³
[0 1]

2
´
≤ , there exists some constant 1 =  (  )  such

that for all  ∈ D [0 1] and  ∈ [1∞),¯̄
-var,[01]

¡
X 3

¡


¢¢¯̄
(P)

≤ 1
√
max
∈


³
[ +1]

2
´3

 (15.26)

and also

∀ ∈ {1 2 3} :
¯̄̄

()

-var[01]

¡
X 3

¡


¢¢¯̄̄
(P)

≤ 1

2 max
∈


³
[ +1]

2
´



(ii) if  ( ) ≤  |− | for all    in [0 1] then -var;[01] 
()

−[01]
in the above estimates may be replaced by 1-Höl;[01], 

()

1-Höl[01]
respec-

tively.

Remark 15.46 If  ∈ [1 32) we can take  ∈ (2 3) and then only need
a step-2 lift. Since the power 13 in (15.26) is readily traced back to (15.13)

we see that, in the case  ∈ [1 32), we have¯̄
1-Höl;[01]

¡
X 3

¡


¢¢¯̄
(P)

≤ 
√
 ||2 

In particular, the above estimates applied to enhanced Brownian motion are

in precise agreement with those obtained earlier (corollary 13.22) by direct

computations in a Brownian context.

Proof. Pick 0 ∈ ( 2) and note that, following remark 15.33,

 () :=
¯̄
()

¯̄
-var;

(any rectangle  ⊂ [0 1]2 )

also controls the 0-variation of
¡


¢
, while interpolation gives

|− |
0-var;[]2 ≤ 2 |− |1−0∞ 

³
[ ]

2
´10
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where we note that |− |∞ = sup∈[01] E
£¡
 −



¢ ¡
 −



¢¤
is

bounded by

sup
∈[01]

E
h¡
 −



¢2i ≤ 2max
∈

E
³¯̄
+1

¯̄2´
≤ 2max

∈


³
[ +1]

2
´1

Proposition 15.14, applied with 0 instead of  and 2 = 3max∈ 
³
[ +1]

2
´ 1

− 1
0
,

yields ¯̄
-var

¡
X 3

¡


¢¢¯̄
(P) ≤ 1

12max
∈



³
[ +1]

2
´ 1
6
− 1
60



and for  = 1 2 3¯̄̄
()-var

¡
X 3

¡


¢¢¯̄̄
(P)

≤ 1
2max

∈


³
[ +1]

2
´ 1
2
− 1
20



We conclude the -variation estimates by observing that 

³
[ +1]

2
´
≤

2
³
[ +1]

2
´

(see proposition 15.12 and lemma 15.13). At last, the

Hölder estimate is obtained similarly.

Exercise 15.47 Assume  =
©


2
 0 ≤  ≤ 2ª. Show that under the

assumptions of theorem 15.45, part (ii),

1-Höl;[01]
¡
X 3

¡


¢¢→ 0 a.s.

Solution 15.48 From theorem 15.45, there exists   0 such that¯̄
1-Höl;[01]

¡
X 3

¡


¢¢¯̄
(P)

≤ 2−
√


A standard Borell-Cantelli argument finishes the proof.

15.5.2 Mollifier approximations

Theorem 15.49 Assume that  is a centered R-valued continuous Gaussian
process with independent components and covariance  =  of finite -

variation,  ∈ [1 2); so that there exists a natural lift X, with -variation

sample paths for any  ∈ (2 4). Fix a mollifier function  (·) : R→ R, set
 () =  ()  and define (componentwise) approximations by

 7→ 
 =

Z
− () 

Then

sup
∈[1∞)

¯̄
-var;[01] (X 3 (

))
¯̄
(P)√


→ 0 as →∞

Proof. Similar to the arguments of step 1 in theorem 15.34. The details

are left to the reader.
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15.5.3 Karhunen—Loève approximations

Any R-valued centered Gaussian process  =
¡
1 

¢
with contin-

uous sample paths gives rise to an abstract Wiener space (HP) with
 = 

¡
[0 1] R

¢
and H ⊂ 

¡
[0 1] R

¢
. From general principles (cf. ap-

pendix D.3), for any fixed orthonormal basis
¡
 :  ∈ N¢ ⊂ H, there is a

Karhunen-Loève expansion (a.s. and 2-convergent)

 =
X
∈N


 

where , the image of  under the Payley-Wiener map, is a sequence

of independent standard normal random variables. With our standing as-

sumptions of indepedence of its component processes, each component gives

rise to an abstract Wiener space on  ([0 1] R) with Cameron—Martin
space H and H ∼= ⊕=1H. The one-dimensional considerations of section

15.2.5 then apply without changes to the -dimensional setting (with 

independent components) and we have from lemma 15.19, setting again

 = E [·|F] where F =  (  ∈ ) and  ⊂ N

that, for any  ≥ 1 and  ⊂ N,

| |-var ≤ (1 +min {||  ||}) ||-var;[]2 (15.27)

and

| |2-var;[]2 ≤ ||2-var;[]2  (15.28)

We now assume that  has finite -variation for some  ∈ [1 2) domi-
nated by some 2D control . For fixed  ⊂ N, finite or with finite comple-
ment, it follows from (15.27) that  =

¡
1    

¢
admits a natural

3
¡
R
¢
-valued lift, denoted by X. Of course, XN = X, the natural lift of

.

Lemma 15.50 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process with in-

dependent components;

(ii)  has Karhunen-Loève expansion
P

∈N 
 where ( =

¡
;1     ;

¢
is an orthonormal basis for H.(iii) the covariance of  if of finite -

variation, for some  ∈ [1 2), controlled by some 2D control ,
(iv)  ⊂ N so that min {||  ||} ∞.
Then,
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(a) for all    in [0 1], for all    distinct in {1     }  we have12

E
¡

|F

¢
= 


 (15.29)

E
³
X

|F

´
= X


 (15.30)

E
³
X

 |F

´
= X


 (15.31)

E
³
X

 |F

´
= X


 +

1

2

Z 



E
µ¯̄̄
;


¯̄̄2¶
;

 ; (15.32)

(b) for all    in [0 1] and  ∈ {1 2 3    } we have

sup
⊂N,min{||| |}∞

E
³¯̄

¡
X


¢¯̄2´ ≤ 
³
[ ]

2
´

where  depends on .

Proof. (a): Equality (15.29) is essentially the definition of  Equality

(15.30) is also easy: one just needs to note that E (·|F) is a projection
in 2 and hence 2-continuous; since both X and X are 2-limits of

their respective lifted piecewise linear approximations (a general feature of

Enhanced Gaussian processes) the claim follows.

The proof of equality (15.31) follows the same argument, while (15.32) is a

consequence of

E
³ ¯̄



¯̄2 ¯̄̄F´− ¯̄


¯̄2
= E

µ¯̄̄
;


¯̄̄2¶


From the 2-projection property of E (·|F) we then see that, for   
distinct,

E
µ¯̄̄
X



¯̄̄2¶
≤ E

³¯̄
X


¯̄2´ ≤ 1
³
[ ]

2
´1

E
µ¯̄̄
X



¯̄̄2¶
≤ E

µ¯̄̄
X



¯̄̄2¶
≤ 1

³
[ ]

2
´2

E
µ¯̄̄
X



¯̄̄2¶
≤ E

µ¯̄̄
X



¯̄̄2¶
≤ 1

³
[ ]

2
´3

E
µ¯̄̄
E
³
X

 |F

´¯̄̄2¶
≤ E

µ¯̄̄
X



¯̄̄2¶
≤ 1

³
[ ]

2
´3

;

for some constant 1 = 1 (), thanks to (15.20). Thus, to prove (b), it only

remains to prove that

E

Ã¯̄̄̄Z 



E
µ¯̄̄
;


¯̄̄2¶
;



¯̄̄̄2!
≤ 2

³
[ ]

2
´3



12 = N\
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To this end, observe that, thanks to  6= ,Z 



E
µ¯̄̄
;


¯̄̄2¶
;

 = E
µZ 



E
µ¯̄̄
;


¯̄̄2¶




¯̄̄̄
F
¶


and hence

E

Ã¯̄̄̄Z 



E
µ¯̄̄
;


¯̄̄2¶
;



¯̄̄̄2!
≤ E

Ã¯̄̄̄Z 



E
µ¯̄̄
;


¯̄̄2¶




¯̄̄̄2!


We define  () := E(|;
 |2), noting that  () = 0, and for    in [ ],

 = ;

µ
 

 

¶
+;

µ
 

 

¶
+;

µ
 

 

¶
so that

||2 ≤ |; |22-var;[]2 + |; |22-var;[]×[]+ |; |22-var;[]×[] 

As the right-hand-side above is super-additive in [ ], it follows from

the uniform 2-variation estimates (15.28) that

| |22-var;[] ≤ 3 |; |22-var;[]2 ≤ 3 | |22-var;[]2 ≤ 3
³
[ ]

2
´2



and we conclude with the Young-Wiener estimate of proposition 15.41.

Theorem 15.51 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process with in-

dependent components;

(ii)  has Karhunen-Loève expansion
P

∈N 
 where ( =

¡
;1     ;

¢
is an orthonormal basis for H;
(iii) the covariance of  if of finite -variation, for some  ∈ [1 2), con-
trolled by some 2D control  with 

³
[0 1]

2
´
≤ ;

(iv)   2 and  := {1     } 
Then, there exists a constant  =  ( )  0

sup
∈N

E exp
³

°°X

°°2
-var;[01]

´
∞ (15.33)

and, for all  ∈ [1∞),

-var;[0 1]
¡
X X

¢ → 0 in  (P) as →∞ (15.34)°°°X

°°°
-var;[0 1]

→ 0 in  (P) as →∞ (15.35)

If  is Hölder dominated, i.e.  ( ) ≤  |− | for all    in [0 1], then

(15.33),(15.34),(15.35) also hold in 1-Hölder sense.



440 15. Gaussian Processes

Proof. Inequality (15.33) follows from lemma 15.50 and proposition 15.23.

Let us observe that the proof of (15.34) can be reduced to pointwise con-

vergence


³
X
 X

´
→ 0 in probability (15.36)

under the Hölder assumption "
³
[ ]

2
´
≤  |− |". Indeed, assuming

this Hölder-domination on  this follows directly from proposition A.16

whereas the general case is reduced to the Hölder one by considering ̃ :=

 ◦ [( (0 ·) ([0 1]2)]−1 and, noting that both natural lift and Karhunen-
Loève expansions commute with a deterministic, continuous time-change,

-var;[0 1]
¡
X X

¢
= -var;[0 1]

³
X̃  X̃

´
≤ 1-Höl;[0 1]

³
X̃  X̃

´


We thus turn to the proof of (15.36). From proposition 15.66, it will be

enough to prove that for    distinct,¯̄̄
X

 −X



¯̄̄
→ 0 in 2 (P) ¯̄̄

X

 −X



¯̄̄
→ 0 in 2 (P) ¯̄̄

X

 −X



¯̄̄
→ 0 in 2 (P) ¯̄̄

X

 −X



¯̄̄
→ 0 in 2 (P) 

The first three convergence results are pure martingale convergence re-

sults. For the last one, in view of (15.32) we also need to prove thatR 

E
µ¯̄̄


;


¯̄̄2¶
;

 converges to 0 in 2 To this end we note that,

again by a martingale argument, that

sup
∈[]

E
µ¯̄̄


;


¯̄̄2¶
= sup

∈[]
E
³¯̄

 −;



¯̄2´→ 0 as →∞

On the other hand, we saw in the proof of lemma 15.50, that the 2-variation

of  ∈ [ ]→ E
µ¯̄̄


;


¯̄̄2¶
is bounded by 1

³
[ ]

2
´
 By interpolation,

that means that for   0 its (2 + )-variation converges to 0 when  tends

to ∞ We pick  such that 1
2+

+ 1
2

 1. After recalling that

E

Ã¯̄̄̄Z 



E
µ¯̄̄


;


¯̄̄2¶
;



¯̄̄̄2!
≤ E

Ã¯̄̄̄Z 



E
µ¯̄̄


;


¯̄̄2¶




¯̄̄̄2!


we therefore obtain, using the Young-Wiener integral bounds (proposition

15.41), that

E

Ã¯̄̄̄Z 



E
µ¯̄̄


;


¯̄̄2¶
;



¯̄̄̄2!
≤ 2

¯̄̄̄
E
µ¯̄̄


;


¯̄̄2¶¯̄̄̄2
(2+)-var;[]

||-var;[] 



15. Gaussian Processes 441

and hence E

Ã¯̄̄̄R 

E
µ¯̄̄


;


¯̄̄2¶
;



¯̄̄̄2!
→ 0 as  tends to ∞. It only

remains to prove (15.35) which is reduced, as above, to pointwise conver-

gence (in probability or 2) of the  ( )  (  )  (  )-coordinates. By

the backward martingale convergence theorem and Kolmogorov’s 0-1 law,

for    distinct,



 = E

³



 |F |

´
→ E

³



 |∩F |

´
= E

³





´
= 0

(with convergence in 2 as →∞) and similarly, using the fact that   
are distinct, ¯̄̄

X



¯̄̄

¯̄̄
X



¯̄̄
→ 0 in 2 (P) 

so that we are only left to show that
¯̄̄
X



¯̄̄
→ 0 in 2 (P) which in

view of (15.32), requires us to prove that
¯̄̄R 

E
³¯̄
;


¯̄2´


;


¯̄̄2
→ 0 in

2 as →∞. From

lim
→∞

E

Ã¯̄̄̄Z 



h
E
³¯̄
;


¯̄2´− E³¯̄


¯̄2´i


;


¯̄̄̄2!
= 0

this can be reduced to 2-convergence of
¯̄̄R 

E
³¯̄



¯̄2´


;


¯̄̄2
→ 0,

which follows, thanks toZ 



E
³¯̄



¯̄2´


;
 = E

µZ 



E
³¯̄



¯̄2´




¯̄̄̄
F

¶


from backward martingale convergence. The proof is then finished.

Exercise 15.52 In the context of theorem 15.51, show that

∃  0 : sup
∈N

E exp
³

°°X

°°2
2-var;[01]

´
∞

15.6 Weak approximations

15.6.1 Tightness

Proposition 15.53 Assume that

(i)  is a 2D control;

(ii) () is a sequence of centered, -dimensional, continuous Gaussian

process with independent components;

(iii) for  ∈ [1 2) and for some constant  and for all    in [0 1] 

sup

| |

-var,[]2
≤ 

³
[ ]

2
´
;



442 15. Gaussian Processes

(iii)X denotes the natural lift of  with sample paths in 0-var

¡
[0 1]  3

¡
R
¢¢
,

for some   2

Then the family (P∗X), i.e. the laws of X viewed as Borel measures on

the Polish space 0-var

¡
[0 1]  3

¡
R
¢¢
, are tight. If  is Hölder domi-

nated then tightness holds in 
01-Höl


¡
[0 1]  3

¡
R
¢¢


Proof. Let us fix 0 ∈ (2 ) and first the case of Hölder-dominated .

Define

 =
n
x : kxk10-Höl ≤ 

o
and note that  is relatively compact set in 

01-Höl
0

¡
[0 1]  3

¡
R
¢¢
,

which is a simple consequence from Arzela-Ascoli and interpolation (see

proposition 8.17). From the Fernique estimates in theorem 15.34, there

exists a constant  such that

sup

P (X ∈ ) ≤ −

2

and the tightness result follows. The general case is time-changed version

of the Hölder-case, using relatice compactness of½
x :  (xx) ≤ 

³

³
[0 ]

2
´
− 

³
[0 ]

2
´´10¾

in 0-var

¡
[0 1]  3

¡
R
¢¢
and we leave the details to the reader.

15.6.2 Convergence

We now turn to convergence. By Prohorov’s theorem13, tighness already

implies existence of weak limits and so it only remains to see that there is

one and only one limit point; the classical way to see this is by checking

convergence of the finite-dimensional distributions. We need a short lemma

concerning the interchanging of limits.

Lemma 15.54 Let ( ) be a Polish space and
©
 :  ∈ N̄  ∈ N̄ª be

a collection of -valued random-variables. Assume  converges weakly

to ∞ as  → ∞ for every  ∈ N. Assume also  → ∞ in

probability, uniformly in , that is,

∀  0 : sup
∈N

P ( ( ∞)  )→ 0 as →∞

Then ∞ converges weakly to ∞∞

13E.g. [13].
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Proof. By the Portmanteau theorem14, it suffices to show that for every

 :  → R bounded and uniformly continuous,

E (∞)→ E (∞∞) 

To see this, fix   0 and  =  ()  0 such that  ( )   implies

| ()−  ()|   By assumption we can take  =  () large enough

such that

sup
0≤≤∞

P ( ( ∞)  )  

Hence,

sup
0≤≤∞

|E (∞)− E ()|

≤ sup0≤≤∞ |E [| (∞)−  ()| ;  (∞ ) ≥ ]|
+ sup0≤≤∞ |E [| (∞)−  ()| ;  (∞ )  ]|
≤ 2 | |∞ sup0≤≤∞ P

¡
∞

¡
X 3

¡



¢¢ ≥ 
¢
+ 

≤ (2 | |∞ + 1) 

On the other hand, for  ≥ 0 ( ) = 0 () large enough, we also have

|E ()− E (∞)| ≤ 

and the proof is then finished with the triangle inequality,

|E (∞)− E (∞∞)| ≤ |E (∞)− E (∞)|
+ |E (∞)− E (∞∞)|
+ |E ()− E (∞)|

≤ (2 | |∞ + 1) 2+ 

Theorem 15.55 Assume that

(i) ()0≤≤∞ is a sequence of centered, -dimensional, continuous Gaussian
processes on [0 1] with independent components;

(ii) the covariances of  are of finite -variation,  ∈ [1 2), uniformly
controlled by some 2D control ;

(iii)X denotes the natural lift of  with sample paths in 0-var

¡
[0 1]  3

¡
R
¢¢
,

for some   2;

(iv)  converges pointwise on [0 1]
2
 to ∞ 

Then, for any   2, X converges weakly to X∞ with respect to -

variation topology. If  is Hölder-dominated, then convergence holds with

respect to 1-Hölder topology.

14E.g. [13].
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Proof. Tightness was established in proposition 15.53 so we only need weak

convergence of the finite-dimensional distributions:

(X
 :  ∈ ) =⇒ (X∞ :  ∈ ) for any  ∈ D [0 1] 

By assumption (iv) this holds on level-one, meaning that

(
 :  ∈ ) =⇒ (∞ :  ∈ ) 

Now, given a continuous path  ∈ 
¡
[0 1] R

¢
it is easy to see that

( :  ∈ ) 7→ 3
¡

¢ ∈ 

¡
[0 1]  3

¡
R
¢¢

is continuous and so it is clear that¡
3
¡


¢

:  ∈ 

¢
=⇒ ¡

3
¡
∞

¢

:  ∈ 

¢


On the other hand, it follows from theorem 15.45 that, along any sequence

() ⊂ D [0 1] with mesh tending to zero, 3
¡


¢ → X, point-

wise and in probability (much more was shown!), and also uniformly in

, thanks to the explicit estimates of theorem 15.45. It then suffices to

apply lemma 15.54 with  =
¡
3
¡


¢

:  ∈ 

¢
with state-space

 = 3
¡
R
¢×(#)

.

Example 15.56 Set  ( ) = min ( ). The covariance of fractional Brown-

ian Motion is given by

 ( ) =
1

2

³
2 + 2 − |− |2

´


Take a sequence  → 12. It is easy to see that  →  pointwise and

from our discussion of fractional Brownian motion, for any   1,

lim sup
→∞

¯̄


¯̄
-var;[ ]2

|− |1
∞

15.7 Large deviations

As in previous sections,  = (1    ) denotes a centered continuous

Gaussian process on [0 1], with independent components, each with co-

variance of finite -variation for some  ∈ [1 2) and dominated by some
2D control  We write H for its associated Cameron-Martin space. Re-

call from Section 15.3.3 that  admits a natural lift to a 3
¡
R
¢
-valued

process X, obtained as limit of lifted piecewise-linear approximations along

dissections  with mesh ||→ 0,

-var;[01]
¡
X 3

¡


¢¢→ 0 in  (P) for all  ∈ [1∞)
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Since the law of  induces a Gaussian measure on 
¡
[0 1] R

¢
, it follows

from general principles (see section D.2 in the appendix) that ( :   0)

satisfies a large deviation principle with good rate function  in uniform

topology, where  is given by

() =

½
1
2
h iH if  ∈ H ⊂ 

¡
[0 1] R

¢
+∞ otherwise.

We write Φ for the piecewise linear approximations along the dissection

 = { :  = 0 }. It is clear that
3 ◦ Φ :

¡

¡
[0 1] R

¢
 |·|∞

¢→ 
¡
[0 1]  3

¡
R
¢
 ∞

¢
is continuous. By the contraction principle, 3 (Φ ()) satisfies a large

deviation principle with good rate function

 () = inf { ()   such that 3 (Φ ()) = } 
the infimum of the empty set being +∞ Essentially, a large deviation

principle for X is obtained by sending  to infinity. To this end we now

prove that 3 (Φ ()) are exponential good approximation to X.

Lemma 15.57 Let   0 fixed. Then, for   2 we have

lim
→∞

lim
→0

2 logP (-var (3 (Φ ())  X)  ) = −∞

If  is Hölder dominated, then

lim
→∞

lim
→0

2 logP
¡
1-Höl (3 (Φ ())  X)  

¢
= −∞

Proof. First observe that

-var (3 (Φ ())  X) = -var (3 (Φ ()) X) 

Clearly, for   0,  ≡ |− |∞ → 0 as  → ∞ and from theorem

15.45,

|-var (3 (Φ ()) X)| ≡ 
√
 → 0 (15.37)

We then estimate

P (-var (3 (Φ ())  X)  ) = P
µ
-var (3 (Φ ()) X) 





¶
≤

µ




¶−√




≤ exp
h
 log

³


√

´i



and after choosing  = 12 we obtain, for  small enough,

2 logP (-var (3 (Φ ())  X)  ) ≤ log
³



´
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Now take the limits lim→0 and lim→∞ to finish the proof, for the −
case. The proof is (almost) identical for the 1-Hölder case.

From our embedding of the Cameron—Martin space into the space of

paths of finite -variation, we obtain

Lemma 15.58 For all Λ  0, and   2 we have

lim
→∞

sup
{:()≤Λ}

-var [(3 ◦ Φ) ()  3 ()] = 0 (15.38)

If  is Hölder dominated, then

lim
→∞

sup
{:()≤Λ}

1-Höl [(3 ◦ Φ) ()  3 ()] = 0 (15.39)

Proof. First, let us observe that for    in [0  ]  we have, as   2 from

theorem 9.5 and proposition 5.22,

k(3 ◦Φ) ()k-var[] ≤ 1 kΦ ()k-var[]
≤ 2 kk-var[] 

Now using theorem 15.8, we obtain for  with  () ≤ Λ

k(3 ◦ Φ) ()k-var[] ≤ 3Λ
12

³
[ ]

2
´12

In particular, we see that

sup
≥0

sup
{:()≤Λ}

k(3 ◦ Φ) ()k2-var[01] ≤ sup


sup
{:()≤Λ}

k(3 ◦ Φ) ()k-var[01]
 ∞

and, if  is Holder dominated,

sup


sup
{:()≤Λ}

k(3 ◦ Φ) ()k12-Höl[01] ∞

In particular, we first see that by interpolation, to prove (15.38) and (15.39),

it is enough to prove that

lim
→∞

sup
{:()≤Λ}

0 [(3 ◦ Φ) ()  3 ()] = 0

We will actually prove the stronger statement

lim
→∞

sup
{:()≤Λ}

0-var,[01] [(3 ◦ Φ) ()  3 ()] = 0

for 0 ∈ ( 2)  But, as we picked 0  2 we can use the uniform continuity

on bounded set of the map 3 (theorem 9.11) to see that it only remains

to prove that

lim
→∞

sup
{:()≤Λ}

0-var,[01] [Φ ()  ] = 0
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Using interpolation once again, it is enough to prove that

lim
→∞

sup
{:()≤Λ}

∞-var,[01] [Φ ()  ] = 0

This follows from

∞-var,[01] [Φ ()  ] ≤ −1
max
=0

||
−[   +1

 ]

≤ (2Λ)
12 −1
max
=0



Ã∙




+ 1



¸2!12


That concludes the proof.

We are now in measure to state the main theorem of this section:

Theorem 15.59 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process on [0 1]

with independent components;

(ii) H denotes the Cameron-Martin space associated to 

(iii) the covariance of  if of finite -variation dominated by some 2D

control , for some  ∈ [1 2);
(iv) X denotes the natural lift of  to a 3

¡
R
¢
-valued process.

Then, for any  ∈ (2 4), the family (X)0 satisfies a large deviation
principle in -variation topology with good rate function, defined for x ∈
0-var

¡
[0 1]  3

¡
R
¢¢
 given by

 (x) =
1

2
h1 (x)  1 (x)iH if 1 (x) ∈ H

If  is Hölder dominated then the large deviation principle holds in 1-

Hölder topology.

Proof. The proof is the same as in the Brownian motion case: after (re)stating

the large deviation principle satisfied by 3 (Φ ())  we only need to

use the extended contraction principle and lemmas 15.57 and 15.58 that

(X)0.

15.8 Support theorem

We recall the standing assumptions. Under some probability measure P we
have a -dimensional Gaussian process  on [0 1], always assumed to be

centered, continuous, with independent components. We writeH for the as-
sociated Cameron—Martin space. Under the assumption that  has covari-

ance of finite -variation for some  ∈ [1 2), we have seen in section 15.3.3
that  admits a natural lift to a 3

¡
R
¢
-valued process X whose sample

paths are, almost surely, geometric -rough paths,  ∈ (2 4). We can and



448 15. Gaussian Processes

will assume that P is a Gaussian measure on 
¡
[0 1] R

¢
so that  () =

 is realized as coordinate process. X can then be viewed as measurable

map from 
¡
[0 1] R

¢
into the Polish space Ω := 

0-var
0

¡
[0 1]  3

¡
R
¢¢
,

resp. 
01-Höl
0

¡
[0 1] 3

¡
R
¢¢
, almost surely defined as

X () = lim
→∞

3
¡


¢


in probability say, where  denotes the piecewise linear approximation

based on any sequence of dissections () with mesh || tending to zero.
The law of X is viewed as Borel measure on Ω. We now introduce the

assumption of complementary Young regularity.

Condition 15.60 There exists  ≥ 1 with 1+ 1  1 so that

H → -var
¡
[0  ] R

¢


We say that H has complementary Young regularity to .

Thanks to proposition 15.8, condition 15.60 is satisfied when  has co-

variance of finite -variation for some  ∈ [1 32); indeed, this follows from
considering

1


+
1


 1

where the critical value ∗ = 32 is obtained by replacing  by (its lower

bound) 2 and "greater than 1" by "equal to 1".

Remark 15.61 An application of proposition 15.5 shows that fractional

Brownian motion (" = 1 (2)") satisifes condition 15.60 for Hurst pa-

rameter   13. One can actually do better: it follows from remark 15.11

for any   14 complementary Young regularity holds.

Lemma 15.62 Assume complementary Young regularity. Then,

(i) for P-almost every  we have

∀ ∈ H : X ( + ) = X ()

where  denotes the translation operator for geometric rough paths;

(ii) for every  ∈ H the laws of X and X are equivalent.

Proof. The arguments are essentially identical to those employed for Brown-

ian motion (theorem 13.37 and proposition 13.38):

Ad (i). By switching to a subsequence if needed we may assume that

X () is defined as lim→∞ 3
¡


¢
whenever this limit exists (and arbi-

trarily on the remaining null-set ). Now fix  ∈ H; using complementary
Young regularity we have

3
¡
 + 

¢
= 3

¡


¢→ X () as →∞
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and thus see that X ( + ) = X () for all  and  ∈  .

Ad (ii). By Cameron—Martin, the law of  and  + , as Borel measures

on 
¡
[0 1] R

¢
are equivalent. It follows that the image measures under

the measurable map X (·), Borel measures on Ω, are equivalent. But this
says precisely that the laws of X and X (·+ ) are equivalent and the proof

if finished since X (·+ ) = X almost surely.

Although elementary, let us spell out the following in its natural gener-

ality.

Lemma 15.63 Let  0 be two Polish spaces and  a Borel measure on

. Assume  ∈ supp []and  is continous at . Then  () ∈ supp [∗].
If, in addition, 0 =  and ∗ ∼  then  () ∈ supp [].
Proof. Write  () for an open ball, centered at  of radius   0. For

every   0 there exists  such that  () ⊂ −1 ( ( ())) and hence

0   ( ()) ≤ (∗) ( ( ())) so that  () ∈ supp∗. If ∗ ∼  then

and 0  (∗) ( ( ())) =⇒ 0   ( ( ())) and so  () ∈ supp [].

We are now ready to state the main result in this section.

Theorem 15.64 Let X∗P denote the law of X, a Borel measure on the
Polish space 

0-var
0

¡
[0 1]  3

¡
R
¢¢
where   2. Assume that comple-

mentary Young regularity holds. Then

supp [X∗P] = 3 (H)

where support and closure are with respect to -variation topology. If  is

Hölder dominated, i.e. 
³
[ ]

2
´
≤  |− | for some constant , we can

use 1-Hölder topology instead of -variation topology.

Proof. As a preliminary remark, note that 3 (H) is meaningful since any
 ∈ H has finite -variation (proposition 15.8) and hence lifts canoncially to
a 3

¡
R
¢
-valued paths (of finite -variation) by iterated Young integration

(or more precisely, as application of theorem 9.5).

Step1: ⊂-inclusion. Since {1} := E
£
·|F{1}

¤ ∈ H almost surely

and converges to X in the respective rough path metrics, the first inclusion

is clear.

Step2: ⊃-inclusion. The idea is to find at least one fixed ̂ ∈ 
¡
[0 1] R

¢
such that X (̂) ∈ supp [X∗P] and such that there exists a (deterministic!)
sequence () ⊂ H, which can and will depend on ̂, such that −X (̂) =
X (̂ − ) → X (0) = 3 (0) in rough path metric. Having found such an

element ̂ (with suitable sequence ) we can apply lemma 15.63 with 

as the law of X, a Borel measure on  = 
0-var
0

¡
[0 1] 3

¡
R
¢¢
resp.


01-Höl
0

¡
[0 1] 3

¡
R
¢¢
, 0 =  and continuous function  :  → 

given by  : x 7→ −x; using that the law of X is equivalent to the
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law of X, cf. lemma 15.62, we conclude that −X (̂) ∈ supp [X∗P]. This
holds true for all  and be closedness of the support, the limit X (0) =

3 (0) must be in the support. The same argument shows that any further

translate 3 (0) = 3 () must be in the support and thus

supp [X∗P] ⊃ 3 (H) 
Passing the (-variation resp. 1-Hölder rough path) closure on both sides

then finishes the proof. It remains to see how to find ̂ with the required

properties. Since X () ∈ supp[X∗P] and −X () = X ( − ) holds

true for almost every , there is a nullset 1 so that any  ∈ 1 will have

these properties. Furthermore, theorem 15.51, tells us that there is another

nullset 2 so that we can pick ̂ ∈ (2 ∪1) and

X (̂) = lim
→∞

3

Ã
X
=1

 () |̂ (·)
!
= lim

→∞
X{1} (̂)

X{+1+2 } (̂) → 3 (0) 

It now suffices to set  (·) =
P

=1  () |̂ (·) ∈ H → -var; we then

see that

X (̂ − ) = −X (̂) = lim
→∞

−X
{1} (̂)

= lim
→∞

X{+1} (̂)

= X{+1+2 } (̂)→ X (0) = 3 (0) 

as required, and this finishes the proof.

15.9 Appendix: some estimates in 3
¡
R
¢

Proposition 15.65 Let  ∈ 3
¡
R
¢
 Then, for some constant ,

(i) |2 ()| ≤ max distinct
©¯̄

¯̄ª
+ |1 ()|2 

(ii) |3 ()| ≤ max distinct
©¯̄


¯̄

¯̄


¯̄ª
+ |1 ()|3 + |2 ()|32 

Proof. Pick a path  ∈ 1-var0

¡
[0 1] R

¢
such that  = 3 ()01 =: x01.

Then, statement (i) follows from the calculus identity

 = x

01 ≡

Z 1

0

 =
1

2

¡
1
¢2
=
1

2
|1 ()|2

For (ii) we use the basic inequality  ≤ 1
3
3 + 2

3
32 plus the identies

 =  −  +   (15.40)

 =  −  −  (15.41)

=  − 2
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which we now establish by caclulus. Indeed, (15.40) follows from

x

01 =

Z
01231

1

2
3

=
1

2

Z
01

¯̄
1

¯̄2
 =

1

2

Z
01

¯̄
01 − 0

¯̄2


= x

01


01 − 01x


01 + x


01

whereas (15.41) follows from the fact that x

01 + x


01 equalsZ

01






 =

1

2

¯̄
01

¯̄2


01−

1

2

Z
01

¯̄

¯̄2



0 = x


01


01−x01 

The proof is finished.

Proposition 15.66 Let   ∈ 3
¡
R
¢
with kk  kk ≤  for some pos-

itive constant  Assume that for all distinct indices    ∈ {1     }¯̄
 − 

¯̄
≤ ¯̄

 − 
¯̄
≤ 2¯̄

 − 
¯̄
≤ 3¯̄

 − 
¯̄
≤ 3

Then
¯̄
1 ( − )

¯̄
≤  for some constant .

Proof. We may replace   by 1 1 and hence there is no loss of

generality assuming  = 1. The proof is now similar to the previous one.

15.10 Comments

Our exposition here follows in essence [57]. The lift of certain Gaussian

processes including fractional Brownian Motion with Hurst parameter  

14 is due to Coutin-Qian, [28] and was based on piecewise linear approx-

imations. The key-role of (enough) decorrelation of increments for the ex-

istence of stochastic area was also pointed out in [113]. Karhunen-Loève

approximations for fractional Brownian Motion is studied in [124] and also

[48], implicitly in [59]. We remark that equations (15.29),(15.30) explain

why martingale arguments (see also [65], [58], , [29]) are enough to dis-

cuss the step-2 case (  13) whereas equation (15.32) shows that the

step-3 case requires additional care. A large deviation principle for the lift

of fractional Brownian Motion was obtained in [123], for the Coutin-Qian
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class in [61]. Support statements for lifted fractional Brownian Motion, for

  13, appeared in [48] and [59]. Our theorem 15.64 may also be ob-

tained by applying the abstract support theorem of Aida-Kusuoka-Stroock

[2, Cor 1.13]. We conjecture that complementary Young regularity (condi-

tion 15.60) is not needed for theorem 15.64 to hold true.
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Markov Processes

We have seen in a previous chapter that Brownian motion  can be en-

hanced to a stochastic process B = B () for which almost every realiza-

tion is a geometric 1-Hölder rough path,  ∈ (2 3). As is well-known1,
-dimensional Brownian motion  is a diffusion, i.e. a Markov process with

continuous sample paths, with generator

1

2
∆ =

1

2

X
=1

2 

In the present chapter, our aim here is to replace Brownian motion by a

diffusion  =  with uniformly elliptic generator in divergence form,

1

2

X
=1


¡
 ·

¢


followed by the construction of a suitable lifted process X with geomet-

ric rough (sample) paths. If  =
¡

¢
had enough regularity, one could

effectively realize  as semimartingale, and then construct X as en-

hanced semimartingale. However, assuming no regularity (beyond measur-

ability), this route fails. The generator for  itself is only defined in the

"weak" sense and the focus must be on the bilinear ("Dirichlet") form ( )

( ) 7→ R
R
P

 
  .

The main tool in this chapter will be a suitable Dirichlet form that allows

for a direct construction and analysis of X. From section 16.2 on, we shall

rely heavily on the well-developed theory of Dirichlet forms. The essentials

(for our purposes) are collected in appendix E.

16.1 Motivation

As is common in the theory of partial differential equations, we shall assume

that  =  () is a symmetric matrix such that for some Λ  0,

∀ ∈ R : 1
Λ
||2 ≤  ·  ()  ≤ Λ ||2 ;

1 See e.g. [138, Ch. VII, Prop. (1.11)]
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no regularity of  =  () is assumed (besides measurability in  ∈ R). Let
us say again2, that the study of such a diffusion process , which in many

ways behaves like a Brownian motion, relies heavily on analytic Dirichlet

form techniques. In general,  cannot be constructed as a solution to a

stochastic differential equation and need not be a semi-martingale.

The main idea is roughly the following. Assume at first that  () is

smooth, with bounded derivatives of all orders. In this case,  can be

constructed as a solution to a stochastic differential equations: it suffices

to write the generator of  in non-divergence form as

1

2

X
=1

£
 +

¡



¢

¤
;

then, knowing that  admits a Lipschitz square root3, say , so that

 = , it is a standard exercise in Itô calculus to see that the diffu-

sion constructed as solution to the (Itô) stochastic differential equation

 =  ()  +  ()  with  =
¡

¢
=

Ã
X
=1




!
has indeed generator 1

2

P

¡
 ·

¢
. Moreover, = , the so-constructed

process4, is plainly a semi-martingale  and hence, following section 14.1,

there is a well-defined stochastic area process

 7→ 
;
0 =

1

2

µZ 

0


;
0

;
 −

Z 

0


;
0

;


¶
 with 1 ≤    ≤ 

It is not hard to see (also using standard Itô calculus, cf. exercise 16.15)

that  7→ ¡

0 


0

¢
is a diffusion process on R⊕ (), started at 0, with

generator given by

L := 1

2

X
=1

u
¡
u ·

¢
where, for  = 1  ,

u| =  +
1

2

⎛⎝ X
1≤≤

1; −
X

1≤≤
1;

⎞⎠  (16.1)

Here,  denotes the 
 coordinate vector field on R and  with   

the respective coordinate vector field on  (), identified with its upper

2See e.g. [67, 153].
3 See e.g. [158, Thm 5.2.2].
4 Strictly speaking, this construction depends on the choice of square root and one

may prefer to write  . However, we shall construct the lifted process in a way that its

generator (and hence its law) only depends on  = ; thereby justifying our notation.
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diagonal elements. Following sections 13.2 and 14.1, the enhancement to

 is of the form

X
0 ≡

¡

0 


0

¢ exp
À
log

µ
1

0

Z 

0


0 ⊗ ◦



¶
where we can switch between the "path-area view" and the "iterated-

Stratonovich-integral view" using exp : R ⊕  () ≡ g2 ¡R¢ → 2
¡
R
¢

and its inverse log, respectively.

This suggests to construct X directly as g2
¡
R
¢
-valued Markov-process

with generator L. In fact, for   ∈ ∞
¡
g2
¡
R
¢¢
integration by parts

shows that

hL i =
Z
g2(R)

X


u u 

(Observe that  () may indeed be a function on g2
¡
R
¢
rather than only

R. In fact, this construction is carried out naturally on g
¡
R
¢
, which

allows for a direct "Markovian" modelling of the "higher-order" areas of

X.) The right-hand-side above, which involves no derivatives of
¡

¢
is

another instance of a Dirichlet form, and allows us to deal with measurable¡

¢
.

Remark 16.1 We shall find in more convenient in the present chapter to

adopt the path-area view and define the enhanced Markov process X as the

g2
¡
R
¢
-valued process ( ). Upon setting

() ∗ (0 0) ≡ log (exp ()⊗ (exp (0 0)))
=

µ
+ 0 +0 +

1

2
(⊗ 0 − 0 ⊗ )

¶


()
−1

= (−−) 

we see that exp :
¡
g2
¡
R
¢
 ∗¢→ ¡

2
¡
R
¢
⊗¢ is a Lie group isomorphism.

We then can and will work in g2
¡
R
¢
identified with 2

¡
R
¢
, using iden-

tical notation. For instance, Carnot-Caratheodory norm and distance are

given by

k()k = kexp ()k ∼ ||+ ||12 
 (()  (0 0)) =

°°°()−1 ∗ (0 0)°°° ;
elements in -Höl

¡
[0 1]  g2

¡
R
¢¢
, ∈ (13 12), are -Hölder geometric

rough paths and so forth. The same remarks apply when g2
¡
R
¢
is replaced

by g
¡
R
¢
, noting that we can always use the exponential map to identify

g
¡
R
¢
with 

¡
R
¢
. For instance, the Lyons-lift becomes

s : 
-Höl

¡
[0 1]  g2

¡
R
¢¢→ -Höl

¡
[0 1]  g

¡
R
¢¢
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where, writing exp for the exponential map from g
¡
R
¢
to 

¡
R
¢
,

s := exp
−1
 ◦ ◦ exp2 

16.2 Uniformly subelliptic Dirichlet forms

The Lie algebra g = g
¡
R
¢
is naturally graded in the sense that it has a

vector space decomposition

g
¡
R
¢
= V1 ⊕ · · ·⊕V

where V1 ∼= R and V2 ∼=  () and V ⊂
¡
R
¢⊗

is given by5

V
∼=
£
R   

£
RR

¤
  
¤
= span

©
[1    [−1 ]] : 1      ∈ R

ª


The Campbell-Baker-Hausdorff formula makes (g ∗) into a Lie group, iso-
morphic to

¡


¡
R
¢
⊗¢). There are left invariant vector fields u1     u

on g determined by

u|0 = |0  = 1     

where |0 are the coordinate vector fields associated with the canoncial
basis of V1 = R and

∇hyp = (u1     u)

is the hypoelliptic gradient on g.

Example 16.2 When  = 1, g1
¡
R
¢ ∼= R and the u are precisely

the standard coordinate vector fields . When  = 2, we can identify

g = g2
¡
R
¢
with R ⊕  () and in this case u takes the form given in

(16.1).

Definition 16.3 (Ξ (Λ)) For Λ ≥ 1 we call Ξ (Λ) = Ξ (Λ) the set of

all measurable maps  () from g = g
¡
R
¢
into the space of symmetric

matrics such that

∀ ∈ R : 1
Λ
||2 ≤  ·  ()  ≤ Λ ||2 

Theorem 16.4 Fix Λ ≥ 1. For   ∈ ∞ (gR) and  ∈ Ξ (Λ) we define
the carré-du-champ operator

Γ ( ) := ∇hyp · ∇hyp =
X

=1

u u

5Recall that [ ] = ⊗  = ⊗ 
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and,  () =  denotes Lebesgue measure on g,

E ( ) :=
µZ

g

Γ ( ) 

¶


When  = , the identity matrix, we simply write Γ E rather than Γ  E .
Then E extends to a regular Dirichlet form, as defined in appendix E.2,
which posseses ∞ (gR) as a core. The domain of E, denoted by 12 (g) :=
D (E), does not depend on the particular choice of  ∈ Ξ (Λ) and is given
as the closure of ∞ -functions with respect to

| |2 12(g) := E ( ) + h i2(g) 

At last, E is strongly local (in the sense of definition E.3).
Proof.We first discuss the case  = . By invariance of Lebesgue measure

 under (left- and right) multiplication on (g ∗), established in proposi-
tion 16.40 in the appendix to this chapter, one sees that the vector fields

u1     u are formally skew-symmetric so that, for any   ∈ ∞ (gR)

E ( ) =
X
=1

hu ui2 = −
X
=1

huu i2 = hL i

where L is given in Hörmander form P2
=1 u

2
 . Consider now a sequence of

∞ -function  → 0 in 2 so that E ( −   − )→ 0 as →∞.
To see that E is closable with core ∞ (gR), and hence extends to a regular
Dirichlet from, we need check that E ( )→ 0 as →∞. To this end,
fix   0 and pick  large enough so that

E ( −   − ) ≤ 1

for all   . Using bilinearity and E ( ) ≤ E ( )12 E ( )12 is
easily follows that

sup
∈{+1 }

E ( ) ≤  ∞

where  depends on E ( ) only. Moreover, for all     

E ( ) = hL i2 + E ( −  )

≤ ||2 |L|2 + E ( −   − )
12

so that we can first choose  large enough such that for all   ,

E ( −   − )
12

 2

followed by taking  large enough so that ||2 |L|2  2. But this

shows that for  large enough E ( )  , as required. For the discussion
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of  6= , let us note that E ( ) → 0 can be equivalently expressed by

saying

∀ ∈ {1     } : |u|22 → 0 as →∞
and by passing to a subsequence we may assume that u → 0 a.e. for all

 = 1     . Hence

E ( ) =

Z
lim
→∞

⎛⎝ X
=1

u ( − ) u ( − )

⎞⎠ 

≤ lim inf
→∞

E ( −   − )

by Fatou’s lemma which shows that E is also closable. Strong locality of
the resulting Dirichlet form, also denoted by E, is a simple consequence
of the fact that the u are (pure) first order differential operators.

We now establish three important properties related to this setup.

Proposition 16.5 Let  ∈ Ξ (Λ). Then the following holds.
(i) The intrinsic distance associated to E,
 ( ) = sup { ()−  () :  ∈ D (E) ∩  (g) and Γ

 ( ) ≤ 1} 
defines a genuine metric on g. When  = , it coincides with the Carnot-

Caratheodory metric  on g. Otherwise, we have, for all   ∈ g
1

Λ12
 ( ) ≤  ( ) ≤ Λ12 ( ) 

In particular, the topology induced by  coincides with the canonical topol-

ogy on g;

(ii) Set  ( ) = { ∈ g :  ( )  }. Then, for
∀ ≥ 0 and  ∈ g :  ( ( 2)) ≤ 2 ( ( ))

with doubling constant  given by

 = (dim g) (1 + 2 lnΛ ln 2)

where dim (g) is the "homogenous" dimension
6 of g defined by

dim (g) =

X
=1

dimV

(iii) The weak Poincaré inequality; that is, for all  ≥ 0  ∈ g and  ∈
 (E) and , Z

()

¯̄
 − ̄

¯̄2
 ≤ 2

Z
(2)

Γ ( ) 

6As a matter of fact, it also is the Haussdorff dimension of g when equipped with

Carnot-Caratheodory metric.
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where  =  (Λ ) and ̄ being the average of  over  ( ), i.e.

̄ =  ( ( ))
−1
Z
()



Proof. Case 1:  = , the identity matrix. In this case (i),(ii),(iii) are

well-known facts from analysis on free nilpotent groups. For the sake of

completeness, statement (i) is shown in section 16.9.3; (ii) follows by left-

invariance and scaling; noting that on g = g
¡
R
¢
, the dilation map 2 :¡

(1)     ()
¢ 7→ ¡

2(1)     2()
¢
has a Jacobian with value 2dim g.

A few more details are given in section 16.9.1. At last, (iii) is a Poincaré

inequality and the reader can find a self-contained proof in section 16.9.2.

Case 2:  ∈ Ξ (Λ) and no regularity assumtpions beyond measurability.
The key observation is that E and E are (obviously) quasi-isometric in
the sense that

1

Λ
E ( ) ≤ E ( ) ≤ ΛE ( ) or

1

Λ
Γ ( ) ≤ Γ ( ) ≤ ΛΓ ( ) 

and we conclude with invariance of properties (i),(ii),(iii) under quasi-

isometry (cf. theorem E.8 in the appendix).

As it turns out (cf. appendix E.4 for precise statements) the just estab-

lished properties (i),(ii),(iii) allow us to use a highly developed essentially

analytic machinery. In particular, E determines (non-positive) self-adjoint
operator L on 2 (g ) and weak (local) solutions to

 = L

satisfy a parabolic Harnack inequality as well as Hölder regularity in space-

time. More precisely, we have

Proposition 16.6 (Parabolic Harnack Inequality) Let  ∈ Ξ (Λ). There
exists a constant7  =  (Λ) such that

sup
()∈−

 ( ) ≤  inf
()∈+

 ( ) 

whenever  is a nonnegative weak solution of the parabolic partial differ-

ential equation  = L on some cylinder  =
¡
− 42 ¢ ×  ( 2)

for some reals    0. Here, − =
¡
− 32 − 22¢× ( ) and + =¡

− 2 
¢ ×  ( ) are lower and upper sub-cylinders of  separated by

a lapse of time.

7As usual, dependence on   is not explicitly written.
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Proposition 16.7 (De Giorgi-Moser-Nash regularity) Let  ∈ Ξ (Λ). Then
there exist constants  ∈ (0 1) and , only depending on Λ, such that

sup
()(00)∈1

| ( )−  (0 0)| ≤  sup
∈2

|| 
Ã
|− 0|12 +  ( 0)



!



whenever  is a non-negative weak solution of the parabolic partial differen-

tial equation  = L on some cylinder 2 ≡
¡
− 42 ¢× ( 2) for

some reals    0. Here 1 ≡
¡
− 2 − 22¢ ×  ( ) is a subcylinder

of 2.

We also note that the 2-semi-group (P
 :  ≥ 0) associated to L resp.

E admits a kernel-representation8 of the form

(P
 ) =

Z
 ()  ( · )  () (16.2)

where the so-called heat-kernel  is a non-negative weak solution of the

parabolic partial differential equation  = L with (distributional) ini-
tial data  (0 ·) = . Thanks to self-adjointness of L, the heat-kernel
 =  (  ) is symmetric in  and . As discussed in the generality of

appendix E.5 the heat-kernel allows for the construction of a continuous,

symmetric diffusion process X = X associated to L resp. E so that the
finite-dimensional distributions of X are given by

P; [(X1    X) ∈ ] =

Z


 (1  1)    
 ( − −1 −1 ) 1    

We remark that P = X∗P;, the law of X, can be viewed as Borel mea-
sure on  ([0∞) g). Although it is not always necessary to be specific
about the underlying probability space, this allows to realize X as coor-

dinate process on the pathspace, i.e. X () =  for  ∈  ([0∞) g),
equipped with P.

Proposition 16.8 (Weak Scaling) For any  ∈ Ξ (Λ)   6= 0 set  () :=

¡
1 

¢ ∈ Ξ (Λ), where we recall that  denotes dilation on g,³
X

 :  ≥ 0

´ D
=
³
X

1()

2
:  ≥ 0

´


Proof. It is easy to see, cf. remark E.16, that (X
 :  ≥ 0) is the symmetric

diffusion associated to 2E. On the other hand, our state space has a
structure that allows spatial scaling via dilation. Then the generator of

(X

 :  ≥ 0) is given by 2L(1·) ≡ 2L or, equivalently, the Dirichlet

8See exercise 16.10 below for a direct proof.



16. Markov Processes 461

form 2E . Combing these two transformation (take  = 12) shows that³
X


2

:  ≥ 0
´
has associated Dirichelt form given by E . It also clear

that starting X

2 at  is tantamount to starting X



2 at 1 ().

Exercise 16.9 Let B denote be an enhanced Brownian motion.

(i) Show that

X2; ≡  ∗ log ((B))

is a symmetric diffusion, started at  ∈ g ¡R¢, with generator P
=1 u ◦

u.
(ii) Use scaling for enhanced Brownian motion to deduce the on-diagonal

heat-kernel estimate

 (  ) ≤ −dim g2 (1 −12 −12) ≤ −dim g2

(This is equivalent to |P|1→∞ ≤ −dim g2where P is the associated
semi-group.)

Exercise 16.10 (i) Assume E is be an abstract (symmetric) Dirichlet form
and write (P) for the associated Markovian semigroup. Let  ∈ (0∞).
Show that the following two statements are equivalent:

- there exists 1 such that for all   0

|P|1→∞ ≤ 1
−2; (16.3)

- Nash’s inequality holds, i.e. there exists 2 such that for all  ∈  (E)∩
1

| |2+4
2

≤ 2E ( ) | |21
(16.4)

(When switching between the two estimates, the constant  depends only

on  and .)

(ii) Consider now  ∈ Ξ (Λ) and the Dirichlet form E on 2 (g )
where g = g

¡
R
¢
as usual. Use exercise 16.9 and invariance of (16.4)

under quasi-isometry to establish

|P
 |1→∞ ≤ 3

−dim g2

(iii) Deduce existence of a heat-kernel , with the on-diagonal estimate

∀  0  ∈ g :  (  ) ≤ 3
− dim g2,

so that (16.2) holds for any  ∈ 2.
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16.3 Heat-kernel estimates

As in the previous section, we write g = g
¡
R
¢
. We now turn to "Gaussian"

estimates of the heat-kernel

 : (0∞)× g× g→ [0∞)
Sharp estimates involve the intrinsic metric  on g, introduced in proposi-

tion 16.5; although, for most (rough path) purposes one can use the Carnot-

Caratheodory metric . Once more, following appendix E.4 all results of this

sections are an automatic consequence of properties (i),(ii),(iii) in propo-

sition 16.5. Nonetheless, it is instructive to note that an application of

Harnack’s inequality immediately leads to

 (  ) ≤ 1
1


¡

¡
 12

¢¢ ≤ 2
1


¡

¡
 12

¢¢ ≤ 3
−dim g2

where 1 2 3 depend only on Λ, in agreement with the conclusion of

exercise 16.10. We now state the full heat-kernel estimates.

Theorem 16.11 Let  ∈ Ξ (Λ). Then, for all   0 and   ∈ g we have
(i) (Upper heat-kernel bound) for any   0 fixed there exists  =  (Λ)

such that,

 (  ) ≤ √
dim g

exp

Ã
−

 ( )
2

(4 + ) 

!
(ii) (Lower heat-kernel bound) there exists  =  (Λ) such that

 (  ) ≥ 1



1√
dim g

exp

Ã
−

 ( )
2



!


Proof. An immediate corollary of the abstract heat-kernel estimates in

appendix E.4.

Corollary 16.12 For any  ∈ Ξ (Λ), write X = X for the (continuous)

g-valued diffusion process associated to E, started at  ∈ g. Then,
(i) for all   1 (4Λ) we have

 := sup
∈Ξ(Λ)

sup
∈g2(R)

sup
0≤≤1

E
Ã
exp

Ã

 (XX)

2

− 

!!
∞; (16.5)

moreover, there exists  (Λ) such that  ≤ 1 +  ≤ exp () for all

 ∈ £0 1
16Λ

¤
;

(ii) for any  ∈ (0 12), there exists  =  (Λ) such that9

sup
∈Ξ(Λ)

sup
∈g2(R)

E exp
³
 kXk2-Höl;[01]

´
∞;

9By convention, kXk-Höl;[01] is defined with respect to the Carnot-Caratheodory 
on g.



16. Markov Processes 463

(iii) there exists  =  (Λ) such that

sup
∈Ξ(Λ)

sup
∈g2(R)

E exp
³
 kXk221-var;[01]

´
∞

Proof. A straight-forward computation shows that the upper heat-kernel

estimate implies (16.5); this is not specific the present setting and hence

carried out in a general context in appendix E.6.1. The estimate on 

for small   1 (16Λ) follows readily from the inequality exp () ≤ 1 +
 exp ()  for   0 and we obtain

 ≤ 1 +  sup
∈R

sup
∈[01]

E
Ã
 (XX)

2

− 
exp

Ã

 (XX)

2

− 

!!


Now it suffices to apply Cauchy-Schwartz; noting that 2 ≤ 1 (8Λ) 

1 (4Λ). The Fernique estimates for kXk-Höl;[01] are then a consequence
from general principles, namely theorem A.20 in the appendix.

Recall that  (  )  is precisely that law of X
;
 , i.e. the marginal

law of a g-valued diffusion process. We now state a "localized" lower bound

by considering the process X; killed at its first exit from a fixed ball in

g.

Theorem 16.13 (Localized lower heat-kernel bound) Let  ∈ Ξ (Λ)   0 ∈
g   0 and write X = X for the diffusion process associated to E,
started at . Also set

(0) = inf { ≥ 0 : X;
 ∈  (0 )} 

Then the measure P;
³
X ∈ ·  (0)  

´
admits a density (0) (  ) 

with respect to Lebesgue measure on g. Moreover, if   are two elements

of  (0 ) joined by a curve  which is at a -distance   0 of

g (0 ) there exists a constant  =  (Λ) such that

(0) (  ) ≥
1


22

exp

Ã
−

 ( )
2



!
exp

µ
−

2

¶
where  = min

©
 2

ª
.

16.4 Markovian rough paths

The considerations of the previous sections, with g = g
¡
R
¢
and uni-

formly elliptic matrix  ∈ Ξ (Λ) = Ξ (Λ) apply to every fixed  ∈
{1 2    }. Corollary 16.12 tells us that the g-valued process X has a.s.

sample paths of finite -Hölder regularity (with respect to Carnot-Caratheodory

metric on g), for any  ∈ [0 12).
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For  = 1 and  ∈ Ξ1 (Λ) we prefer to write  (instead of X ...)

and note that  is an R-valued Markov process. Similar to Brownian
motion, its sample paths are not geometric rough paths. If  is smooth,

 is a semi-martingale but for a general,  ∈ Ξ1 (Λ),  need not

be a semi-martingale. For  ≥ 2 we can pick any  ∈
³

1
+1

 1


´
and

thus obtain a Markov process X whose sample paths are a.s. -Hölder

geometric rough path. Of course, by means of the Lyons lift we have a

deterministic one-to-one correspondence (cf. theorem 9.12), applicable to

almost every realization of X,

X̃ ≡ (1 1 (X)  2 (X
))↔ X

and we can recover {X
 : 0 ≤  ≤ } from its level-2 projection

n
X̃
 : 0 ≤  ≤ 

o
.

On the other hand, the projected process X̃ need not be Markovian: for

instance, when  = 3, the future evolution of X (and thus of X̃) will de-

pend on the current state of X ∈ g3 ¡R¢ and thus, in general, on 3 (X)

which is not part of the state space for X̃.

Definition 16.14 (i) Let  ≥ 2 and  ∈ Ξ (Λ). Almost every sam-
ple path of a Markov process X, constructed from the Dirichlet form E
on 2

¡
g
¡
R
¢¢
  ∈ Ξ (Λ), is a -Hölder geometric rough path10 , for

some   12, and is called Markovian rough path.

(ii) Let  ∈ Ξ1 (Λ)   ◦ 1 ∈ Ξ2 (Λ) and fix  ∈ g2 ¡R¢. The g2 ¡R¢-
valued Markov process X◦1, constructed from the Dirichlet form E◦1
on 2

¡
g2
¡
R
¢¢
is called natural lift of ;1() or enhanced Markov

process.

The "naturality" of our definition of enhanced Markov process comes

from various points of views.

(i) If  ∈ Ξ1 (Λ) is smooth then  is a semi-martingale; following

section 14.1, we can then enhance  with its stochastic area, say ,

given by iterated Stratonovich integration, and so obtain a g2
¡
R
¢
-

valued lift of  which is seen to have the same law as X◦1 , defined
via the Dirichlet form E◦1 . (See exercise 16.15 below.)

(ii) If a general  ∈ Ξ1 (Λ) is the limit of smooth  ⊂ Ξ1 (Λ), then
X◦1 converges weakly and the limiting law coincides with the one
implied by E◦1 . (See exercise 16.15 below.)

(ii bis) This implies that, if for general  ∈ Ξ1 (Λ) we construct  via

E (for instance, on the canoncial path space  ¡[0 1] R¢ with ap-
propriate measure  ) and also X◦1 via E◦1 (for instance, on

10 ... on any interval [0  ] ...
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the canoncial path space 
¡
[0 1]  g2

¡
R
¢¢
with appropriate measure

P◦1) then

1 (X
◦1) D=  or, equivalently, (1)∗P

◦1 =   (16.6)

(See exercise 16.15 below.)

(iii) For any  ∈ Ξ2 (Λ) we can constructX = X via E (for instance, on
the canoncial path space 

¡
[0 1]  g2

¡
R
¢¢
with appropriate measure

P). We will see that, on that same probabilty space, for   12

-Höl;[01]

³
2

³
1 (X)



´
X
´
→ 0 in P-probability.

Here  denotes the piecewise linear approximations, and () ⊂
D [0 1] is a sequence of dissection with mesh ||→ 0. (See theorem

16.25 in section 16.5.2.)

(iv) If  ∈ Ξ1 (Λ) we can construct  =  via E (for instance, on the
canoncial path space 

¡
[0 1] R

¢
with appropriate measure  ). We

can then ask if there exists a process X̃ defined on the same probability

space as  such that,

-Höl

³
2
¡


¢
 X̃
´
→ 0 in  -probability for   12

The answer is affirmative. Indeed, from (iii)
³
1 (X)

  ∈ N
´
is

Cauchy with respect to -Höl in P
-probability and hence, using

(16.6) also Cauchy in  -probability, with limit X̃ say, constructed on

the same probability space as . On the other hand, since 1 (X)
 D

=

 for all  we must have X̃
D
= X. (This also shows that the limit

X̃ does not depend on the particular sequence () which underlied

the construction of X̃).

Exercise 16.15 Fix  ∈ g2 ¡R¢ and take, for simplicity of notation only,
 = 0. Let  ∈ Ξ1 (Λ) be smooth.
(i) Construct  = 0 as solution to an Itô stochastic differential equa-

tion and verify that  is a semi-martingale.

(ii) From section 14.1, we can enhance  with its stochastic area, say

, given by iterated Stratonovich integration, and so obtain a g2
¡
R
¢
-

valued lift of . Verify that this is consistent with the construction of

X◦1 = X◦10 via the Dirichlet form E◦1 on 2
¡
g2
¡
R
¢¢
in the sense

that

( )
D
= X◦1 

Deduce that, if P◦1 denotes the law of X◦1 viewed as Borel measure on

¡
[0 1]  g2

¡
R
¢¢
, and similarly   denotes the law of 

· viewed as Borel
measure on 0

¡
[0 1] R

¢
, then

(1)∗ (P
◦1) =  
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(iii) Let (̃) ⊂ Ξ2 (Λ) smooth so that ̃ → ̃ ∈ Ξ2 (Λ) a.s. (which is
always possible by using mollifier approximations for a given ̃ ∈ Ξ2 (Λ)).
As we shall see later on the forthcoming section 16.6, this entails weak

convergence (with respect to uniform topology, say)

X̃ =⇒ X̃

Apply this convergence result to ̃ =  ◦ 1 where  ∈ Ξ1 is a smooth
mollifier approximation to  ∈ Ξ1. Conclude that (16.6) remains valid
for all  ∈ Ξ1 (Λ), where P◦1 is fully determined by the (uniformly
subelliptic) Dirichlet form E◦1 on 2

¡
g2
¡
R
¢¢
and   fully determined

by the (uniformly elliptic) Dirichlet form E on 2
¡
R
¢
.

16.5 Strong approximations

16.5.1 Geodesic Approximations

Recall that g = g
¡
R
¢
equipped with Carnot-Caratheodory distance 

is a geodesic space. Given a dissection  of [0 1] and a deterministic path

x ∈ -Höl
¡
[0 1]  g

¡
R
¢¢
we can approximate x by its piecewise geo-

desic approximation, denoted by x, obtained by connecting the points

(x :  ∈ ) with geodesics run at unit speed. This was already discussed

in section 5.2 where we saw that

sup
∈D[01]

°°x°°
-Höl;[01]

≤ 31− kxk-Höl;[01] (16.7)

and also x → x uniformly on [0 1] as || → 0. Of course, our state

space g,which may be identified with 
¡
R
¢
, has additional structure.

The geodesic approximation x has finite length and so has its projection

1
¡
x
¢
to an R-valued path. We can then recover x by computing area-

integral(s) of 1
¡
x
¢
, formally

x = log
¡
1
¡
x
¢¢ ≡ s ¡1 ¡x¢¢

By interpolation (cf. proposition 8.17) it is then clear that

-Höl
¡
log

¡
1
¡
x
¢¢
x
¢→ 0 as ||→ 0.

Observe that 1
¡
x
¢
is constructed based on knowledge of the entire g-

valued path x. In our present application, it would be enough to know only

s2 (x), the projection of x to is first two levels. We have

Proposition 16.16 Let  ≥ 2 and x ∈ -Höl
¡
[0 1]  g

¡
R
¢¢
for any

  12. Then for any  ∈ {2     }

-Höl

³
s

³
1

³
s (x)


´´

x
´
→ 0 as ||→ 0
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Remark 16.17 This proposition is purely deterministic and does not hold,

in general, for  = 1. However, when x = x () is a suitable sample paths

(see discussion below) then, for  = 1, convergence may hold almost surely.

Proof. It is enough to consider  = 2. Take  ∈ (13 12) so that the
projection s2 (x) ≡ (1 (x)  2 (x))
is a geometric -Hölder rough which allows to reconstruct the original

path as the Lyons-lift

s ◦ s2 (x) = x.
Obviously, the geodesic approximations to s2 (x), given by

[s2 (x)]

= s2 ◦ 1

³
s2 (x)


´

converge uniformly with uniform 0-Hölder bounds, where 0 ∈ ( 12)
and then, by interpolation, in -Hölder distance. By continuuty of the

Lyons lift, this implies

s ◦ 1
³
s2 (x)


´
→ s ◦ s2 (x) = x as ||→ 0

To see that this cannot be true for  = 1 is suffices to take a pure-area

rough path, say

 7→ (0 0; ) ∈ g2 ¡R2¢
which is (12)-Hölder. Obviously, no (lifted) geodesics approximation to

(0 0) can possibly recover the original path in g2
¡
R2
¢
.

this (purely) deterministic result is false. Ho for  = 1.

We emphasize that this approximation applies to Markovian rough paths

X; in a purely determinstic fashion, path-by-path, and requires (at least)

apriori knowledge of path and area,

s2 (X
;) ≡ (1 (X;)  2 (X

;)) 

In contrast, we shall establish in the next section the probabilistic state-

ment that (lifted) piecewise linear approximations to the R-valued path
1 (X

;) also converge to X;, i.e.

-Höl

³
s

³
1 (x)


´
x
´
→ 0 as ||→ 0

in probability (and, in fact, in  for all  ∞).

16.5.2 Piecewise linear approximations

In contrast to the just-discussed geodesic approximation, convergence of

piecewise linear approximations, based on the R-valued path 1 (X
)
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alone and without apriori knowledge of the area 2 (X
), is a genuine

probabilistic statement and relies on subtle cancellations.

We maintain our standing notations, g = g
¡
R
¢
and Ξ (Λ) de-

notes uniformly elliptic matrices defined on g, and recall that for any
 ∈ Ξ (Λ), we have constructed a g-valued diffusion process X = X,

associated to the Dirichlet form E. This process can be projected to an
R-valued process,

 = 1 (X)

which will not be Markov in general.

Theorem 16.18 Let   12 and  ≥ 2 and  ∈ Ξ (Λ). Then, for
every  ∈ g we have

-Höl;[01]
¡
s
¡


¢
X
¢→ 0 in  (P) as ||→ 0

The proof stretches over the remainder of this section and we shall just

argue here how to reduce the proof to the seemingly simpler statements

that

-Höl;[01]

³
s2
¡


¢
 X̃
´
→ 0 in probability, (16.8)

where X̃ := s2 (X) = (1 (X)  2 (X)) is non-Markov in general, and

sup


°°°°°s2 ¡
¢°°

-Höl;[01]

°°°
(P)

∞ (16.9)

(We will obtain (16.8),(16.9) in the forthcoming theorems 16.25 and 16.19

below). Indeed, taking  ∈ (13 12) we can use continuity and basic

estimates of the Lyons lift, to see that (16.8),(16.9) imply

-Höl;[01]
¡
s
¡


¢
X
¢ → 0 in probability, (16.10)

sup


°°°°°s ¡
¢°°

-Höl;[01]

°°°
(P)

 ∞ (16.11)

The convergence statement in theorem 16.18 then follows a fortiori from

general principles (based on interpolation) see proposition A.16 in the ap-

pendix. We now discuss the ideas that will lead us to the proof of (16.8)

and (16.9).

The Idea

Fix a dissection  = { : } of [0 1] and  ∈ Ξ (Λ). Let us project X = X

to the R-valued process  =  and consider piecewise-linear approxima-

tions to  based on , denoted by . Of course,  has a canonically

defined area given by the usual iterated integrals and thus gives rise to an

g-valued path which we denote by s2
¡


¢
. For 0 ≤   12 as usual, the

convergence

-Hölder

³
s2
¡


¢
 X̃
´
→ 0 in probability (16.12)
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as || → 0 is a subtle problem and the difficulty is already present in the

pointwise convergence statement

s2
¡


¢
0
→ X̃0 as ||→ 0

Our idea is simple. Noting that straight line segments do not produce

area, it is an elementary application of the Campbell-Baker-Hausdorff for-

mula to see that for  ∈  = {}³
s2
¡


¢
0

´−1
∗ X̃0 =

X


+1  (16.13)

where  is the area of X̃ and ∪ [ +1] = [0 ]. On the other hand, it is
relatively straight-forward to show that the  norm of

°°s2 ¡
¢°°

-Höl;[01]

is finite uniformly over all . In essence, this reduces (16.12) to the point-

wise convergence statement which we can rephrase as
P

+1 → 0 It

is natural to show this in 2 since this allows to write11

E

⎡⎣¯̄̄̄¯X


+1

¯̄̄̄
¯
2
⎤⎦ =X



E
³¯̄
+1

¯̄2´
+ 2

X


E
¡
+1 · +1

¢


For simplicity only, assume +1 −  ≡  for all . As a sanity check, if 

were a Brownian motion and  the usual Lévy area, all off-diagonal terms

are zero andX


E
³¯̄
+1

¯̄2´ ∼X


2 ∼ 1

2 → 0 with || =  → 0

which is what we want. Back to the general case of X = X, the plan must

be to cope with the off-diagonal sum. Since there are ∼ 22 terms what

we need is

E
¡
+1 · +1

¢
= 

¡
2
¢


To this end, let us momentarily assume that

sup
∈g

E (0) =  ()  (16.14)

holds. Then, using the Markov property12,¯̄
E
¡
+1 · +1

¢¯̄ ≤ E³¯̄+1

¯̄
×
¯̄̄
EX0

¯̄̄´
= E

¡¯̄
+1

¯̄¢×  ()

11Recall that  () ⊂ R ⊗ R has Euclidean structure, i.e.  · ̃ =


=1
̃

and ||2 =  ·. It may be instructive to consider  = 2 in which case  can be viewed

as scalar.
12 It is important that will condition with respect to X ∈ g


R

and not X̂ ∈

g2

R

since X is Markov whereas, in general, X̂ is not.
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and since E
¡¯̄
+1

¯̄¢ ∼ , by a soft scaling argument, we are done. Un-

fortunately, (16.14) seems to be too strong to be true but we are able to

establish a weak version of (16.14) which is good enough to successfully

implement what we just outlined. The key to all this (cf. the proof of the

forthcoming Proposition 16.20) is a semi-group argument which leads to

the desired cancellations.

Uniform Hölder Bound

Let  denote the piecewise linear approximation to  =  (). We will

need -bounds, uniformly over all dissections , of the homogenous -

Hölder norm of the path  and its area. That is, we want

sup


¯̄̄°°s2 ¡
¢°°

-Höl;[01]

¯̄̄
(P;)

∞

This will follow a fortiori from the following uniform Fernique estimates.

Theorem 16.19 There exists  =  (Λ)  0 such that

sup
∈Ξ(Λ)∈g

sup


sup
0≤≤1

E

⎛⎜⎝exp
⎛⎜⎝

°°°s2 ¡
¢


°°°2
− 

⎞⎟⎠
⎞⎟⎠ ∞ (16.15)

As a consequence, for any  ∈ [0 12) there exists  =  (Λ)  0 so

that

sup
∈Ξ(Λ)∈g

sup


E
³
exp

³

°°s2 ¡

¢°°2
-Höl;[01]

´´
∞

Proof. Estimate (16.15) shows that the process s2
¡


¢
satisfies the Gaussian

integrability condition put forward in appendix A.4, uniformly over  

as indicated. The consequence then follows from general principles, found

in the same appendix. (We could also obtain uniform 21-variation esti-

mates.) In other words, we only have to establish (16.15). To this end, we

recall from corollary 16.12 that for  ∈ [0 1
4Λ
)

 ≡ sup
∈Ξ(Λ)∈g

sup
0≤≤1

E
Ã
exp

Ã

kXk2
− 

!!
∞
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Then, by the triangle inequality13,°°°s2 ¡
¢


°°°
√
− 

≤

°°°s2 ¡
¢


°°°
√
 − 

+

°°°s2 ¡
¢


°°°p
 − 

+

°°°s2 ¡
¢


°°°
√
− 

≤

¯̄̄



¯̄̄
√
 − 

+

°°°s2 ¡
¢


°°°p
 − 

+

¯̄



¯̄
√
− 

≤
°°X

°°
√
 − 

+

°°°s2 ¡
¢


°°°p
 − 

+
kXk√
− 

≤

⎛⎜⎝3°°X

°°2
 − 

+
3
°°°s2 ¡

¢


°°°2
 − 

+
3
°°X



°°2
− 

⎞⎟⎠
12



Hence

E

⎛⎜⎝exp
⎛⎜⎝

°°°s2 ¡
¢


°°°2
− 

⎞⎟⎠
⎞⎟⎠

≤ E
⎧⎨⎩exp

⎡⎣
⎛⎝3kXk2

− +
3

s2()


2
− +

3kXk2
−

⎞⎠⎤⎦⎫⎬⎭
≤2

6E


⎛⎝exp
⎛⎝6

s2()


2
−

⎞⎠⎞⎠
and the proof is reduced to show that for some   0 small enough

sup
∈Ξ(Λ)∈g

sup


sup
∈

E

⎛⎜⎝exp
⎛⎜⎝6

°°°s2 ¡
¢


°°°2
− 

⎞⎟⎠
⎞⎟⎠ ∞

By the triangle inequality for the Carnot-Caratheodory distance, for   ∈
 °°°s2 ¡

¢


°°° ≤ °°°X̃

°°°+ 
³
X̃  s2

¡


¢


´


To proceed we note that, similar to equation (16.13),

³
s2
¡


¢


´−1
∗ X̃ =

−1X
=

+1 

13Note
X̂

 ≤ kXk for all   .
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By left-invariance of the Carnot-Caratheodory distance  and equivalence

of continuous homogenous norms (so that, in particular, k()k ∼ || +
||12 where |·| denotes Euclidean norm on R resp. R ⊗R) there exists
 such that


³
X̃  s2

¡


¢


´
=

°°°°°
Ã
0

−1X
=

+1

!°°°°°
≤ 

¯̄̄̄
¯
−1X
=

+1

¯̄̄̄
¯
12

≤ 

vuut−1X
=

¯̄
+1

¯̄

≤ 

vuut−1X
=

°°X+1

°°2
By Cauchy-Schwartz,

E

⎛⎜⎝exp
⎛⎜⎝6

°°°s2 ¡
¢


°°°2
 − 

⎞⎟⎠
⎞⎟⎠

≤ E
µ
exp

µ
12

kXk2
−

¶
exp

µ
12

−1
=kX+1k2

−

¶¶
≤24E

µQ−1
= exp

µ
24

kX+1k2
−

¶¶


and the E () term in the last line is estimated using the Markov prop-

erty as follows.

E
Ã
−1Y
=

exp

Ã
24

°°X+1

°°2
 − 

!!

≤Q−1
= sup∈g E



µ
exp

µ
24

+1−
−

kX0+1−k2
+1−

¶¶
≤Q−1

= 24
+1−
−

≤Q−1
= exp

³
0 × 24 +1−

−

´
for  small enough

= exp (240) ∞

where we used the "estimate on " given in corollay 16.12, valid for 

small enough. The proof is then finished.

The Subtle Cancellation

Let us define

 ( ) :=
1


E (+) ∈  () and  () :=  (0 ) 
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For instance, (16.14) is now expressed as lim→0  ()→ 0 uniformly in .

Our goal here is to establish a weak version of this. We also recall that

+ = 2 (X+) = 2
¡
X−1 ∗X+

¢


Proposition 16.20 (i) We have uniform boundedness of ; () 

sup
∈g2()

sup
∈[01]

sup
∈[01−]

 ( ) ∞

(ii) For all  ∈ 1 (g ) 

lim
→0

Z
g

 ()  () ≡ 0

Proof. (i) follows from theorem 16.19. For (ii) we first note that suffices

to consider  smooth and compactly supported. Now the problem is local

and we can assume that smooth locally bounded functions such as the

coordinate projections 1; and 2; are in  (E). (More formally, we
could smoothly truncate outside the support of  and work on a big torus).

Clearly, it is enough to show the componentwise statement

lim
→0

Z
g

 ()2; ( ()) ≡ 0

for    fixed in {1  }. To keep notation short we set  ≡ 2; (·) and
abuse notation by writing  instead of . We can then write

E· () ≡ E· ( (X)) =: P
  ()

and note that P
0  () =  when  =

¡
1 

¢ ∈ g. Writing h· ·i for the
usual inner product on 2 (g ) we have

hE0i =

¿
E· (X)−− 1

2
E·

¡
[1 (·) X1

 ]
¢À

= hP
  − P

0 i−
¿

1

2
E·

¡
[1 (·) X1

 ]
¢À

=

Z 

0

E (P
 )−

¿

1

2
E·

¡
[1 (·) X1

 ]
¢À

= E ( )× −
¿

1

2
E·

¡
[1 (·) X1

 ]
¢À
+  () 

Here, again, we abused notation by writing [· ·] instead of picking out the
( ) component and using the cumbersome notation [· ·]. Note that in
general E ( )×  6=  () and our only hope is cancellation of 2E ( )
with the bracket term

E·
¡
[1 (·) X1

 ]
¢® ≡ E· ¡[1 (·) X1

 ]

¢®
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To see this cancellation, we compute the bracket term,
E·

¡
[1 (·) X1

 ]

¢®

=

Z
 ()E

³
1;X

1;
 − 1;X

1;


´
=

Z
 ()

¡¡
1; [P

 1;] ()− 1; [P
 1;] ()

¢¢


and by adding and subtracting 1;1; inside the integral this rewrites asZ
 ()1; {[P

 1;] ()− 1; ()}−
Z

 ()1; {[P
 1;] ()− 1; ()} 

It now follows as earlier that
E·

¡
[1 (·) X1

 ]

¢®
= [E (1; 1;)− E (1; 1;)]× +  ()

and we see that the required cancellation takes place if, for all  smooth

and compactly supported,

[E (1; 1;)− E (1; 1;)] =
(to be checked)

2E ( 2;) 

We will check this with a direct computation. First note that

E (1; 1;)− E (1; 1;) =
Z

1Γ
 ( 1)−

Z
1Γ

 ( 1)

which is immediately seen via symmetry of Γ (· ·), inherited from the

symmetry of
¡

¢
 and the Leibnitz formula

E (0 ) =
Z

Γ (0 ) +
Z

0Γ ( ) 

It is immediately checked from the definition of the vector fields u, see
equation (16.1), that

u ≡ u2; =
⎧⎨⎩ − (12)1; if  = 

(12)1; if  = 

0 otherwise

so that (noting 1 = 2u and also using u1; =  i.e. 1 if  =  and 0

otherwise)Z
1Γ

 ( 1) =
X


Z
1

uu1 = 2
X


Z
(u) 

 (u)

and similarly

−
Z

1Γ
 ( 1) =

X


Z
(−1) uu1 = 2

X


Z
(u) 

 (u) 
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Therefore, using u = 0 for  6= { } in the second equality,

E (1; 1;)− E (1; 1;) = 2
X
=

X


Z
(u) 

 (u)

= 2
X


Z
(u) 

 (u)

and this equals precisely 2E ( ) as required.
Corollary 16.21 For all  ∈ [0 1) and all  ∈ 1 (g ) 

lim
→0

Z
g

 ()E
µ
+



¶
≡ 0

Proof. We first writeZ
 ()E

µ
+



¶
=

Z Z
 ()  (  )  () 

=

Z µZ
 ()  (  ) 

¶
 () 

Then, noting that  7→ R
 ()  ( )  is in 1 (g ), the proof is fin-

ished by applying the previous proposition.

Theorem 16.22 For all bounded sets  ⊂ g and all  ∈ (0 1]

lim
→0

sup
∈[1]

sup
∈

¯̄̄̄
E

µ
+



¶¯̄̄̄
= 0

Proof. It suffices to prove this for a compact ball  = ̄ (0 ) ⊂ g of
arbitrary radius   0. We fix  ∈ (0 1] and think of  =  ( ) as a

family of maps, indexed by   0, defined on the cylinder [ 1]×, that

is

( ) ∈ [ 1]× 7→  ( ) ∈  () 

By Proposition 16.20, (i) we know that sup0 ||∞  ∞. We now show
equicontinuity of { :   0}. By the Markov property,

 ( ) = E
µ
+



¶
=

¿
 (  ·)  E

· (0)


À
= h (  ·)   (0 ·)i 

so that, for all ( )  ( ) ∈ [ 1]×,

| ( )−  ( )| = |h (  ·)−  (  ·)   ()i|

≤
Ã
sup

∈(01]
||∞

!
| (  ·)−  (  ·)|1 
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From De Giorgi-Moser-Nash regularity (Proposition 16.7)

( ) ∈ [ 1]× 7→  (  )

is continuous for all ; the dominated convergence theorem then gives eas-

ily continuity of ( ) 7→  (  ·) ∈ 1. In fact, this map is uniformly

continuous when restricted to the compact [ 1] ×  and it follows that

{ :   0} is equicontinuous as claimed. By Arzela-Ascoli, there exists a
subsequence () such that  converges uniformly on [ 1]× to some

(continuous) function  On the other hand, Proposition 16.20, (ii), applied

to  =  (  ·), shows that  ( ) → 0 as  → 0 for all fixed    0.

This shows that  ≡ 0 is the only limit point and hence

lim
→0

sup
∈[1]

sup
∈

¯̄̄̄
E

µ
+



¶¯̄̄̄
= 0

Convergence of the Sum of the Small Areas

For fixed  ∈ Ξ (Λ) and  ∈ g let us define the real-valued quantity

 := sup
0≤1212≤1:

1−2≥
|2−1||2−1|≤

|E (12 ·12)|
(2 − 1) (2 − 1)

where   ∈ (0 1). As above · denotes the scalar product in  ().

Proposition 16.23 For fixed  ∈ (0 1)   ∈ {1  } we have lim→0 =

0.
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Proof. By the Markov property14 ,

|E (12 ·12)|
(2 − 1) (2 − 1)

=

¯̄
E

¡
12 · EX2 (1−22−2)

¢¯̄
(2 − 1) (2 − 1)

≤
¯̄
E

¡
12 · EX2 (1−22−2 ; kX2k ≤ )

¢¯̄
(2 − 1) (2 − 1)

+

¯̄
E

¡
12 · EX2 (1−22−2 ; kX2k  )

¢¯̄
(2 − 1) (2 − 1)

≤ E (|12 | ; kX2k ≤ )

(2 − 1)
sup
0≤

sup
kk≤
∈[1]

¯̄
E

¡
+0

¢¯̄
0

+E
µ |12 |
2 − 1

; kX2k  

¶
sup
0≤

sup
kk≤
∈[1]

E
¡¯̄
+0

¯̄¢
0



≤ E (|12 |)
(2 − 1)

sup
0≤

sup
kk≤
∈[1]

¯̄
E

¡
+0

¢¯̄
0

+
p
P (kX2k  )

vuutEÃ¯̄̄̄ 12

2 − 1

¯̄̄̄2!
sup
0

E
¡¯̄
+0

¯̄¢
0

≤  sup
0≤

sup
||≤
∈[1]

¯̄
E

¡
+0

¢¯̄
0

+ 
p
P (kX2k  )

for some constant  =  (kk  Λ) using corollay 16.12 and Proposition
16.20, (i). We then fix   0 and choose  =  () large enough so that

 sup
2∈[01]

q
P

¡¯̄
X
2

¯̄
 

¢ ≤ 2

On the other hand, Theorem 16.22 shows that

 sup
0≤

sup
||≤
∈[1]

¯̄
E

¡
+0

¢¯̄
0

≤ 

2

for all  small enough and the proof is finished.

Corollary 16.24 There exists  =  (Λ) such that for all subdivisions 

of [0 1]    ∈  for any  ∈ (0 1) 

E
µ¯̄̄

³
s2
¡


¢


X

´¯̄̄4¶
≤ 

h
(− )

2
|| + (− )

i


14Again, it is important to condition with respect to X· ∈ g

R

and not X̂· ∈

g2

R

.
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Proof. Recalling the discussion around (16.13), equivalence of homogenous

norms leads to

E
µ¯̄̄

³
s2
¡


¢


X

´¯̄̄4¶
≤ 1E(|

X
:∈∩[)

+1 |2)

Let us abbreviate
P

:∈∩[) to
P

 in what follows. Clearly, E
(|P+1 |2)

is estimated by 2 timesX
≤

E
¡
+1 · +1

¢
≤

X
≤

−+1≥

E
¡
+1 · +1

¢
+

X
≤

−+1

E
¡
+1 · +1

¢

≤ ||
X
≤

−+1≥

(+1 − ) (+1 − ) +
X
≤

−+1

r
E

³¯̄
+1

¯̄2´
E

³¯̄
 +1

¯̄2´

≤ || (− )
2
+ 2

X


−+1

(+1 − ) (+1 − )

and the very last sum is estimated as follows,

|
X


(+1 − )
X


−+1

(+1 − ) | ≤ 
X


(+1 − ) =  (− ) 

The proof is finished.

Putting Things Together

Theorem 16.25 Let  be a dissection of [0 1] with mesh || Then, for
all 1 ≤  ∞ and 0 ≤   12

-Höl;[01]
¡
s2
¡


¢
X
¢→ 0 in  (P) as ||→ 0

Proof.We first show pointwise convergence. We fix   0 and apply corol-

lary 16.24 with  = 2 Then,

sup
∈


E
µ¯̄̄

³
s2
¡


¢


X

´¯̄̄4¶
≤ || +



2

By Proposition 16.23 it then follows that, for || small enough,

sup
∈


°°°³s2 ¡
¢


X

´°°°4
4(P)

≤ 
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By Theorem 16.19 we have for all  ∈ [1∞)

sup


°°°°°s2 ¡
¢°°

-Höl;[01]

°°°
(P)

+
°°°kXk-Höl;[01]°°°

(P)
∞ (16.16)

and both results combined yield

lim
||→0

sup
0≤≤1

°°°³s2 ¡
¢


X

´°°°
4(P)

= 0

and by Hölder’s inequality the last statement remains valid even when

we replace 4 by  for any  ∈ [1∞). We can then conclude by using
proposition A.16.

16.6 Weak approximations

We maintain our standing notations, in particular g = g
¡
R
¢
, and recall

that for any  ∈ Ξ (Λ), we have constructed a g-valued diffusion process
X, associated to the Dirichlet form E.

16.6.1 Tightness

Proposition 16.26 Let () ⊂ Ξ (Λ). Then, for any starting point  ∈
g and any  ∈ [0 12), the family of processes (X :  ∈ N) is tight in
the Polish space 0-Höl ([0 1]  g)

Proof. Let us fix 0 ∈ ( 12). From proposition 8.17, = {x : kxk0-Höl ≤
} is relatively compact in 0-Höl ([0 1]  g). The proof is then finished
with the Fernique estimate from corollary 16.12,

sup

P (X ∈ ) ≤ −

2

16.6.2 Convergence

In order to discuss weak convergence, let us first specialize some properties

of non-negative quadratic forms to the present setting. From (E.1), using

also quasi-isometry ("E ∼ E ") we have that for all   ∈  12 (g ),
the common domain of all E with  ∈ Ξ (Λ), and   0,Z

|∇P
  |2  ≤ ΛE (P

 P
 )

≤ Λ

µ
1

2
| |22 ∧ E ( )

¶
≤ Λ

2
| |22 ∧

µ
Λ2
Z
|∇ |2 

¶
 (16.17)
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Lemma 16.27 Let ( : 1 ≤  ≤ ∞) ⊂ Ξ (Λ) and assume  → ∞
almost everywhere (with respect to Lebesgue measure on g). Set E = E
with associated semi-group P. Assume   ∈  12 (g ), the common
domain of all E. Then
(i) for every fixed  ∈ [0 1]  assuming 2-convergence P

  to some limit,

say  , and boundedness of {(P
 ) : } in  12, we have

E (P
  )→ E∞ ( ) as →∞;

(ii) we have

sup


sup
∈[01]

|E (P
  )| ∞

Proof. (i) Recall that D (E∞) is a Hilbert space with inner product given
by

h· ·iE∞ = h· ·i2 + E∞ (· ·)
and (by quasi-isometry) Λ−1 | |212 ≤ h iE∞ ≤ Λ | |2 12 . By assump-

tion, {(P
 ) : } ⊂ 12 is bounded and hence

kP
 k2E∞ = | |22 + E∞ (P

 P
 )

is also uniformly bounded in . Together with

P
  →  as →∞

in 2, an application of lemma E.1 shows that this convergence holds weakly

in (D (E∞)  h· ·iE∞). In particular, since  ∈ 12 (g ) = D (E∞),

E∞ (P
  )→ E∞ ( ) as →∞.

Thus, it only remains to see that

 () := E (P
  )− E∞ (P

  ) =

Z
h∇P

  (
 − )∇i 

converges to zero. From Cauchy—Schwarz we obtain

| ()| ≤
sZ

|∇P
  |2 

sZ
| − ∞|2 |∇|2 

It now suffices to note, from (16.17), and for fixed   0,

sup


Z
|∇P

  |2  ∞;

 () → 0 is then a consequence from  → ∞ almost everywhere and

bounded convergence.
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(ii) Using quasi-isometry of E ∼ E , Cauchy—Schwarz and (16.17),

|E (P
  )| ≤ 2

sZ
|∇P

  |2 
sZ 2

|∇|2 

≤ 3

sZ
|∇ |2 

sZ 2

|∇|2 

and this bound is uniform in  ∈ [0 1] and .

Theorem 16.28 Let  ∈ g, ( : 1 ≤  ≤ ∞) ⊂ Ξ (Λ) and assume
 → ∞ almost everywhere. Then X; converges weakly in -Hölder

topology to X∞;.

Proof. From proposition 16.26 the family (X) is tight. It then suffices

to establish convergence of the finite-dimensional distributions. To this end,

let us set  := ∞ and consider ∞ = ∞ (  ), the heat-kernel (or tran-

sition density) of X∞. It will suffice to check that  → ∞ , uniformly

on compacts in (0∞)×g×g. Since each heat-kernel  is a (weak) solution
to the respective parabolic PDE  = L, it follows from Hölder regu-

larity of weak solutions (proposition 16.7), uniformly over all  ∈ Ξ (Λ),
that

( ) 7→  (  )

is equi-continuous over sets of form ( )× ⊂⊂ (0∞)×g. More precisely,
we cover ( )× by finitely many "parabolic" cylinders 

1 so that 

1 ⊂


2 ⊂ (0∞) × g and note that max | (·  ·)|∞;

2
is bounded by some

constant (depending on Λ on the distance of ∪
2 to {0} × g, which can

be made close to   0 by taking  large enough), uniformly over  ∈ .

By symmetry, the same holds for ( ) 7→  (  ) and from the triangle

inequality,

| (  )−  (0 0 0)| ≤ | (  )−  (0  0)|
+ | (0  0)−  ( 0 0)| ;

we see that
¡
 :  ∈ Ξ (Λ)¢ is equi-continous on any compact of form

( ) ×  × . In conjunction with the heat-kernel bounds, it is clear

from Arzela-Ascoli there exists some  ∈  ((0∞)× g× g) so that, after
switching to a subsequence if necessary,  →  uniformly on compacts.

Validity of the Chapman-Kolmogorov equations is preseved in this limit

and so

 :=

Z
 ()  ( · )   ∈ ∞ 

extends (uniquely) to strongly continuous semigroup ( :  ≥ 0) on 2 (g).
Quite obviously then, at least for fixed ,

P
  →  in 2.
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Moreover, (P
  :  ∈ N) is bounded in  12 as is clear from (16.17) and

so (lemma E.1) P
  →  weakly in  12. Thanks to lemma 16.27 we

can now pass to the limit in

hP
  i2 = h i2 +

Z 

0

E (P
  ) 

and learn that

h i2 = h i2 +
Z 

0

E∞ ( ) 

But this identifies () as the semi-group associated to E∞ . In particular, 
must coincide with ∞ which implies convergence of the finite-dimensional

distributions. The proof is then finished.

16.7 Large deviations

We maintain our standing notations, g = g
¡
R
¢
and Ξ (Λ) denotes

uniformly elliptic matrices defined on g. and recall that for any  ∈ Ξ (Λ).
With a slight deviation to our previous convention, let us now assume that

we have constructed a g-valued diffusion process X;, started at some

 ∈ g associated to the Dirichlet form .

Theorem 16.29 Let  ∈ Ξ (Λ) and X; by the symmetric g-valued
diffusion associated to the Dirichlet form15

1

2
E,

started at some fixed point  ∈ g. Then the family (X; (·) :   0) satis-
fies a large deviation principle with good rate function

 (h) =
1

2
sup

⊂D[0 ]

X
:∈

¯̄

¡
h h+1

¢¯̄2
|+1 − |

in -Hölder topology,  ∈ [0 12). More precisely, viewing P;
 = (P)∗X

;
 ,

the law ofX; (·), as Borel measure on -Höl
 ([0 1]  g) the family (P;

 :   0)

satisfies a large deviation principle in -Höl
 ([0 1]  g) with good rate func-

tion .

15The factor 12 deviates from our previous convention but leads to a more familiar

looking rate function.
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Proof. A large deviation principle in uniform topology, with rate function

 () =
1

2
||2 12([01]g (R))

follows from an abstract Schilder theorem, applied to the specific context

of the g-valued diffusion X; associated to the Dirichlet form 1
2
E.

Remark 16.30 The rate function is precisely

1

2
|h|2 12([01]g (R))

relative to the metric space
¡
g
¡
R
¢
 
¢
. When  = ,  is the Carnot-

Caratheodory metric on g
¡
R
¢
and in this case, from exercise 7.62 and

basic facts of  12
¡
[0 1] R

¢
,

|h|2 12([01]g(R)) = ||2 12([01]R) =

Z 1

0

¯̄̄
̇

¯̄̄2


where we wrote  = 1 (h).

16.8 Support theorem

We maintain our standing notations, g = g
¡
R
¢
and Ξ (Λ) denotes

uniformly elliptic matrices defined on g, and reacll that for any  ∈ Ξ (Λ),
we have constructed a g-valued diffusion processX;, started at some  ∈ g
associated to the Dirichlet form E.

16.8.1 Uniform topology

Theorem 16.31 There exists a constant  =  (Λ ) so that for any

 ∈
12
0

¡
[0 1] R

¢
and any  ∈ (0 1) we have

P0
¡
∞;[01] (X  ()) ≤ 

¢ ≥ exp
⎛⎜⎝−

³
1 + || 12;[01]

´2
2

⎞⎟⎠ 

As a consequence, we have full support of X = X
 in uniform topology.

In other words,

supp (P) =  ([0 1]  g) 

Proof. This follows from general principles, theorem E.20, applied to the

specific g-valued process X; associated to the Dirichlet form E.
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16.8.2 Hölder topology

Recall that, modulo starting points, 12
¡
[0 1] R

¢
is in one-to-one corre-

spondence to  12 ([0 1]  g) where we write g = g
¡
R
¢
as usual. Indeed,

any R-valued  12-path  lifts to

s () ≡ log ◦ () ∈ 12 ([0 1]  g) 

cf. exercise 7.62; conversely, it suffices to project h ∈  12 ([0 1]  g) to its
first level 1 (h). Observe also that, for any  ∈ [0 12],

 12
 ([0 1]  g) ⊂ -Höl

 ([0 1]  g) 

Lemma 16.32 Assume  ∈ [0 14). Fix h ∈  12
 ([0 1]  g),   0 and

define h
 = {x : |x|-Höl ≤ 2 |h|-Höl  ∞ (xh) ≤ }. Then

P
¡
X ∈ h



¢
 0

Proof. Step 1: Taking 0 ≤    ≤ 1 we claim that

kxk-Höl . kxk-Höl ∞ (xh)
1−

+ khk-Höl 
To see this, note that  (xx) can be estimated in two ways,

 (xx) ≤ 2∞ (xh) + khk-Höl |− |

 (xx) ≤ kxk-Höl |− | 
Given , we can use the first estimate when |− | ≤  and the second when

|− |   so that

sup
0≤≤≤1

 (xx)

|− | ≤ min

µ
kxk-Höl −

2∞ (xh)


+ khk-Höl
¶

≤ min

Ã
kxk-Höl 



2∞ (xh)



!
+ khk-Höl

Choosing  optimally, namely such that  = 2∞ (xh)  kxk-Höl, then
gives

kxk-Höl ≤ 21−
³
∞ (xh)

1− kxk-Höl

´
+ khk-Höl 

Step 2: Let now     12 so that we have Fernique estimates for

kXk-Höl = kX ()k-Höl;[01]. Then

P
¡
X ∈ h



¢ ≥ P
³
(2∞ (Xh))

1− |x|-Höl ≤ |h|-Höl  ∞ (Xh) ≤ 
´

= P
Ã
kxk-Höl ≤

khk-Höl
(2)

1−  ∞ () ≤ 

!

≥ P ( ∞ (Xh) ≤ )− P
Ã
kxk-Höl 

khk-Höl

(2)
−1

!
= ∆1 −∆2
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Obvioulsy, both∆1 and∆2 tend to zero as → 0. Positivity of P
¡
X ∈ h



¢
will follow from checking that ∆2∆1 → 0 as → 0. Keeping  fixed, the-

orem E.21 gives

log∆1 ≥ −1
µ
1

2

¶
while the Fernique estimates imply

log∆2 ≤ −2
µ

1

2−2

¶


for some irrelevant postitive constants 1 and 2. We see that ∆2∆1 → 0

if

2  2− 2
or equivalently 2  . Since   12 was needed to appy the Fernique

estimates we see the argument works for any  ∈ [0 14).
Theorem 16.33 Let  ∈ Ξ (Λ) and X = X; the g-valued symmetric

diffusion process, started at some  ∈ g and associated to the Dirichlet form
E. Fix h ∈  12

 ([0 1]  g). Then, for every  ∈ [0 14) and every   0,

P;
¡
-Höl;[01] (X h)  

¢
 0

In particular, for every  ∈ [0 14) the support ofX; in -Hölder topology

is precisely

0-Höl

¡
[0 1]  g

¡
R
¢¢


Proof. Without loss of generality,  = X (0) = h (0) = 0 ∈ g. Pick
 ∈ (0 14). By interpolation and the 0∞-estimate,

∞ (xy) ≤ 0 (xy) . (kxk∞ + kyk∞)1−1 ∞ (xy)
1

so that

0-Höl (X
h) . (|X|-Höl + |h|-Höl)

0
(|X|∞ + |h|∞)(1−1)(1−

0) ∞ (Xh)
1−0

 

In particular, for X ∈ 
 = {x : |x|-Höl ≤ 2 |h|-Höl  ∞ (xh) ≤ }

there exists 1 (which may in particular depend on  0 ) so that

0-Höl (X
h) ≤ 1

1−0
 

Fix   0 and take  small enough such that 1
1−0

  . Clearly then

P
¡
0-Höl;[01] (X

h)  
¢ ≥ P ¡X ∈ h



¢
 0

where the final, strict inequality is due to lemma 16.32.
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Remark 16.34 By taking  ∈ (15 14) and  = 4 this yields a support

characterization of X; in -Hölder rough path topology. Since X; has

sample paths which enjoy Hölder regularity for any exponent less than 12,

one suspects that the above support description holds true for any   12.

Although we are able to show this when h ≡ 0, see the following section,
the extension to h 6= 0 remains an open problem.

16.8.3 Hölder rough path topology: a conditional result

We first study the probability that X; stays in bounded open domain

 ⊂ g = g ¡R¢ for long times.
Proposition 16.35 Let  be an open domain in g with finite volume, no
regularity assumptions are made about . Let  ∈ Ξ (Λ) and X be the

process associated to E started at  ∈ g and assume  ∈ . Then there

exist positive constants 1 = 1 (Λ) and 2 = 2 (Λ) so that for

all  ≥ 0
1

− ≤ P [X
 ∈  ∀ : 0 ≤  ≤ ] ≤ 2

−

where  ≡ 1  0 is the simple and first Dirichlet eigenvalue of − on
the domain  Moreover,

∀ ∈ Ξ (Λ) : 0  min ≤ 1 ≤ max ∞

where min max depend only on Λ and .

Remark 16.36 The proof will show that 1 ∼ 1 (). Noting that 

1 () 

−1

solves the same PDE as  ( ), the above can be regarded as a "partial"

parabolic boundary Harnack statement.

Proof. If  denotes the Dirichlet heat kernel for  we can write

 ( ) := P [X
 ∈  ∀ : 0 ≤  ≤ ] =

Z


 (  ) 

As is well-known16,  is the kernel for a semigroup P
 : [0∞)×2 ()→

2 () which corresponds to the Dirichlet form (EF) whose domain F
consists of all  ∈ F ≡  (E) with quasi continuous modifications equal
to 0 q.e. on . The infinitesimal generator of P

, denoted by , is a

self-adjoint, densely defined operator with spectrum  (−) ⊂ [0∞).
We now use an ultracontractivity argument to show that  (−) is dis-
crete. To this end, we note that the upper bound on  plainly implies

| ( · ·)|∞ = (−
22). Since || ∞ if follows that kP

 ()k1→∞ 

∞ which is, by definition, ultracontractivity of the semigroup P
. It is now

16See e.g. [67].
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a standard consequence17 that  (−) = {1 2 } ⊂ [0∞), listed in
non-decreasing order. Moreover, it is clear that 1 6= 0; indeed the kernel
estimates are plenty to see that kP

 ()k2→2
→ 0 as  →∞ which con-

tradicts the the existence of non-zero  ∈ 2 () so that P
 ()  =  for

all  ≥ 0. Let us note that

1 = inf  ()

= inf
n
E ( ) :  ∈ F with | |2() = 1

o
(by Rayleigh-Ritz)

= inf

½Z


Γ ( )  :  ∈ F with | |2() = 1
¾

and since Γ ( ) Γ ( ) ∈ £Λ−1Λ¤ for  6= 0 it follows that 1 ∈
[min max] for all  ∈ Ξ (Λ) where we set

min = Λ
−11 max = Λ


1. (16.18)

The lower heat kernel estimates for the killed process imply18 irreducibility

of the semigroup a P
, hence simplicity of the first eigenvalue , and there

is an a.s. strictly positive eigenfunction to  ≡ 1, say  ≡ 1, and by De

Giorgi-Moser-Nash regularity we may assume that  is Hölder continuous

and strictly positive away from the boundary (this follows also from Har-

nack’s inequality). We also can (and will) assume that kk2() = 1.
Lower bound: Noting that  ( ) = − () is a weak solution of  =
 with  (0 ·) =  we have

 ( ) =

Z


 (  ) () 

at first for a.e.  but by using a Hölder regular version of  the above

holds for all  ∈ . It follows that

0   ()

= 
Z


 (  ) () 

≤ (+1)
Z


 (  )

Z


 (1  ) () 

≤ (+1)
Z


Ã
 (  )

sZ


[ (1  )]
2


sZ
2 () 

!


≤  (Λ) (+1) ( )

=
£
 (Λ) max

¤×  ( )

17 See e.g. [34, Thm 1.4.3].
18 See e.g. [34, Thm 1.4.3].
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and this gives the lower bound with 1 =  () 
£
 (Λ) max

¤
. Clearly

 = 1 depends on  and so does 1. Thus, what we need to show is that

 () can be bounded from below by a quantity which depends on  only

through its ellipticity constant Λ. To this end, from

 (  ) =

∞X
=1

−

  | ()|2

evaluated at  = 1 say we see that

| ()|2 ≤  (1  ) ≤ max (1  ) ≤ max (1  )

and by using our upper heat kernel estimates for  we see that there is a

constant  = (Λ) such that ||∞ ≤ . Given  and  we can find

a compact set K ⊂  so that  (\K) ≤ 1(42) and  ∈ K (recall that
 is Haar measure on g). By Harnack’s inequality

sup
K

 ≤  () 

for  =  (KΛ) =  (Λ) We then have

1 = ||2 ≤
p
 (\K) +  ()

p
 (K) ≤ 12 +  ()

p
 ()

which gives the required lower bound on  () ≡ 1 () which only depends

on  and Λ but not on .

Upper bound: Recall that − ≡ −1 denotes the first eigenvalue of 
with associated semigroup P

. It follows that

|P
 ()  |2 ≤ − | |2

which may be rewritten as¯̄̄̄Z


 ( · )  () 
¯̄̄̄
2
≤ − | |2 

Let   1. Using Chapman-Kolmogorov and symmetry of the kernel,

 ( ) =

Z


 (  )  =

Z


Z


 (1  ) 

 (− 1  ) 

=
p
 ()

ÃZ


µZ


 (− 1  )  (1  ) 
¶2



!12
=

p
 ()

¯̄̄̄µZ


 (− 1 · )  (1  ) 
¶¯̄̄̄

2()

=
p
 () |P

 (− 1)  (1  ·)|2()
≤

p
 ()−(−1) | (1  ·)|2()

≤
p
 ()max−

q
 (2  )

≤ 2
−
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where we used upper heat kernel estimates in the last step to obtain 2 =

2 (Λ) 

Corollary 16.37 Fix  ∈ Ξ (Λ). There exists  =  (Λ) and for all   0

there exist  = () such that

−1−
−2 ≤ P0

h
||X||0[0]  

i
(16.19)

∀ : P
h
||X||0[0]  

i
≤ −

−2
 (16.20)

Proof. A straight-forward consequence of scaling and Proposition 16.35

applied to

 =  (0 1) = { : kk  1}
where k·k is the standard Carnot-Caratheodory norm on g. Then  is the

first eigenvalue corresponding to  scaled by factor .

Proposition 16.38 Let  ∈ [0 12). There exists a constant 1638 such
that for all  ∈ (0 1] and   0

P0
Ã

sup
|−|2

kXk
|− |  

¯̄̄̄
¯ kXk0;[01]  

!
≤ 1638 exp

µ
− 1

1638

2

2(1−2)

¶


Proof. There will be no confusion to write P for P
³
·| kXk0;[01]  

´
.

Suppose there exists a pair of times   ∈ [0 1] such that

   |− |  2 and
kXk
|− |  

Then there exists a  ∈ {1  §12¨} so that [ ] ⊂ £( − 1) 2 ( + 1) 2¤.
In particular, the probability that such a pair of times exists is at most

d12eX
=1

P
³
kXk[(−1)2(+1)2]  

´


Set
£
( − 1) 2 ( + 1) 2¤ =: [1 2]. The rest of the proof is concerned

with the existence of  such that

P
³
||X||[12]  

´
≤  exp

µ
−−1 2

2(1−2)

¶
since the factor

§
12

¨
can be absorbed in the exponential factor be making

 bigger. We estimate

P0
³
||X||[12]  

¯̄̄
||X||0[01]  

´
≤

P0
³
||X||[12]  ; ||X||0[01]  ; ||X||0[21]  

´
P0
h
||X||0[01]  

i 
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By using the Markov-property and the above lemma, writing () = ;,

this equals

E0
h
PX2

³
||X||0[01−2]  

´
; ||X||[12]  ; ||X||0[01]  

i
P0
h
||X||0[01]  

i
≤ 

()−2E0
h
−

()(1−2)−2 ; ||X||[12]  ; ||X||0[01]  
i

= 
()2

−2
P0
h
||X||[12]  ; ||X||0[01]  

i
where constants were allowed to change in insignificant ways. IfX had inde-

pedent increments in the group (such as is the case for Enhanced Brownian

motion B) P0 [] would split up immediately. This is not the case here but
the Markov property serves as a substitute; using the Dirichlet heat kernel

(0)we can write

P0
h
||X||[12]  ; ||X||0[01]  

i
=

Z
(0)

 (0) (1 0 )P
h
||X||[02−1]  

i


Then, scaling and the usual Fernique-type estimates for the Hölder norm

of X gives

sup

P
h
||X||[02−1]  

i
≤  exp

Ã
− 1


µ


1−2

¶2!


where we used 2 − 1 = 2
2, and we obtain

P0
h
||X||[12]  ; ||X||0[01]  

i
≤  exp

Ã
− 1


µ


1−2

¶2!
P0
h
||X||0[01]  

i
≤  exp

Ã
− 1


µ


1−2

¶2!
−

()1
−2


Putting things together we have

P0
³
||X||[12]  

¯̄̄
||X||0[01]  

´
≤ 

()(2−1)−2 exp

Ã
− 1


µ


1−2

¶2!

≤ 2max exp

Ã
− 1


µ


1−2

¶2!

and the proof is finished.
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Theorem 16.39 Let  ∈ [0 12). For all   0 the ball
n
x : kxk-Höl;[01]  

o
has positive P0-measure and

lim
→0

P0
³
kXk-Höl;[01]  

¯̄̄
kXk0;[01]  

´
→ 1 (16.21)

In particular, for any   0

P0
³
kXk-Höl;[01]  

¯̄̄´
 0

Proof. We first observe that the uniform conditioning allows to localise

the Hölder norm. More precisely, take    in[0 1] with  −  ≥ 2 and

note that from kXk0;[01]   we get

kXk
|− | ≤ 1−2

It follows that for fixed  and  small enough,

P0
³
kXk-Höl;[01] ≥ 

¯̄̄
kXk0;[01]  

´
= P0

Ã
sup

|−|2
kXk
|− | ≥ 

¯̄̄̄
¯ kXk0;[01]  

!

and the preceding proposition shows convergence to zero with  and (16.21)

follows. Finally,

P0
³
kXk-Höl;[01]  

´
≥ P0

³
kXk-Höl;[01]  

¯̄̄
kXk0;[01]  

´
× P0

³
kXk0;[01]  

´
≥ P0

³
kXk0;[01]  

´
2 (for  small enough)

and this is positive by Proposition 16.37.

16.9 Appendix: analysis on free nilpotent groups

16.9.1 Haar measure

In section 7.5 we introduced free nilpotent groups. More precisely, what

we called
¡


¡
R
¢
⊗¢ was a particular representation, namely within

the tensor algebra
¡


¡
R
¢
+⊗¢, of an abstract (connected and simply

connected Lie group)  associated to the Lie algebra g = g
¡
R
¢ ⊂


¡
R
¢
with bracket given by

[ ] = ⊗  −  ⊗ 

The abstract exponential map from a Lie algebra to its associated (con-

nected and simply connected) Lie group was then given explicitly by the
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exponential map on 
¡
R
¢
based on power series with respect to ⊗.

Another representation of  is given by (g ∗) where

∗ : g× g→ g

is given by the Campbell-Baker-Hausdorff formula, as derived in section

7.3. Thanks to nilpotency, ∗ is a polynomial map and (g ∗) is indeed a re-
alization of  and the abstract exponential map is merely the identity. In

any case,  is uniquely determined by g up to isomorphism and whatever

concepts such as Carnot-Caratheodory norm / distance we have developped

on
¡


¡
R
¢
⊗¢ are immediately transfered to (g ∗), or indeed other rep-

resentations of , cf. remark 16.1.

Let us recall a few facts about g
¡
R
¢
. Using the terminology of Folland

and Stein [50], we can say that g = g
¡
R
¢
is graded in the sense that

g = V1 ⊕ · · ·⊕V 

[VV ] ⊂ V+

with " level" given by V = g∩
¡
R
¢⊗
. It is also stratified in the sense

that V1 generates g as an algebra and so

[V1V ] = V1+ 

Moreover, a natural family of dilations on g is given by { :   0} where

 (1      ) =
¡
1 

22     


¢
 with  ∈ V 

As already discussed (cf. exercise 7.56) each dilation induces a group ho-

momorphism of the form exp ◦ ◦ exp−1 

Proposition 16.40 Lebesgue measure  on g = g
¡
R
¢
is the (unique up

to a constant factor) left- and right-invariant Haar measure  on (g ∗).
Moreover, if  is the abstract Lie group associated to g, left- and right
invariant Haar measure on  is given by

 = (exp)∗ 

Remark 16.41 We no confusion is possible we shall write || instead of
 () for a measurable set  ⊂ .

Proof. Set  = dim g
¡
R
¢
and also

 = dim (V ⊕ · · ·⊕V ) 

We can choose a basis {−+1     } for V , extend it to a basis©
−−1+1     

ª
for V−1 ⊕V , and so forth, obtainin eventually a
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basis {1     }for g. The dual basis {1     } provides global coordi-
nates for g

¡
R
¢
and, by the Campell-Haussdorff-Baker formula,

 ( ∗ ) =  () +  () +  ( )

where  ( ) is a polynomial which depends only on the coordinates

 ()   () with   . Therefore, the differentials of the maps  7→  ∗ 
(with  fixed) and  7→  ∗  (with  fixed) are given with respect to the

coordinates () by lower triangular matrices with ones on the diagonal,

and their determinants are therefore identically one. It follows that the

volume form 1    , which corresponds to Lebesgue measure on g, is
left and right invariant.

Remark 16.42 As the proof immediately reveals, this result holds true for

an arbitrary (connected and simply connected) nilpotent Lie group  with

Lie algebra g.

Definition 16.43 The homogenous dimension of g = g
¡
R
¢
is defined

as

dim g : =

X
=1

 (dimV) 

If  is the abstract Lie group associated to g, we equivalently write

dim .

Lemma 16.44 Let  be the abstract Lie group associated to g = g
¡
R
¢
.

Then, for all   0 and measurable sets  ⊂ ,

 () = dim  () 

In particular, for  ( ) = { ∈  :  ( )  } we have

 ( ( )) = dim g with  =  ( (0 1))  (16.22)

Proof. By construction of Haar measure and dilation on  it suffices to

compute everything in the Lie algebra with exponential coordinates

() =1
=1dimV



and with respect to Lebesgue measure. The image under  is precisely¡


¢
=1

=1dimV

and the determinant of the Jacobian of () 7→
¡


¢
is obiously .
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16.9.2 Jerison’s Poincaré inequality

The Lie algebra of g = g
¡
R
¢
has a decomposition of form g = V1⊕ · · ·⊕

V and we shall represent the associated Lie group on the same space, e.g.

 = (g ∗). There are left invariant vector fields u1     u on the group
determined by

u|0 = |0
where |0 are the coordinate vector fields associated with the canoncial
basis of V1 = R.

Example 16.45 When  = 2, we can identify g with R⊕  () and for
 = 1   we have

u| =  +
1

2

⎛⎝ X
1≤≤

1; −
X

1≤≤
1;

⎞⎠
where  denotes the coordinate vector field on R and  with    the

coordinate vector field on  (), identified with its upper diagonal elements.

Definition 16.46 We call ∇hyp = (u1     u) the hypoelliptic gradi-
ent on  =

¡
g
¡
R
¢
 ∗¢. When no confusion arises we also write ∇.

The following lemma is sometimes summarized by saying the hypoel-

liptic gradient forms an "upper gradient" on , equipped with Carnot-

Caratheodory metric. Since g and  have been identified we state and

prove it in the following form:

Lemma 16.47 (Upper gradient lemma) Let   ∈ g. For all com-
pactly supported, smooth  : g → R, and admissible path Υ, in the sense
that

Υ ∈ 1-Höl ([0 kk]  g)  kΥk1-Höl ≤ 1),
which also has the property that Υ (0) = Υ (kk) = , we have

| ()−  ()| ≤
Z kk

0

¯̄̄
∇hyp (Υ)

¯̄̄


Remark 16.48 The result extends to  ∈  12 (g ) ∩  (g), using the
notation of theorem 16.4.

Proof. Let  denotes the 1-form
P

  () 
 with  = 1 dim g. By

the fundamental theorem of calculus,

| ()−  ()| ≤
Z kk

0

¯̄̄D
 (Υ)  Υ̇

E¯̄̄
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But any Υ ∈ 1-Höl is, viewed through the global "log"-chart, the step-

lift of a R-valued 1-Hölder path  and so

Υ̇ =

X
=1

u (Υ) ̇



(Namely,  = 1 (Υ) is a 1-Hölder path [0 kk]→ R, at unit speed). Then

D
 (Υ)  Υ̇

E
=

X
=1

h (Υ)  u (Υ)i ̇

= (∇|Υ) · ̇
where · is the inner product on R. For a.e.  we have |̇| ≤ 1 and

Cauchy-Schwarz on R shows that

|(∇|Υ) · ̇| ≤ |(∇|Υ)| 

Proposition 16.49 (Weak Poincaré inequality) There exists a constant 

such that for all smooth  : g→ R and all  ∈ g and   0Z
()

( ()− ̄)
2
 ≤ 2

Z
(2)

¯̄̄
∇hyp ()

¯̄̄2


where ̄ =
R
()

 () .

Proof. We may assume that  = 0 ∈ g so that  =  ( ) is centered at

the unit element in the group. We shall also write

Υ : [0 kk]→ g

for a geodesic which connects the unit element with , parametrized to run

at unit speed. It follows that

 7→ Υ

is a geodesic from  to , run at unit speed. From the "upper-gradient

lemma"

| ()−  ()| ≤
Z kk

0

∇ (Υ) 

and by Cauchy-Schwarz,

| ()−  ()|2 ≤ kk
Z kk

0

|∇|2 (Υ) 
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This and the left invariance of Lebesgue measure on g yieldsZ


( ()− ̄)
2
 =

Z


µ
1

||
Z


( ()−  ()) 

¶2


≤ 1

||
Z


Z


(( ()−  ()))
2


=
1

||
Z
g

Z
g

1 () 1 () (( ()−  ()))
2


≤ 1

||
Z
g

Z
g

Z kk

0

1 () 1 () kk |∇|2 (Υ) 

By right-invariance of the Lebesgue measure we obtainZ
g

1 () 1 ()∇ (Υ)2  =

Z
g

1Υ () 1−1Υ () |∇|
2
() 

≤ 12 ()

Z
2

|∇|2 ()   (16.23)

Here we denote by  the right translation of  by . The above inequality

requires some explanations. If the expression under the sign of the middle

interval has a nonzero value, then  = Υ = −1Υ for some   ∈ .

Hence  = −1 ∈ 2. Thus  = Υ
−1

 lies on a geodesic that joins 

with  and so  ( ) +  ( ) =  ( ), which together with the triangle

inequality implies  ∈ 2. This leads to the estimate (16.23), as claimed.
ThenZ



( ()− ̄)
2
 ≤ 1

||
Z
g

Z kk

0

12 () kk
Z
2

|∇|2 () 

=
1

||
Z
2

Z
2

kk2 |∇|2 () 

and we conclude with || = | (0 1)| , where  is the homogenous di-

mension of g, cf (16.22), andZ
2

kk2  = | (0 1)|
Z 2

0

2
¡

¢
= (const)× +2

16.9.3 Carnot-Caratheodory metric as intrinstic metric

Following the notation of theorem 16.4 we set

Γ ( ) := ∇hyp ·∇hyp =
X
=1

u u E ( ) =
Z
Γ ( ) 
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for   ∈ ∞ (gR) where g ≡ g ¡R¢ is equipped with Lebesgue measure
. The domain of Γ resp. E naturally extended to 12 (g ), the closure

of ∞ with respect to

kk2F = E ( ) + h i2 with 2 = 2 (g ) 

Let us define the intrisic metric on g by

 ( ) : = sup { ()−  () :  ∈ ∞ (gR) and |Γ ( )|∞ ≤ 1}
= sup

©
 ()−  () :  ∈ 12 (g ) ∩  (gR) and |Γ ( )| ≤ 1 a.s.ª 

and the Carnot-Caratheodory distance on g by

 ( ) = inf

(Z 1

0

|| :  Lipschitz,  (0) =   (1) =  :  =

X
=1

u () 


)
(16.24)

It is easy to see (cf. remark 7.43) that this is precisy the Carnot-Caratheodory

distance on  = 
¡
R
¢
, cf definition 7.41, as seen through through the

log-chart19 .

Theorem 16.50 The Carnot-Caratheodory distance on g coincides with
the intrinsic metric.

Proof.  ( ) ≤  ( ) : Fix  ∈ ∞
¡
g
¡
R
¢
R
¢
with |Γ ( )|∞ ≤ 1

and  Lipschitz such that the solution to the ODE  =
P

=1 u () 
  (0) =

 satisfies  (1) = . Clearly

 ()−  () =

Z 1

0

 ()  =

X
=1

Z 1

0

(u |) 



≤ |Γ ( )|∞
Z 1

0

|| ≤
Z 1

0

|| 

Passing the sup (resp. inf) over all such  (resp. ) we see that  ( ) ≤
 ( ).

 ( ) ≥  ( ) : Assume momentarily that  ( ·) is an admissible func-
tion in the definition of . It would then follow that  ( ) ≥  ( ) −
 ( ) =  ( ) which is what we seek. To make this rigorous we proceed

in two step. First we extend

{u :  = 1     }

19 Strictly speaking, we should ̃ ( ) for 16.24 so that ̃ (log  log ) =  ( ) for all

  ∈ 

R

= log−1


g

R

.
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to a full basis of g
¡
R
¢ ∼= R with  = dim g

¡
R
¢
,©

v :  = 1    
ª
:= {u :  = 1     } ∪

n
12

o
dim g

¡
R
¢

where {} denotes the coordinate vector fields corresponding to the last
(− ) coordinates of R. Replacing {u} by

©
v
ª
we can define an intrin-

sic distance  ( ) associated to Γ ( ) :=
P

= v v and similarly a
control distance  ( ). Leaving straight-forward mollification arguments

to the reader (or [19, p.285]), the class of admissible function can be ex-

tended to include  ( ·) and it follows that

 ( ) =  ( ) 

On the other hand, it is not hard to see that

 ( ) ≤  ( ) =  ( ) ≤  ( )

for some  which converges to  as → 0. Using continuiuty of the Carnot-

Caratheodory distance it suffices to send  → 0 and the proof is finished.

16.10 Comments

The Dirichlet form approach to Markovian rough path was first adopted in

[64] and already contains the bulk of results of this chapter. (One could in

fact bypass the use of abstract Dirichlet form theory and give a direct an-

alytical treatment along the lines of [146]). For some background on (sym-

metric) Dirichlet forms, the reader can consult the appendix on analysis

on local Dirichlet spaces and the references therein. The theory of non-

symmetric Dirichlet forms (e.g. in particular the heat-kernel esimates from

[160]) would allow to construct enhanced non-symmetric Markov processes

in a similar way. Exercise 16.10, concerning Nash’s inequality and (on-

diagonal) estimates for heat-kernels, is taken from [19].

The construction of a stochastic area associated to a Markov processes

of the present type goes back to Lyons—Stoica [114]: they use forward-

backward martingale decomposition to see that, in particular, an R-valued
(Markov) process  (with uniformly elliptic generator in divergence form)

can be rendered accessible to Stratonovich integration; see also [141, 142]

for related considerations. As a consequence of the Wong—Zakai theorem,

(lifted) piecewise linear approximation will converge (to the Stratonovich

lift) and so yield an enhanced Markov process X. Lejay [98, 99] then es-

tablishes -variation rough regularity of this enhancement X. The link

with our approach is made in comment (iv) after definition 16.14 in sec-

tion 16.4. A version of theorem 16.28 appears in [99], the author then also
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discusses applications to homogenization. Sample path large deviations for

Markovian rough paths were established in [64]; we observed that the same

arguments apply in the abstract setting of local Dirichlet spaces and there-

fore give the proof in the appropriate appendix E.6. (Although we are

unaware of any reference to such a result in the context of Dirichlet space

theory, J. Ramírez has shown us an unpublished preprint which covers our

results.) Similarly, a support theorem was established in [64]; we have here

outsourced the key estimates in the abstract setting of appendix E.6 and

obtained a slight sharpening of the result in [64]. The restriction to Hölder

exponent  14 in the (support) theorem 16.33 is almost certainly a tech-

nical one although. Indeed, theorem 16.39 shows that every ball around

the trivial zero-path is charged in (rough path) Hölder metric, for any ex-

ponent  12 which is what one suspects. The problem, in comtrast to

the similar support discussion of section 13.8, is the lack of the Cameron—

Martin theorem in the present context. It is conjectured that the use of

(time-dependent, non-symmetric) Dirichlet forms will allow to generalize

our discussion of section 16.8.3 such as to obtain a support theorem for

exponent  12.

In appendix 16.9 we collect some classical analytic result for free nilpotent

groups. See [50] for a general discussion. The Poincaré inequaliy (Proposi-

tion 16.49) appears explicitly in [86]; our simplified proof is a variation of

a proof attributed to Varopoulos in [79]. Theorem 16.50 on the consistency

between intrinsic and Carnot—Caratheodory distance is taken from [19].
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17

Stochastic Differential
Equations and Stochastic Flows

We have seen in Part III that large classes of multi-dimensional stochastic

processes, including semimartingales, Gaussian- and Markov processes, are

naturally enhanced to random rough paths, i.e. processes whose sample

paths are almost surely geometric rough paths.

Clearly then, there is a pathwise notion of stochastic differential equation

driven by such processes, simply by considering the rough differential equa-

tion driven by (geometric rough path) realizations of the enhanced process.

As will be discussed in this chapter, there is a close link to (Stratonovich)

stochastic differential equations, based on stochastic integration theory. But

first, we start with a working summary of "rough path" continuity results

(with precise references to the relevant statements in Part II).

17.1 Working summary on rough paths

17.1.1 Iterated integration

Let  ≥ 1 and x ∈ -var
¡
[0  ] []

¡
R
¢¢
a weak geometric -rough path.

From corollary 9.11 the Lyons-lifting map

 : -var


³
[0  ]  []

¡
R
¢´→ -var



¡
[0  ] 

¡
R
¢¢


 : 1-Höl

³
[0  ] []

¡
R
¢´→ 1-Höl

¡
[0  ]  

¡
R
¢¢

is continuous in -variation - and 1-Hölder (rough path) topology re-

spectively. We think of  (x) as attaching higher iterated integrals to x.

Indeed, when x consists of all iterated integrals (in the Riemann—Stieltjes

sense) up to order [] of some  ∈ 1-var
¡
[0  ] R

¢
, that is x = [] (),

then  (x) =  ().



502 17. Stochastic Differential Equations and Stochastic Flows

17.1.2 Integration

Let    ≥ 1 and  = (1     ) ⊂ Lip−1
¡
RR

¢
. From theorem

10.50, there is a unique rough integral of  against x and1

-var


³
[0  ] []

¡
R
¢´ → -var

 ([0  ] R)

x 7→ 1

µZ ·

0

 () x

¶
is continuous in -variation topology. The same statement holds in 1-

Hölder topology. This integral generalizes the Riemann—Stieltjes integral

in the sense that for x = [] () with  ∈ 1-var
¡
[0  ] R

¢
, we have

1

µZ ·

0

 () x

¶
=

Z
 () 

where the right-hand-side is a well-defined Riemann—Stieltjes integral.

17.1.3 Differential equations

Let    ≥ 1 and  = (1     ) ⊂ Lip (R), a collection of vector fields
on R. From theorem 10.29 and its corollaries there is a unique solution

 = ( ) (0 0;x) to the RDE

 =  () x

started at 0 ∈ R and

-var


³
[0  ] []

¡
R
¢´ → -var

 ([0  ] R)

x 7→ ( ) (0 0;x)

is continuous in -variation topology. The same statement holds in 1-

Hölder topology. RDEs generalize ODEs in the sense that for x = [] ()

with  ∈ 1-var
¡
[0  ] R

¢
, we are dealing with a solution to the classical

ODE

 =  () 

understood as Riemann—Stieltjes integral equation.

One has also the refined result that uniqueness/continuity holds when

 ⊂ Lip (R) and x has finite -variation. In fact, motivated by sample
path properties of (enhanced) Brownian motion, namely

B () ∈ 2-var but B () ⊂ 21-var ∩ -Höl a.s.

1By convention, rough intergals are [] (R)-valued; 1 is the projection to R
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for any  ∈ [0 12), the regularity assumption on x can be a bit further
relaxed to finite 1-variation,

-var ⊂ 1-var ⊂ (+)-var 

cf. definition 5.47. The continuity statements become somewhat more in-

volved but this will not be restrictive in applications: For  ⊂ Lip (R)
and 1 ≤   0  [] + 1 we have continuity

x ∈
³
1-var

³
[0  ]  []

¡
R
¢´

 0-var

´
7→ ( ) (0 0;x) ∈

³
0-var ([0  ] R)  |·|0-var

´
and, given 1 ≤   0  00  [] + 1,

x ∈
³
1-var ∩ 10-Höl

³
[0  ]  []

¡
R
¢´

 10-Höl

´
7→  ∈

³
1

0-Höl ([0  ] R)  |·|100-Höl
´


Elements in the (non-complete, non-separable) metric space³
1-var ∩10-Höl

³
[0  ]  []

¡
R
¢´

 10-Höl

´
are simply weak geometric 10-Hölder rough paths with additonal 1-var
regularity. To avoid measurability issues arising from non-separability, we

can restrict attention to the (non-complete, separable) metric space³
1-var ∩010-Höl

³
[0  ] []

¡
R
¢´

 10-Höl

´


elements of which are geometric 10-Hölder rough paths with additonal
1-var regularity.

17.1.4 Differential equations with drift

Let us now consider two collections of vector fields,

 = (1     ) ⊂ Lip (R) 
 = (1     0) ⊂ Lip (R) 

driven by x ∈ -var
¡
[0  ]  []

¡
R
¢¢
and  ∈ 1-var

³
[0  ] R

0
´
, re-

spectively. When    ≥ 1 and   1 it follows from theorem 12.10 that

there is a unique solution  = ( ) (0 0; (x)) to the RDE with drift

 =  () x+ ()   (0) = 0 ∈ R
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started at 0 ∈ R and

x ∈
³
-var

³
[0  ] []

¡
R
¢´

 -var

´
7→ ( ) (0 0; (x )) ∈ -var ([0  ] R)

is continuous in -variation topology. Again, the same statement holds in

1-Hölder topology.

One has also the refined result that uniqueness/continuity holds when

 =   = 1 and the regularity assumption on x is relaxed to finite 1-

variation: from theorem 12.11 (and the remarks afterwards) with 1 ≤  

0  00  [] + 1 we have the following continuity statements,

x ∈
³
1-var

³
[0  ]  []

¡
R
¢´

 0-var

´
7→ ( ) (0 0; (x )) ∈

³
0-var ([0  ] R)  |·|0-var

´
and

x ∈
³
1-var ∩ 10-Höl

³
[0  ]  []

¡
R
¢´

 10-Höl

´
7→ ( ) (0 0; (x )) ∈

³
1

0-Höl ([0  ] R)  |·|100-Höl
´


17.1.5 Some further remarks

For simplicity, we have only stated continuity of the RDE solutions as

function of x. In fact, looking at the relevant statements in Part II shows

continuity of

(0x ) 7→ ( ) (0 0;x)

and similar for RDEs with drift (see e.g. corollary 10.43 and theorem 12.11).

It is also worth remarking that the assumption  ⊂ Lip (R)    ,

allows for continuity results on the level of flows of diffeomorphisms, cf.

section 11.2 and section 17.5 below.

17.2 Rough paths versus Stratonovich theory

In the present section we make the link to the theory of stochastic integra-

tion (resp. differential equations) with respect to (continuous) semimartin-

gales2.

2As is custom in this context, it understood that there is un underlying probability

space, say (ΩFP) where F is P-complete and there will be a right-continuous filtration
(F)≥0 with F0 containing all P-null sets (the "usual conditions").
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17.2.1 Stratonovich integration as rough integration

We show in this subsection that rough integration along enhanced semi-

martingales coincides with classical Stratonovich integration. The case of

integration against (enhanced) Brownian motion is, of course, a special

case.

Let  be a real-valued continuous semimartingale,  =
¡
1    

¢
an R-valued continuous semimartingale and  ∈ 1 (RR). We fix a time-
horizon [0  ] and a sequence of dissection () wish mesh || → 0. As

usual,  denotes the path obtained by piecewise linear approximation

to the (sample) path  =  (·;) and the same notation applies to the
 () =  ( (·;)). It is a routine exercise in stochastic integration3 to
show that4

lim
→∞

Z 

0

[ ()]
  =

Z 

0

 ()  +
1

2

X
=1

Z 

0

 () 

  

®


(17.1)

in probability and uniformly in  ∈ [0  ]. One can then use either side as
definition of the Stratonovich integral of  () against  , denoted byZ 

0

 () ◦ 

This allows in particular to defineZ 

0

 () ◦  ≡
X
=1

Z 

0

 () ◦  

where  = (1     ) is collection of 
1
¡
RR

¢
- functions. On the

other hand, given   2 we can pick  ∈ (2min (3 )) and know from

theorem 14.9 that  can be enhanced to a geometric -rough path M,

i.e.M () ∈ 0-var
¡
[0  ]  2

¡
R
¢¢
. In particular, there is a well-defined

rough integral in the sense of section 10.6Z 

0

 () M

provided  ∈ Lip−1 with     2.

Proposition 17.1 Let   2 and  ∈ Lip−1
¡
RR

¢
for  = 1     ,

and a R-valued semimartingale. Then the rough integral of the enhanced
semimartingale M against  exists and, with probability one,

∀ ∈ [0  ] :
Z 

0

 () ◦  = 1

µZ 

0

 () M

¶


3 See e.g. Stroock [155, p. 229].
4

 ()  denotes the Itô stochastic integral.
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Proof. The fact that
R 
0
 () M is well defined follow from the fact that

M is almost surely a geometric -rough path, for any  ∈ (2min (3 )) 
see theorem 14.12. Take a sequence of dissection () wish mesh ||→ 0.

From theorem 14.16, and the remarks in the beginning of that chapter, we

know that -var
¡
2
¡


¢
M

¢ →→∞ 0 in probability and so, by basic

continuity properties of rough integration (cf. section 10.6)

-var

µ
1

µZ 

0

 () M

¶


Z 

0


¡


¢


¶
→→∞ 0

in probability. On the other hand, from (17.1) we have

∞

µZ 

0

 () ◦ 

Z 

0

[ ()]
 

¶
→→∞ 0

in probability. So to conclude the proof, we only need to prove that

sup
∈[0 ]

¯̄̄̄Z 

0

³

¡




¢− [ ()]



´




¯̄̄̄
→→∞ 0

in probability. Given a dissection  = () and  ∈ [0 ] we have


¡




¢
= 

µ
 +

− 

 − 


¶
=  () + 0 ()

µ
− 

 − 


¶
+

³
| |−1

0;[]

´
[ ()]


 =  () +

− 

 − 
[ ()−  ()]

=  () +
− 

 − 

£
0 ()

¤
+

³
| |−1

0;[]

´
;

It follows that for  = () and  ∈ [ +1] 


¡




¢− [ ()]

 = 
³
| |−10;[+1]

´


and hence that

sup
∈[0 ]

¯̄̄̄Z 

0

³

¡




¢− [ ()]



´




¯̄̄̄
≤ 1

X


| |0;[+1]

which converges to zero, even almost surely, with || → 0; as is easily

seen from theorem 8.23, or directly fromX


| |0;[+1] ≤ | |


-var;[0 ]

Ã
sup

|−|≤||
| |−

!
and a.s. uniform continuity of  ∈ [0  ] 7→ . This concludes the proof.
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Exercise 17.2 Let  be a continuous, R-valued local martingale with lift
M.

(i) Show that the collection of iterated Stratonovich integrals up to level  ,

i.e.

Strato () :=

Ã
1 · · · 

Z
{01}

◦1 ⊗ ◦ · · ·⊗ ◦

!

viewed as continuous path in 
¡
R
¢
coincides with the Lyons lift  (M).

(ii) Let  be a moderate function (cf. definition 14.4). Show that there exists

 =  ( ) such that

E

⎛⎝

⎛⎝ sup
0≤∞

¯̄̄̄
¯
Z
{01}

◦1 ⊗ · · ·⊗ ◦

¯̄̄̄
¯
1

⎞⎠⎞⎠ ≤ E
³

³
|hi∞|12

´´


Solution 17.3 (i) is an easy consequence of proposition 17.1 and we have

in particularZ
{01·}

◦1 ⊗ · · ·⊗ ◦ =  ( (M)) 

Clearly,

sup
0≤∞

¯̄̄̄
¯
Z
{01}

◦1 ⊗ · · ·⊗ ◦

¯̄̄̄
¯
1

≤ sup
0≤∞

°°° (M)0°°°
≤ k (M)k-var;[0∞)

From theorem 9.5, we have for some constant 1 = 1 ( ) 

k (M)k-var;[0∞) ≤ 1 kMk-var;[0∞) 
Hence, use theorem 14.12 to see that

E

⎛⎝

⎛⎝ sup
0≤∞

¯̄̄̄
¯
Z
{01}

◦1 ⊗ · · ·⊗ ◦

¯̄̄̄
¯
1

⎞⎠⎞⎠
≤ E

³

³
1 kMk-var;[0∞)

´´
≤ 2E

³

³
|hi∞|12

´´


17.2.2 Stratonovich SDEs as RDEs

We extend the result of the previous section to differential equations. The

main point is that solutions to RDEs driven by (enhanced) semimartin-

gales solve the corresponding Stratonovich stochastic differential equation.
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Again, the case of (enhanced) Brownian motion is a special case of this. We

start by recalling that a solution to the Stratonovich stochastic differential

equation,

 =

X
=1

 ( ) ◦   (17.2)

driven by a general (continuous) semimartingale =
¡
1    

¢
is, by

definition, a solution to the integral equation

0 =

X
=1

Z 

0

 ( ) 
 +

1

2

X
=1

Z 

0

 ( ) 

  

®
 (17.3)

assuming  ∈ 1 so that  ≡  
  is well-defined. Obviously then,

 is semimartingale itself and from basic stochastic calculus  is indeed a

solution to the Stratonovich integral equation

0 =

X
=1

Z 

0

 ( ) ◦  

where the Stratonovich integral on the right-hand-side was defined in the

previous section. The extension to SDEs with drift-vector fields  =

(1    0), driven by an R
0
-valued adapted process  = (1    0)

with sample paths in 1-var
³
[0  ] R

0
´
is easy since  itself is a semi-

martingale (with vanishing quadratic variation): a solution to the Stratonovich

SDE with drift

 =

X
=1

 ( ) ◦   +

0X
=1

 ( ) 
 (17.4)

is then a solution to the equation

0 =

X
=1

Z 

0

 ( ) 
 +

1

2

X
=1

Z 

0

 ( ) 

  

®
+

0X
=1

 ( ) 
  (17.5)

Theorem 17.4 Let   be such that 2    . Assume

(i)  = ()1≤≤ is a collection of vector fields in Lip
 (R);

(i bis)  = ()1≤≤0 is a collection of vector fields in Lip
1 (R);

(ii) is an R-valued semimartingale, enhanced toM =M () ∈ 0-var
¡
[0  ]  2

¡
R
¢¢

almost surely;

(ii bis)  is an R
0
-valued continuous, adapted process, so that  () ∈
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1-var
³
[0  ] R

0
´
almost surely;

(iii) 0 ∈ R.
Then the (for a.e.  well-defined) RDE solution

 () = ( ) (0 0; (M ()  ())) 

solves the Stratonovitch SDE

 =

X
=1

 ( ) ◦   +

0X
=1

 ( ) 
   (0) = 0 (17.6)

Remark 17.5 In the case of driving Brownian motion,  ∈ Lip2 and

 ∈ Lip1 suffices to have a -wise uniquely defined RDE solution (which

then solves the Stratonovich SDE driven by Brownian motion). Indeed, in

the drift-free case ( ≡ 0) this follows from 21-variation of Brownian

motion and theorem 10.44. In the drift case, we rely on theorem 12.11

Remark 17.6 Our proof of theorem 17.4 does not rely on any existence

results for Stratonovich SDEs (and in fact yields such as result). En pas-

sant, we obtain the classical Wong-Zakai theorem (e.g. [83], [155] or

[90]), which asserts

( )
¡
0 0;


¢→  in probability, uniformly on [0  ] 

as immediate corollary of our theorem 17.4.

Conversely, if one accepts the Wong-Zakai theorem then continuity of the

Itô-Lyons map combined with -var
¡
2
¡


¢
M

¢→→∞ 0 in probabil-
ity (theorem 14.16) immediately tells us that ( ) (0 0; (M ()  ()))

is a Stratonovich solution.

Proof. We may assume that  is a continuous local martingale (since its

bounded variation part can always be added to the "drift"-signal  ). By

a localisation argument we may assume that5

hi ≡ ¡  
®
:   ∈ {1     }¢

and the -variation of the enhanced martingale M remain bounded. We

fix a sequence of dissections  = () with || → 0 and write, as

usual,   for the respective piecewise linear approximations of

 based on  Define

̃  = ( )

¡
0 0; (

 )
¢


5The notation here is on slight contrast to section 14.1 we prefered to set hi ≡



:  = 1     


. Let us remark, however, that the two quantities are compara-

ble as seen from the Kunita—Watanabe (or in essence, the Cauchy—Schwarz) inequality,

see e.g. [138, Ch. IV, Cor. (1.16)].
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and also the Euler approximation with "backbone ̃ " to (17.5), that is6

 

+1

=  


+ 

³
̃ 



´




+1

+
1

2
 2
³
̃ 



´
hi



+1

+
³
̃ 



´




+1

with  
· defined within the intervals

£
  


+1

¤
by linear interpolation. We

see that for a fixed 

¯̄̄
 


− ̃ 




¯̄̄
=

−1X
=0

¯̄̄
 
 


+1
− ̃ 

 

+1

¯̄̄

≤
−1X
=0

 +

¯̄̄̄
¯̄−1X
=0




¯̄̄̄
¯̄

where

 =

¯̄̄̄
( )

³
  ̃



; ( )

´
 


+1

− E( )
³
̃ 

 2

¡


¢
 


+1

´
− E( )

³
̃ 

 


+1

´¯̄̄̄
and


 =  2

³
̃ 


´³
hi +1 −⊗2 


+1

´


We now apply corollary 12.8 (or Davie’s estimate, lemma 10.7, in the case

of no drift). Using only Lip−1 regularity for  and Lip−2 regularity for
 we have that, for some   1,

−1X
=0

 ≤ 1

X
=0

³°°2 ¡
¢°°

-var;[ 

+1]

+ ||
1-var;[ 


+1]

´
≤ 2

X
=0

| |
-var;[ 


+1]

+ ||
1-var;[ 


+1]
→ 0 a.s.

as ||→ 0 where we used piecewise linearity of on
£
  


+1

¤
so that°°2 ¡

¢°°
-var;[ 


+1]

=
¯̄


¯̄
-var;[ 


+1]

≤ 31−1 | |
-var;[ 


+1]

On the other hand,  7→ hi −⊗2 is a (R×-valued) martingale and

since  2
³
̃ 


´
is F -measurable it follows that

³P−1
=0 


 :  = 1 2   

´
6 In what follows  (·) stands for


=1  (·)

 and  2 (·) hi for
=1  (·)
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is a martingale. Hence, using in particular Doob’s 2 inequality and or-

thogonality of martingale increments, we have

E

⎡⎢⎣#
max
=1

¯̄̄̄
¯̄−1X
=0




¯̄̄̄
¯̄
2
⎤⎥⎦

1
2

≤ 2E

⎡⎢⎣
¯̄̄̄
¯̄#−1X
=0




¯̄̄̄
¯̄
2
⎤⎥⎦

1
2

= 2E

⎡⎣#−1X
=0

¯̄



¯̄2⎤⎦ 1
2

≤ 2 | |Lip1 E
⎡⎣#−1X

=0

¯̄̄
hi +1 −⊗2 


+1

¯̄̄2⎤⎦ 1
2

≤ 1 | |Lip1 E
⎛⎝#−1X

=0

¯̄̄
hi +1

¯̄̄2⎞⎠
→ 0 as ||→ 0

¯̄̄̄
¯̄#
max
=1

−1X
=0




¯̄̄̄
¯̄
2

≤ | |Lip1

¯̄̄̄
¯̄#
max
=1

¯̄̄̄
¯̄−1X
=0

hi +1 −⊗2 

+1

¯̄̄̄
¯̄
¯̄̄̄
¯̄
2

≤ 2 | |Lip1 E
⎛⎝#−1X

=0

¯̄̄
hi +1 −⊗2 


+1

¯̄̄2⎞⎠12

≤ 1 | |Lip1 E
⎛⎝#−1X

=0

¯̄̄
hi +1

¯̄̄2⎞⎠
→ 0 as ||→ 0;

the last estimate comes from the (classical) Burkholder-Davies-Gundy in-

equality (theorem 14.6), and the final convergence is justified by
P

 | hi +1 |
2 →

0 and bounded convergence. Switching to a subsequence, if necessary, we

see that ¯̄̄
 


− ̃ 




¯̄̄
→ 0 a.s.

and it is a small step to see that this implies¯̄̄
  − ̃ 

¯̄̄
∞;[0 ]

→ 0 a.s.

Now, if  ∈ Lip and  ∈ Lip1, then ̃  converges in probability (and

uniformly on [0  ]) to the (pathwise unique) RDE solution

̃ = ( ) (0 0; (M))
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and so we see that
¯̄̄
  − ̃

¯̄̄
∞;[0 ]

→ 0 in probability7. On the other hand,

from definition of ( ) we have that for all  ∈ (0  ]

 
0 =

X
:




µ

³
̃ 



´




+1

+
1

2
 2
³
̃ 



´
hi



+1

+
³
̃ 



´




+1

¶
(17.7)

where as usual  denotes right-hand neighbour to  in . We observe

that  := 
³
̃ 


´
is uniformly bounded by | |∞ (and hence by any Lip-

norm ...), F-measurable for  ∈  (and F -measurable for a general

 ∈ [0  ]). We note that  := lim→∞  = 
³
̃

´
, exists in probabil-

ity and uniformly in  ∈ [0  ], and is adapted, thanks to right-continuity
of (F). Write ( :  ∈ [0  ]) for the piecewise constant, left-point ap-
proximation; that is, equal to 


whenever  ∈ (  +1]. Similarly for¡

 :  ∈ [0  ]
¢
. ThenX
:





³
̃ 



´




+1

=

Z 

0



=

Z 

0

 +

Z 

0

³
 − 

´


→
Z 

0


³
̃

´
 in probability as →∞;

where we used convergence of left-point Riemann-Stieltjes approximations

to the Itô-integral, as well as

Z 

0

³
 − 

´
 → 0 in probability as →∞

as is easily seen from the dominated convergence theorem for stochastic

integrals8 . Similarly, but easier, the other two terms of the right-hand-side

of (17.7) are seen to converge to the Riemann-Stieltejes integrals

1

2

Z 

0

 2
³
̃

´
 hi +

Z

³
̃ 


´


7Whatever subsequence we have so far extracted we can also extract a further sub-

sequence along which we have a.s. convergence and this in fact implies that the original

sequence converges in probability.
8 See e.g. [138, Ch IV, (2.12)]
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At last, using  
0

→ ̃0 as →∞, and see that

̃0 =

Z 

0


³
̃

´
 +

1

2

Z 

0

 2
³
̃

´
 hi +

Z 

0


³
̃

´


and so the proof is finished.

17.3 Stochastic differential equations driven by
non-semimartingales

As was seen in Part III, there are many multi-dimensional stochastic processes

which allows for a natural enhancement to (random) geometric -rough

paths. These include Brownian motion and semimartingales but also non-

semimartingales such as certain Gaussian and Markov processes. RDE the-

ory leads immediately to a pathwise notion of stochastic differential equa-

tion driven by such processes. It is reassuring that such solutions have firm

probabilistic justification. More precisely, if X = X () denotes either an

enhanced Brownian motion, semimartingale, Gaussian or Markov process,

then the abstract (random) RDE solution

( ) (0 0;X ()) 

can be identified as (strong or weak) limit of various natural approxima-

tions. In particular, in all cases (cf. sections 13.3.3, 14.5, 15.5.1, 16.5.2) we

have seen the validity of aWong-Zakai type result in the sense that, for

any sequence of dissections () ⊂ D [0  ] with mesh ||→ 0,

X ≡ []
¡


¢→ X, with  ≡ 1 (X) ,

(in rough path topology and, at least, in probability) so that the abstract

(random) RDE solution

( ) (0 0;X)

is identified as "Wong-Zakai" limit of solutions to the approximating ODEs

 =  ()    (0) = 0

and not dependend on the particular sequence (). We can thus character-

ize RDE solutions driven by Gaussian and Markov processes in a completely

elementary way.

Theorem 17.7 (Differential equations driven by Gaussian signals)

Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process on [0 1]

with independent components;
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(ii) H denotes the Cameron—Martin space associated to ;

(iii) the covariance of  is of finite -variation in 2D sense for some

 ∈ [1 2);
(iv)  = (1     ) is a collection of Lip

-vector fields on R with   2;

(v) let () ⊂ D [0  ] with mesh ||→ 0.

Then the (random) sequence of ODE solutions¡
( )

¡
0 0;


¢¢ ⊂  ([0  ] R)

is Cauchy in probability with respect to uniform topology. The unique limit

point, a  ([0  ] R)-valued random variable, does not depend on the par-

ticular sequence () and is identified as the (random) RDE solution

( ) (0 0;X)

where X is the natural enhancement of  to a geometric -rough path,

 ∈ (2min ( 4)).
Theorem 17.8 (Differential equations driven by Markovian signals)

Assume that

(i)  =
¡
1    

¢
is a (symmetric) Markov process with uniformly

elliptic generator in divergence form9

1

2

X
=1


¡
 (·)  ·

¢
where  ∈ Ξ1 (Λ), that is, measurable, symmetric and Λ−1 ≤  ≤ Λ,
for some Λ  0, in the sense of positive definite matrices.

(ii)  = (1     ) is a collection of Lip
2-vector fields on R;

(iii) let () ⊂ D [0  ] with mesh ||→ 0.

Then the (random) sequence of ODE solutions¡
( )

¡
0 0;


¢¢ ⊂  ([0  ] R)

is Cauchy in probability with respect to uniform topology. The unique limit

point, a  ([0  ] R)-valued random variable, does not depend on the par-

ticular sequence () and is identified as the (random) RDE solution

( ) (0 0;X)

where X is the enhancement of  to a geometric -Hölder rough path,

 ∈ (13 12).
The proof of these theorems is little more than combining the convergence

results of sections 15.5.1, 16.5.2 with continuity properties of the Itô-Lyons

9Understood in the weak sense, i.e. via Dirichlet forms.
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map. Let us perhaps remark that enhanced Markov processes have finite

21-variation (exactly as enhanced Brownian motion) so that we can use

the "refined" continuity result with minimal Lip2-regularity. (In fact, this

would also work for enhanced Gaussian processes provided  = 1.)

17.4 Limit theorems

17.4.1 Strong limit theorems

Since almost-sure convergence and convergence in probability are preserved

under continuous maps, continuity results for RDE solutions (such as those

recalled in section 17.1) imply immediately corresponding probabilistic

limit theorems. For the reader’s convenience we spell out two the following

two cases; the (immediate) formulation for RDEs with drift is left to the

reader.

Theorem 17.9 Assume that

(i) (X) is a sequence of random geometric -rough paths (resp. 1-Hölder

rough paths) such that

X → X∞ a.s. [or: in probability, or: in  (P)∀ ∞]
in -variation (resp. 1-Hölder) rough path topology.

(ii)  = (1     ) ∈Lip (R)     and 0 ∈ R.
Then

π( ) (0 0X)→ π( ) (0 0X∞) a.s. [or: in probability, or: in  (P) ∀ ∞]
in -variation (resp. 1-Hölder) rough path topology.

Proof. The case of almost sure convergence and convergence in probability

is obvious from the above remarks. Stability of the Itô-Lyons map under

 (P)-convergence, for all   ∞, follows from the (purely) deterministic

estimate (10.15) of theorem 10.16.

Theorem 17.10 Assume that 1 ≤   0  00  [] + 1,
(i) (X) ⊂ 1-var

¡
[0  ]  []

¡
R
¢¢
(resp. 1-var∩10-Höl) a.s. such

that

X → X∞ a.s. [or: in probability /  (P) for all  ∈ [1∞)]
in 0-variation (resp. 10-Hölder) rough path topology.
(ii)  = (1     ) ∈Lip (R) and 0 ∈ R.
Then

π( ) (0 0X)→ π( ) (0 0X∞) a.s. [or: in probability /  (P) for all  ∈ [1∞)]
in 0-variation (resp. 100-Hölder) rough path topology.
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Exercise 17.11 In the context of either theorem 17.9 or 17.10, assume

X → X∞ in  (P) for some fixed   ∞. Use estimate (10.15)to dis-
cuss ̃ convergence of π( ) (0 0X) → π( ) (0 0X∞) for suitable
̃ = ̃ () ∞

Theorem 17.9 applies in particular if X is a semimartingale or an en-

hanced Brownian motion. In the latter case, as detailed in theorem 17.10,

the assumptions on  and x can be slightly weakened ( ∈Lip (R) x ∈
1-var ...); in all these cases the limiting RDE solutions are indeed clas-

sical Stratonovich solutions. But of course, these theorems can equally well

be applied to (rough) differential equations driven by Gaussian or Markov-

ian signals. There is no reason to list all possible approximation results: the

reader may simply consult the catalogue of strong convergence results es-

tablished in sections 13.3, 14.5, noting that the mollifier and Karhunen-

Loéve approximations of 15.5 are also applicable to enhanced Brownian

motion.

Let us also draw attention to the existence of "non-standard" approxi-

mations , which may be based upon knowning only finitely many points

( :  ∈ ) ⊂ R, with the property that
 → 

say uniformly and in probability, but such that

( ) (0 0
)9 π( ) (0 0X) 

Indeed, in theorem 13.25 we established a set of conditions under which

 (
) converges in probabiliy / rough path sense10 to a limit with pos-

sibly "modified area ". The following corollaries are then an immediate

consequence from theorem 17.9.

Corollary 17.12 (McShane [119]) Let MSh
 denote the McShane in-

terpolation to 2-dimensional Brownian motion, as defined in example 13.29,

based on a fixed interpolation function  =
¡
1 2

¢ ∈ 1
¡
[0 1] R2

¢
with

 (0) = (0 0) and  (1) = (1 1). Then, given  = (1 2) of Lip
2-regularity,

the solutions to

 =  () MSh
   (0) = 0

converge (in -Hölder,   12 / in probability) to the solution of the

Stratonovich SDE

 =  () ◦  +  [1 2] ()   (0) = 0

with  = 2


³
1− 2 R 1

0
̇
1
()2 () 

´


10Taking  ∈ (0 1],  ≥ [1] and  = 1 in theorem 13.25 will lead to -Hölder

convergence for any   min ( 1). One can then pick  large enough such that

[1] =  .
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Proof. It was verified in example 13.29 that the assumptions of theorem

13.25 are met with  ∈ (13 12)   = 12 and  = 2. More precisely, P

was identified as exp (Γ) with

Γ =

Ã
0 2




01

− 2



01 0

!


and so the "correction" drift vector field is of the form

[1 2] 

µ
2




01

¶
+ [2 1] 

µ
− 2



01

¶
=

4




01 [1 2] 

=
2



µ
1− 2

Z 1

0

̇
1
()2 () 

¶
[1 2] 

Corollary 17.13 (Sussmann [163]) Let Sm
 denote Sussmann’s approx-

imation to -dimensional Brownian motion, constructed in detail in exam-

ple 13.28 for some fixed v ∈ g ¡R¢ ∩ ¡R¢⊗ ,  ∈ {2 3    }, by (re-
peated) concatenation of linear chords and "geodesic loops" associated to

v. Then, given  = (1     ) of Lip
 -regularity, the solutions to

 =  () Sm
   (0) = 0

converge (in -Hölder,   1 / in probability) to the solution of the

Stratonovich SDE

 =  () ◦  +
⎛⎝ X
1

£
1 

£
   

£
−1  

¤¤
  
¤¯̄

v1

⎞⎠ .

In particular, by suitable choice of  and v every possible Lie bracket of

{1     } can be made appear as drift vector field to the limiting SDE.

Proof. It was verified in example 13.28 that the assumptions of theorem

13.25 are met for with  ∈ (13 12)   = 1 .

17.4.2 Weak limit theorems

Similar to the previous section, a "weak" probabilistic formulation of Lyons’

limit theorem is an immediate consequence from the fact that weak conver-

gence is preserved under continuous maps. Again, the immediate extension

to RDEs with drift is left to the reader.
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Theorem 17.14 Assume that

(i) (X) is a sequence of random geometric -rough paths (resp. 1-Hölder

rough paths), possibly defined on different probability spaces, such that

X → X∞ weakly in -variation (resp.1-Hölder) topology.

(ii)  ∈Lip (R)    , and 0 ∈ R.
Then

π( ) (0 0X)→ π( ) (0 0X∞)

weakly in -variation (resp. 1-Hölder) rough path topology.

Theorem 17.15 Assume that 1 ≤   0  00,
(i) (X) ⊂ 1-var

¡
[0  ]  []

¡
R
¢¢
(resp. 1-var∩10-Höl) a.s. such

that

X → X∞ weakly in 0-variation (resp.10-Hölder) topology.

(ii)  = (1     ) ∈Lip (R)  and 0 ∈ R.
Then

π( ) (0 0X)→ π( ) (0 0X∞)

weakly in 0-variation (resp. 100-Hölder) rough path topology.

Again, there is no reason to list all of possible weak approximation re-

sults: the reader may simply consult the catalogue of weak convergence

results established for enhanced Brownian motion, Gaussian and Markov

processes and apply theorem 17.14. Nonetheless, let us list a few.

Example 17.16 (Donsker-Wong-Zakai) Let ( :  = 1 2 3    ) be a se-

quence of independent random-variables, identically distributed, 
D
=  with

zero-mean and moments of all orders i.e. E || ∞ for all  ∞. Write


()
 for rescaled, piecewise-linearly-connected, random-walk


()
 =

1

12

³
1 + · · ·+ [] + (− []) []+1

´


Also, let  ∈ Lip2 (R). Then ( )
¡
0 0

()
¢
converges weakly, in -

Hölder topology for any  ∈ [0 12), to the Stratonovich solution of
 =  ( ) ◦  0 = 0 ∈ R

Example 17.17 (Differential Equations driven by Gaussian signals)

Consider enhanced fractional Brownian motion B and the resulting rough

differential equations of the form

  = 
¡
 

¢
B   = 0.

As an application of a general Gaussian approximation result, established in

section 15.6, we have B → B12 as  → 12 weakly in -Hölder topology
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for any  ∈ [0 12) and hence weak convergence in -Hölder topology for

any  ∈ [0 12), to the Stratonovich solution of
 =  ( ) ◦  0 = 0 ∈ R

provided  ∈ Lip (R)    2.

Example 17.18 (Differential equations driven by Markovian signals)

Let  ∈ Ξ1 (Λ), smooth, so that
 →  ∈ Ξ1 (Λ) 

almost surely with respect to Lebesgue measure on R. Let  denote the

diffusion with generator 1
2

P
=1 

¡
 (·)  ·

¢
. Itô theory allows to con-

struct  as semimartingale (e.g. on -dimensional Wiener space) and

granted  ∈ Lip2 (R)  solutions to the Stratonovich SDEs
  =  ( )  0 = 0 ∈ R

are given by ( ) (0 0;
) and converge weakly, in -Hölder topology for

any  ∈ [0 12), to the (random) RDE solution
( ) (0 0;X)

where X is the enhancement to the symmetric diffusion  with generator
1
2

P
=1 

¡
 (·)  ·

¢
, understood via Dirichlet forms.

17.5 Stochastic flows of diffeomorphisms

Recall from section 11.2, corollary 11.16, that for  ∈ Lip+−1 with  

 ≥ 1 and x a geometric -rough path ( ) (0 ·x) is a -diffeomorphism

and11

x 7→ ( ) (0 ·x) ∈ D (R)

is continuous in the sense of flows of -diffeomorphisms. Once more, this

can be applied immediately in a purely pathwise fashion to almost every

sample path X = X () of an enhanced Brownian motion (or: semimartin-

gale, Gaussian- or Markov-process) and every strong or weak approxima-

tion result for X leads to the corresponding limit theorem for the stochastic

flows. (This kind of reasoning is exactly as in section 17.4).

To illustrate all this, consider an enhanced continuous semimartingaleM

with sample path in 0-var
¡
[0  ]  2

¡
R
¢¢
almost surely with 2    .

We then learn, still assuming  ∈ Lip+−1, that
( ) (0 ·;M) ∈ D (R)

11The Polish space D (R) was defined in 11.5.



520 17. Stochastic Differential Equations and Stochastic Flows

where ( ) (0 ·;M ()) is not only a Stratonovich solution to the SDE

 =  ( ) ◦  , with  = 1 (M), but now the solution flow to this

equation (see [135, Section V.9] for a "classical" discussion of this). If we

now assume that

M →M (a.s.,or: in probability)

in -variation rough path topology then we have12 (also a.s, or: in proba-

bility)

sup
0∈R

¯̄
( ) (0 0;M

)− ( ) (0 0;M)
¯̄
-var;[0 ]

→ 0 as →∞

The classical case is when M = 2 (
), lifted dyadic piecewise linear

approximations to Brownian motion. In this case we recover a classical

(Wong-Zakai-type) limit theorem for stochastic flows, see [83] or [117]. The

case M = 2 (
), lifted piecewise linear approximations to a generic

semimartingale, has been discussed in a classical context in [90].

We can also apply this to weak approximation. More precisely, if

M →M weakly in 0-var
¡
[0  ]  2

¡
R
¢¢

in -variation rough path topology, then still assuming  ∈ Lip+−1
( ) (0 ·;M)→ ( ) (0 ·;M) weakly in D (R) .

For instance, the weak (Donsker—Wong—Zakai type) convergence of ( )
¡
0 · ()

¢
,

where  () is a rescaled -dimensional random walk (cf. example 17.16)

also holds in the sense of flows of -diffeomorphisms as long as  ∈
Lip+−1 with    ≥ 1.

17.6 Anticipating stochastic differential equation

17.6.1 Anticipating vector fields and initial condition

Because RDE solution are constructed pathwise, it is clear that we can

allow the vector fields  to be random as along as the appropriate Lipschitz-

regularity holds with probability one. In particular, there is no problem if

this randomness anticipates the randomness of the driving signal. The same

remark applies for the initial condition. With focus on enhanced Brownian

motion we have the following result.

12The uniformity in 0 ∈ R is a consequence of the invariance of the Lip -norm under

translation,

∀0 ∈ R   0 : | |Lip = | (0 + ·)|Lip 
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Proposition 17.19 Assume that

(i) B denotes a 2
¡
R
¢
-valued enhanced Brownian motion, lifting  =

1 (B) ;

(ii)  = (1     ) is a collection of random vector fields on R almost
surely in Lip2;

(iii) 0 is a R-valued random variable;

(iv) the stochastic process  is defined as the RDE solution of

 =  ( ) B 0 = 0 ∈ R;

(v) () ⊂ D [0  ] with mesh ||→ 0.

Then, for any  ∈ [0 12)

-Höl;[0 ]
¡
( )

¡
0 0;


¢
 ( ) (0 0;B)

¢→ 0 as →∞

in probability and in  for all   ∞. If () is nested, e.g.  =

(2− :  ∈ {0     2}), then convergence also holds almost surely.
Inclusion of drift vector fields is straight-forward, as is the similar state-

ment for full RDEs. It is also clear that any other strong convergence result

for enhanced Brownian motion will yield a similar limit theorem for such

"anticipating" stochastic differential equations. Under further regularity

assumptions,  ∈ Lip+−1 with   2, the convergence holds at the level

of -flows. At last, the usual remark applies that B can be replaced a va-

riety of other rough paths including enhanced semimartingales, Gaussian -

and Markovian processes.

Remark 17.20 Following Nualart—Pardoux (cf. [129] and the references

therein) one can say that  is a solution to the (anticipating) Stratonovich

equation

 =  ( ) ◦  0 = 0 ∈ R

if, by definition,

0 +

Z 

0

 ( )  →  as →∞

in probability and uniformly in  ∈ [0  ]. It was verified in [26] that

( ) (0 0;B) is also a solution in the Nualart—Pardoux sense.

17.6.2 Stochastic delay differential equations

Let  ∈ (0 1). A real-valued Brownian motion , started at time −1 say,
give rise to the R2-valued process by setting

 ∈ [0  ] 7→ (  ) :=
¡
− 

¢
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On a sufficiently small time interval (of lenght ≤ ), it is clear that  and

 have independent Brownian increments so that¡
  :  ∈ [ + ]

¢
has the distribution of a 2-dimensional standard Brownian motion ( :  ∈ [0 ])
and so there is a unique solution to the Stratonovich SDE

 
 = 1 (


 ) ◦  + 2 (


 ) ◦    (0) = 0 ∈ R (17.8)

where 1 2 ∈ Lip2 (R). For   , we effectively dealing with an antici-

pating SDE but one can (classically) get around this by solving (17.8) as

stochastic flow: first on [0 ] then on [ 2] and so on. By composition, we

can then define a solution to (17.8) over [0  ]. It is easy to see that this

construction is in precise agreement with solving the RDE

 
 =

µ
1
2

¶
( 

 ) B
   (0) = 0 ∈ R

where B is the lift of ( ) constructed in section 13.3.5. Indeed, from

theorem 17.4 (resp. proposition 17.19) both constructions are consistent on

[0 ], then [ 2] etc and hence on [0  ].

Theorem 17.21 Let  ∈ (13 12) and 1 2 ∈ Lip2. Define for  

0   to be the solution of anticipating Stratonovich SDE

 
 = 1 (


 ) ◦  + 2 (


 ) ◦ −   (0) = 0

and  to be the solution of the (standard) Sratonovich solution

 = (1 () + 2 ()) ◦  − [1 2] () 
Then, for any  ∈ [0 12),

|  − |-Höl;[0 ] → 0 as → 0

in probability and in  for all  ∞.
Proof. Set  = (1 2). It is clear from the remarks preceding this theo-

rem that   = ( ) (0 0;B
) solves the given Stratonovich SDE for  .

Similarly, setting  := [1 2] ∈ Lip1 and
β = exp (( ) ; 0) ∈ 2

¡
R2
¢

we see (from theorem 17.4 and the first remark thereafter) that  :=

( ) (0 0; (β )) solves the Stratonovich SDE for . But then theorem

12.14 tells us that almost surely,

 = ( )

³
0 0; X̃

´


where X̃ = exp(( ) ;−2) For   2, we conclude using theorem

13.32 and continuity of the Itô-Lyons map. For  = 2 we need proposition

13.31 to ensure that every B has finite 21-variation.
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17.7 A class of stochastic partial differential
equations

We now return to the setting of section 11.3 where we studied a non-linear

evolution equations with "rough noise" such as a typical realization of -

dimensional Brownian motion and Lévy’s area, B () = exp (). The

equation then reads

 = 
¡
 2

¢
+ ( ) ·  () B (17.9)

 (0 ·) = 0 ∈ BUC(R) 

where  =  (  ) ∈  ([0  ] RR ) is assumed to be degener-
ate elliptic and  =  ( ) ∈ BUC([0  ]×R) is a real-valued function of
time and space. Under that assumption that  = (1     ) ⊂ Lip   

4, and that  satisfies Φ(3)-invariant comparison (as discussed in detail

and with examples in section 11.3) we then have a robust notion of solu-

tion to the above stochastic partial differential equation. Indeed, combing

theorem 11.18 with convergence of (lifted) piecewise linear approximations

to  to B suggests to call the so-obtained solutions to (19.5) Stratonovich

solutions, writing also13

 = 
¡
 2

¢
+ ( ) ·  () ◦  (17.10)

Let us leave aside the first benefit of this approach, which is to deal

with SPDEs with non-Brownian and even non-semimartingale noise14. The

continuous dependence on the driving signal B in rough path topology

implies various stability results (i.e. weak and strong limit theorems) for

such SPDEs: it suffices that an approximation to  converges in rough

path topology; examples beyond "piecewise linear-" are mollifier - and

Karhunen-Loeve approximations, as well as (weak) Donsker type random

walk approximations. A slightly more interesting example is left to the

reader in the following

Exercise 17.22 Let  = (1     ) be a collection of 
∞-bounded vec-

tor fields on R and  a -dimensional standard Brownian motion. Show

that, for every  = (1      ) ∈ {1     } ,  ≥ 2, there exists (piece-
wise) smooth approximations

¡

¢
to , with each  only dependent on©

 () :  ∈ 
ª
where

¡

¢
is a sequence of dissections of [0  ] with mesh

tending to zero, such that almost surely

 →  uniformly on [0  ] 

13Further justification for "Stratonovich" notation (17.10) is possible, cf. the references

at the end of this section.
14 It suffices to replace B by some other (e.g. Gaussian or Markovian) rough path.
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but , solutions to

 = 
¡
 2

¢
+ ( )· ()   (0 ·) = 0 ∈ BUC(R) 

converge almost surely locally uniformly to the solution of the "wrong" dif-

ferential equation

 =
£

¡
 2

¢
+ ( ) ·  ()

¤
+ ( ) ·  () ◦ 

where  is the bracket-vector field given by  =
£
1 

£
2    

£
−1  

¤¤¤
.

(Hint: combine Sussmann’s twisted approximations to Brownian motion

(exercise 13.28) with continuity of SPDE with respect to B in rough path

topology.)

17.8 Comments

Most of the material of section 17.2 belongs to the folklore of rough path

theory. We note that the Itô stochastic differential equation

 =  ( )   = (1     ) ⊂ Lip2

can be written in Stratonovich form and then solved pathwise as (unique)

RDE solution

 =  ( ) B− 1
2
 2 ( )  hi 

with "Lip1-drift" given by  2 ( )  hi = P
=1  ( ) 


  

®
.

Note that existence of RDE solutions is ensured for  ⊂ Lip    1.

For a discussion of pathwise uniquness under this assumption we refer to

[33].

The classical Wong—Zakai theorem can be found, for instance, in [155],

[90] or the classical monograph of Ikeda—Watanabe, [83]. In the latter, the

reader can also find a criterion for convergence of Itô map with "modi-

fied " limit which covers McShane’s example [119], but not Sussmann’s

example [163]. The material of section 17.3, on SDEs driven by non-

semimartingales, consists of essentially trivial corollaries of the relevant re-

sults of Part II and III; but we have tried to make the statements accessible

to readers with no background in rough path theory. Section 17.4.2 col-

lects a number of weak limit theorems, including a "Donsker—Wong—Zakai"

theorem which, perhaps, is known but for which we have failed to find a

reference. The discussion of stochastic flows, section 17.5, is rather imme-

diate from the deterministic results of chapter 11, nonetheless in striking

contrast to the work required [83],[89],[117] to obtain similar results previ-

ous to rough path theory. In the context of anticipating SDEs, section 17.6,

rough path theory was first exploited in [26]. Theorem 17.21 concerning a

simple delay equation appears (without proof) in [110] and is attributed
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to Ben Hoff, [81]. See [127]for a recent study of "rough" delay equations.

Section 17.7 is a straight-forward application of the determinstic results of

section 11.3 to SPDEs of the form

 = 
¡
 2

¢
+

X
=1

 () ◦ 

with  fully non-linear but  = (1    ) linear (with respect to the

derivatives of ); see [120] (also for exercise 17.22) and also [17]. In the case

when both  and  are linear, (Wong—Zakai type) approximations have

been studied in great detail [78, 77, 75, 74, 76] and in [20] with rough paths

methods. The above class of (fully non-linear) SPDEs, possibly generalized

to  =  ( ), is considered to be an important one [104, 105, 106]

and the reader can find a variety of examples (drawing from fields as diverse

as filtering and stochastic control theory, pathwise stochastic control, inter-

est rate theory, front propagation and phase transition in random media,

...) in the articles [105, 103].

Other classes of SPDEs (including a stochastic heat equation) can be

studied using rough path methods; see [73] and [72] and also the relevant

comments in 11.4.
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Stochastic Taylor Expansions

Our very approach to rough differential equations was based on good esti-

mates on higher order approximations, such as obtained in Davie’s lemma.

In particular, these can be written in the form of error estimates of higher

order Euler approximations (cf. corollary 10.17). We shall now put these

estimates in a stochastic context.

18.1 Azencott-type estimates

We now consider RDEs driven by a (random) geometric rough path. To

this end, fix  ≥ 1 and let us first consider a continuous []-valued process
X = X () which satisfies

sup
0≤≤

E

⎛⎝exp
⎛⎝

"
 (XX)

|− |1

#2⎞⎠⎞⎠ = ∞ (18.1)

Recall that this assumption applies to enhanced Brownian motion and

Markov processes with  = 2. It also applies to our class of enhanced

Gaussian processes (although, in general, a deterministic time-change may

be needed, cf. exercise 15.37). From the results of the appendix, section

A.4 this implies that X has a.s. finite 2-variation and also finite 1
0-

Hölder regularity for any 0  . In particular, by choosing 0 small enough
(such that [] = [0]) it is clear that X is a geometric 10-Hölder rough
path. As a consequence, for any integer  ≥ []  there is a well-defined

Lyons-lift of X to a  -valued path, denoted by  (X).

Theorem 18.1 (Azencott-type estimates) Let    ≥ 1 and let X be

a continuous []-valued process which satisfies (18.1). Let  = ()1≤≤
be a collection of Lip−1 vector fields in R. Then, for any fixed interval
[ ] ⊂ [0  ] and time- initial condition  ∈ R,

P

Ã
sup
∈[]

¯̄̄
( ) ( X) − E( )

³
 bc (X)

´¯̄̄
  |− |

!

≤  exp

(
− 1

| |2Lip−1(R)

µ




¶2)

where  =  (  ). Under the weaker assumption  ∈ Lip−1 one



528 18. Stochastic Taylor Expansions

has1

lim
→0
P

Ã
sup
∈[0]

¯̄̄
( ) (0 0X)0 − E( )

³
0 bc (X)0

´¯̄̄
 

!

≤  exp

(
− 1

| |2Lip−1((01))

µ




¶2)
 (18.2)

In particular, we see that

sup∈[0]
¯̄̄
( ) (0 0X)0 − E( )

³
0 bc (X)0

´¯̄̄


is bounded in probability as → 0 and for all  ∈ [0 ) we have

sup∈[0]
¯̄̄
( ) (0 0X)0 − E( )

³
0 bc (X)0

´¯̄̄


→ 0 (18.3)

in probability as → 0 .

Proof. Let us fix 0 ∈ ( ), e.g. (for the sake of tracking the constants)
0 = (+ ) 2. Then a.e. X () is a geometric 0-rough path and there
exists ̃ ̃  0, depending on  only, such that

E

⎛⎝exp
⎛⎝̃

Ã
kxk0-var;[]
|− |1

!2⎞⎠⎞⎠ = ̃ ∞; (18.4)

see equation (A.20) in the appendix. Thanks to Lip−1 regularity of the vec-
tor fields,   0, we have existence of RDE solution i.e. ( ) ( X) 6= ∅.
As usual, we abuse notation and write ( ) ( X) for any such solution.

stands for a (non-necessarily unique) RDE solution. From our Euler RDE

estimates, corollary 10.17, there exists 1 = 1 (
0 ) such that

P

Ã
sup
∈[]

¯̄̄
( ) ( X) − E( )

³
 bc (X)

´¯̄̄
  |− |

!
≤ P

³
1 | |Lip−1 kXk



0-var;[]   |− |
´

= P

Ã
kXk0-var;[]
|− |1


1

| |Lip−1

µ


1

¶1!

≤ ̃ exp

Ã
− 1

| |2Lip−1

µ


1

¶2!

1 If explosion happens, we agree that
( ) (0 0X)0 − E( ) 0  (X)0 =

+∞
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At last, consider the of case of Lip
−1
 -vector fields  . For fixed 0, we can

then find ̃ ∈ Lip−1 so that ̃ ≡  on a unit ball around 0. Setting

 ≡ ( ) (0 0X) and ̃ ≡ ( ) (0 0X) we see that

P

Ã
sup
∈[0]

¯̄̄
0 − E( )

³
0 bc (X)0

´¯̄̄
 

!

≤ P

Ã
sup
∈[0]

¯̄̄
0 − E( )

³
0 bc (X)0

´¯̄̄
 ; sup

∈[0]
| − 0|  1

!
+

P

Ã
sup
∈[0]

| − 0| ≥ 1
!

≤ 2 exp

(
−
µ


2

¶2)
+ P

Ã
sup
∈[0]

| − 0| ≥ 1
!

where 2 depends on   and | |Lip−1;(01). Noting that P
³
| − 0|∞;[0] ≥ 1

´
→

0 as → 0 the claimed estimate now follows. At last, observe that (thanks to

  ) for every fixed   0 there exists  ≤  for  small enough.

It follows that, if  = sup∈[0]
¯̄̄
( ) (0 0X) − E( )

³
0 bc (X)0

´¯̄̄
lim
→0
P
¡
  

¢ ≤ lim
→0
P
³
  

´
≤ 2 exp

(
−
µ


2

¶2)
and since we take  arbitrarily large, we see that the lim sup is zero (and

therefore a genuine lim).

Example 18.2 Consider an enhanced Gaussian process X which satifies,

sup
0≤≤

E

⎛⎝exp
⎛⎝

"
 (XX)

|− |
#2⎞⎠⎞⎠ ∞

for some  ∈ (14 12]. (After setting  = 1 (2), it was pointed out

in exercise 15.37 this holds for all enhanced Gaussian processes run at the

correct time-scale.) Let  = (1     ) be a collection of smooth (possi-

bly unbounded) vector fields. Then, for all  ∈ {2 3    }, we may apply
theorem 18.1 with  = +1 and  = 1 to see that, for every fixed   0,

P
³¯̄̄
( ) (0 0X)0 − E( )

³
0  (X)0

´¯̄̄
 

´
→ 0

as  → 0+. This applies in particular to enhanced fractional Brownian

motion with Hurst paramter .

Let us now give a variation of theorem 18.1 applicable to enhanced mar-

tingales.
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Theorem 18.3 Let    be as above and let  =  () =  (0 0M)

be the (pathwise unique) random RDE solution to  =  () M where

M =M () is an enhanced -martingale,  ∈ [1∞). Then for any fixed
 ∈ (0 1] and

 () := E
³
|hi|2

´2
= |hi|2

we have for  =  (  )

P
µ
sup
0≤≤

¯̄̄
 (0 0M)0 − E( )

³
0 bc (M)

´¯̄̄
  ()


2

¶
≤ 

µ
1



¶ 


Proof. Similar to the proof of theorem 18.1 and left to the reader.

18.2 Weak remainder estimates

Recall that the Euler approximation E( ) (   ) came from setting  = ,

the identity function, in the Taylor expansion


¡
( ) (0 0;)

¢
=  (0)+

X
=1

X
1
∈{1}

1 · · · ()x1··· 0 + (  ;) ;

valid, at least, for sufficiently smooth  and  ∈ 1-var
¡
[0  ] R

¢
with

canoncially defined  iterated integrals x. This obviously makes sense

for RDEs and we can ask for an estimate on the remainder term

 (  ;X) := 
¡
( ) (0 0;X)

¢−
⎛⎜⎜⎝ (0) +

X
=1

X
1
∈{1}

1 · · · ()X1··· 
0

⎞⎟⎟⎠ ;
where we have abused notation by writing X instead of  (X).

Theorem 18.4 Let    ≥ 1 and let X be a continuous []-valued

process which satisfies (18.1). Let  = ()1≤≤ be a collection of Lip
−1

vector fields in R. Then, for any function  ∈ Lip (RR) we have

∀ ∈ [1∞) :
°°bc (  ;X)°° = 

³


´
as → 0.

In the case of Lip
−1
 vector fields  and  ∈ Lip, we still have that for

any  ∈ [0 ),
bc (  ;X)


→ 0 in probability as → 0.
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Proof. It it clear that  ≡ ( ) (0 0;X) and  ( ) can be written jointly

as RDE solution; say

 = ̃ () X

with Lip−1 vector fields ̃ obtained from writting the ODE system

(1) = 
³
(1)

´


(2) =  0
³
(1)

´
(1) =  0

³

³
(1)

´

´

in form  = ̃ () , with  =
¡
(1) (2)

¢ ∈ R+1. It follows that

bc (  ;X) is precisely the (+ 1)

component of¯̄̄

(̃ ) (0 0X)0 − E(̃ )
³
0 bc (X)0

´¯̄̄
and the estimate of theorem 18.1 is more than enough to ensure that the

random variable ̂ :=
¯̄
bc (  ;X)

¯̄
 has moments of all orders,

uniformly in  ∈ (0 1]. But then, for all  ∈ (0 1]

°°bc (  ;X)°°(P) ≤
°°°°° sup∈(01]

̂

°°°°°
(P)

× 

and the proof is finished. In the case of Lip
−1
 vector fields  and  ∈

Lip

 the same construction yields ̃ ∈ Lip and we conclude again with

theorem 18.1.

18.3 Comments

In a Brownian - and semimartingale context, the estimates of section 18.1

go back to [4], [133], [10]. Estimate (18.2) plays an important rôle in subse-

quent developments such as [23]. For related works in a fractional Brownian

rough path context we mention [8]. Our presentations of section 18.1 and

18.2 improves on earlier results by the authors obtained in [63].

Let us also mention [3] and then [85, 84] where the authors are led

to somewhat different (stochastic) Taylor expansions for rough differen-

tial equations (in essence, asymptotic development in  of solutions to

 =  ( ) x.)
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Support Theorem and Large
Deviations

We now discuss some classical results of diffusion theory: the Stroock—

Varadhan support theorem and Freidlin—Wentzell large deviation estimates.

Everything relies on the fact that the Stratonovich SDE

 =

X
=1

 ( ) ◦  + 0 ( )  0 = 0 ∈ R

can be solved as RDE solution which depends continously on enhanced

Brownian motion in rough path topology, subject to the suitable Lip-

regularity assumptions on the vector fields. (A summary of the relevant

continuity results was given in section 17.1.)

19.1 Support theorem for SDEs driven by
Brownian motion

Theorem 19.1 (Stroock—Varadhan support theorem) Assume that  =

(1     ) is a collection of Lip
2-vector fields on R and 0 is a Lip

1-

vector field on R. Let  be a -dimensional Brownian motion and con-

sider the unique (up to indistinguishability) Stratonovich SDE solution 

on [0  ] to

 =

X
=1

 ( ) ◦  + 0 ( )  0 = 0 ∈ R (19.1)

Let us write  = (0) (0 0; ( )) for the ODE solution to

 =

X
=1

 ( ) 
 + 0 ( ) 

started at 0 ∈ R where  is a Cameron—Martin path, i.e.  ∈
12
0

¡
[0  ] R

¢
.

Then, for any  ∈ [0 12) and any   0

lim
→0

P
³ ¯̄

 − 
¯̄
-Höl;[0 ]

 
¯̄̄

| − |∞[0 ]  
´
→ 1

(where Euclidean norm is used for the conditioning | − |∞[0 ]  ).
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Proof. Without loss of generality  ∈ (13 12). Let us write, for a fixed
Cameron—Martin path ,

P (·) ≡ P
³
·| | − |∞[0 ]  

´


From theorem 17.4, there is a unique solution (0) (0 0; (B )) to the

RDE with drift

 =  ( ) B+ 0 ( )  0 = 0

which then solves the Stratonovich equation (19.1). Set h ≡ 2 () and

observe that h is of finite 1-variation and 12-Hölder, hence

h ∈ 21-var
¡
[0  ] 2

¡
R
¢¢ ∩0-Höl ¡[0  ]  2 ¡R¢¢

Take 0 ∈ (13 ). We now use continuity of the Itô-Lyons map from

21-var
¡
[0  ]  2

¡
R
¢¢∩0-Höl ¡[0  ]  2 ¡R¢¢→ 0

0-Höl ([0  ] R) 

in (rough path) -Hölder to (classical) 0-Hölder topology, respectively, at
the point h. Given   0 fixed, there exists  =  ( ) small enough such

that for

∀B ∈ 21-var ∩ 0-Höl : -Höl (Bh)   =⇒
¯̄
 − 

¯̄
-Höl

 

In particular, using the fact that B ∈ 21-var ∩ 0-Höl almost-surely,

P
¡¯̄
 − 

¯̄
-Höl

 
¢ ≥ P (-Höl (Bh)  )

→ 1 as → 0

thanks to theorem 13.67.

Remark 19.2 The regularity assumptions of theorem 19.9 are optimal in

the sense that  ⊂ Lip2 and 0 ∈ Lip1 are needed for a unique Stratonovich
solution.

As an immediate corollary, we obtain the characterisation of the support

of the law of the solution of a Stratonovich SDE.

Corollary 19.3 Assume that  = (1     ) is a collection of Lip
2-

vector fields on R and 0 a Lip
1-vector fields on R and  a -dimensional

Brownian motion. Consider the unique (up to indistinguishability) Stratonovich

SDE solution on [0  ] to

 =

X
=1

 ( ) ◦  + 0 ( ) 
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started at some 0 ∈ R. Then, for any  ∈ [0 12), the topological support
of  , viewed as 0 ([0  ] ;R)-valued random variable, is precisely the -

Hölder closure of

S =
n
(0) (0 0; ( ))   ∈

12
0

o


Proof. The first inclusion, supp (law of  (0 0;B)) ⊂ S , is straight-

forward from the Wong—Zakai theorem (equivalently: use theorem 17.4 with

remarks 17.5 and 17.6).

For the other inclusion (usually considered the difficult one), it suffices

to shows that for every Camerton-Martin path  and every   0, the event

 =
©¯̄
 − 

¯̄
-Höl

 
ª
= {| (0 0;B)−  (0 0;)|-Höl  }

has positive probability. But this is an obvious consequence of theorem

19.1.

Remark 19.4 If one is only interested in the conlusion of corollary 19.3,

one bypass the "conditional" consideration of theorem 13.67 on our proof

of theorem 19.1 relied. Indeed, in section 13.7 we obtained with much less

work (theorem 13.55) the qualitative statement

supp (law of B) =
n
2 () :  ∈

12
0

o
(19.2)

(support and closure with respect to -Hölder rough path topology) so that

for any   0 and  ∈
12
0 

P (-Höl (B 2 ())  )  0

Given   0 fixed, there exists  =  ( ) small enough such that -Höl (Bh) 

 =⇒
¯̄
 − 

¯̄
-Höl

 Hence

P
¡¯̄
 − 

¯̄
-Höl

 
¢ ≥ P (-Höl (Bh)  )  0

which yields the (difficult) inclusion in the Stroock—Varadhan support the-

orem.

We can also deal with the support at the level of stochastic flows (as

discussed in section 17.5).

Theorem 19.5 (Support for stochastic flows) Assume that  = (1     )

is a collection of of Lip+−1-vector fields on R,   , so that the

( ) (0 ·B), the solution flow to the Stratonovich SDE

 =  ( ) ◦ 
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induces a -flow of diffeomorphisms and we can view ( ) (0 ·B) as
D (R)-valued random variable1 . Then, for any  ∈

12
0

¡
[0  ] R

¢


lim
→0

P
³
D(R)

¡
( ) (0 ·B)  ( ) (0 · )

¢
 

¯̄
| − |∞[0 ]  

´
→ 1

and

supp (law of  (0 ·;B)) = S
where S =

n
 (0 ·;)   ∈

12
0

¡
[0  ] R

¢o ⊂ D (R).

Proof. The argument is then similar to the proof of theorem. 19.1. Let

 ∈ (13 12). Let us write, for a fixed Cameron—Martin path ,

P (·) ≡ P
³
·| | − |∞[0 ]  

´


Thanks to corollary 11.16, Lip+−1-vector fields imply continuity of

0-Höl
¡
[0  ]  2

¡
R
¢¢ → D (R)

x 7→ ( ) (0 ·x)

and we simply use it at the point h ≡ 2 (). Given   0 fixed, there

exists  =  ( ) small enough such that for

∀B ∈ 0-Höl : -Höl (Bh)   =⇒
¯̄
 − 

¯̄
-Höl

 

It follows, thanks to theorem 13.67, that

P
¡¯̄
 − 

¯̄
-Höl

 
¢ ≥ P (-Höl (Bh)  )→ 1

as → 0. The proof is finished.

19.2 Support theorem for SDE driven by other
stochastic processes

The reader will have noticed the proofs of the previous section are es-

sentially trivial corollaries of a suitable support description of enhanced

Brownian motion in rough path topology, followed by appealing to con-

tinuity of the Itô-Lyons map. We have seen in Part II (more precisely,

theorem 15.64 and theorem 16.33) that similar support descriptions hold

for enhanced Gaussian- and Markovian processes. As consequence, the very

same arguments lead us to support theorems for stochastic differential equa-

tions driven by Gaussian- and Markovian signals. We have

1The Polish space D (R) was defined in 11.5.
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Proposition 19.6 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process on [0 1]

with independent components;

(ii) H denotes the Cameron—Martin space associated to 

(iii) the covariance of  if of finite -variation dominated by some 2D

control , for some  ∈ [1 2);
(iv) X denotes the natural lift of  to a [2]

¡
R
¢
-valued process (with

geometric rough sample paths);

(v)  = (1     ) is a collection of Lip
-vector fields on R with   2

Then, for any   2, the topological support the solution to

 =  ( ) X  (0) = 0 ∈ R

viewed as 0-var ([0  ] ;R)-valued random variable, is precisely the -

variation closure of

S = ©( ) (0 0;)   ∈ Hª 
If  is Hölder dominated, the topological support of  , viewed 01-Höl ([0  ] ;R)-
valued random variable is precisely the 1-Hölder closure of

S = ©( ) (0 0;)   ∈ Hª 
Proof. Left to the reader.

Proposition 19.7 Assume that

(i)  =
¡
1    

¢
is a Markov process with uniformly elliptic generator

in divergence form, 1
2

P
=1 

¡
 (·)  ·

¢
understood in a weak sense (i.e.

via Dirichlet forms) where  ∈ Ξ1 (Λ), that is, measurable, symmetric and
Λ−1 ≤  ≤ Λ in the sense of positive definite matrices.
(ii) X denotes the natural lift of  to a 2

¡
R
¢
-valued process (with geo-

metric rough sample paths);

(iii)  = (1     ) is a collection of Lip
4-vector fields on R

Then, for any  ∈ [0 14), the topological support the solution to
 =  ( ) X  (0) = 0 ∈ R

viewed 0 ([0  ] ;R)-valued random variable is precisely the -Hölder

closure of

S =
n
( ) (0 0;)   ∈

12
0

¡
[0  ] R

¢o


Proof. Set X̃ = 4 (X), the step-4 Lyons-lift of X. Clearly

 = ( ) (0 0;X) = ( )

³
0 0; X̃

´


and X̃ ∈ 41-var ∩-Höl. It then suffices to use continuity of the solution

map X̃ 7→  in -Hölder topology for any  ∈ (15 14), following the
precise argument given in remark 19.4.
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It should be noted that the restriction to Hölder exponent  14 (and

Lip4 rather than Lip2 regularity) in proposition 19.7 is a consequence of

theorem 16.33 where a support characterization of the enhanced Markov

process X in -Hölder rough path topology was only established for  

14. As noted in the comments of section 16.10 the result is conjectured to

holds for   12 in which case we would have, for all  ∈
12
0

¡
[0  ] R

¢
and   0,

P
³¯̄
( ) (0 0;X)− ( ) (0 0;)

¯̄
-Höl;[0 ]

 
´
 0

In fact, we can show this for  = 0.

Proposition 19.8 Under the assumptions of proposition 19.7 but with the

weakened regularity assumption  = (1     ) ⊂ Lip2 (R) we have, for
any  ∈ [0 12),

lim
→0

P
³ ¯̄

( ) (0 0;X)
¯̄
-Höl;[0 ]

 
¯̄̄

kXk∞;[0 ]  
´
→ 1

As a consequence, for all   0

P
³ ¯̄

( ) (0 0;X)
¯̄
-Höl;[0 ]

 
´
 0

Proof. This follows readily from theorem 16.39.

19.3 Large deviations for SDEs driven by
Brownian motion

In theorem 13.43, we saw that Schilder’s theorem holds for enhanced Brown-

ian motion. That is, if B denotes a 2
¡
R
¢
-valued enhanced Brownian

motion on [0  ], then for any  ∈ [0 12), then the family (B :   0)
satisfies a large deviation 0-Höl

¡
[0  ] 2

¡
R
¢¢
with rate function given

by  (1 (·))  where 1 (·) denotes the projection of a 2
¡
R
¢
-valued path

to a R-valued path and

 () =

( R 
0

¯̄̄
̇

¯̄̄2
 for  ∈

12
0

¡
[0  ] R

¢
+∞ otherwise

 (19.3)

Since ( ) (0 0;B), a Stratonovich solution to  =  ( ) B, depends

continuously on B in this -Hölder rough path topology, we can apply the

contraction principle to deduce (without any further work) a large deviation

principle for solution of stochastic differential equations; better known as

Freidlin—Wentzell estimates. More precisely, also including a drift term, we

have
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Theorem 19.9 (Freidlin—Wentzell large deviations) Assume that  =

(1     ) is a collection of Lip
2-vector fields on R and 0 is a Lip

1-

vector field on R. Let  be a -dimensional Brownian motion and consider

the unique (up to indistinguishability) Stratonovich SDE solution on [0  ]

to

  =

X
=1

 ( ) ◦  + 0 ( ) 

started at 0. Let  ∈ [0 12). Then   satisfies a large deviation principle

(in -Hölder topology) with good rate function given by

 () = inf
©
 () : (0) (0 0; ( )) = 

ª
where  is given in (19.3).

Proof. Let  ∈ (13 12) without loss of generality. The Stratonovich
solution is given by the random RDE solution (0) (0 0; (B)) and

depends continuously (see theorem 12.10, or theorem 10.29 in absence of a

drift term) on2

B ∈ 21-var
¡
[0  ] 2

¡
R
¢¢∩0-Höl ¡[0  ]  2 ¡R¢¢ ≡ 21-var∩0-Höl

with respect to -Hölder rough path topology. Since (B : ε  0) satisifes

a large deviation principle in 0-Höl
¡
[0  ] 2

¡
R
¢¢
with good rate func-

tion  and

P
£
B ∈21-var

¡
[0  ] 2

¡
R
¢¢¤

= 1

it follows from proposition C.5 that (B :   0) satisfies a large deviation

principle in the (non-complete, separable) metric space¡
21-var ∩0-Höl -Höl

¢
with identical rate function. We conclude with the contraction principle,

theorem C.6.

Remark 19.10 The regularity assumptions of theorem 19.9 are optimal

in the sense that Lip2-regularity is needed for unique Stratonovich solution.

If one deals with Itô stochastic differential equations,

  =

X
=1

 ( ) 
 + 0 ( ) 

it is well-known that Lip1-regularity suffices for existence/uniqueness. In

this case, the large-deviation estimates of theorem 19.9 are known (e.g.

[37, Lemma 4.1.6]) to be valid with identical rate function.

2Let us remark that under slightly stronger "Lip    2" regularity assumptions one

can ignore 21-variation.
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Exercise 19.11 Assume 0 = 0,  =  such that 1      span the tan-

gent space at every point, a Riemannian metric h i( ) is defined by declar-
ing 1      orthonormal. Express  () as the energy of the path , i.e.

 () =
1

2

Z 1

0

ḣ ̇i
( )



Let us discuss various extensions of this. As noted in section 17.6, the

rough path approach does not rely whatsoever on adaptedness, and hence

anticipating SDEs do not require a separate analysis. We can state the

following large deviation principle for a class of such anticipating stochastic

differential equations. For simplicity of notation only, we take 0 = 0 here.

Theorem 19.12 Let B be a 2
¡
R
¢
-valued enhanced Brownian motion.

Let also ( 
0 () :  ≥ 0) be a family of random elements of R,

  () ≡ ( 
1 ()  · · ·   

 () :  ≥ 0)
be a random collection of Lip2-vector fields, both determistic for  = 0, such

that for all   0

lim
→0

2 logP
µ
max
1≤≤

¯̄
 
 −  0



¯̄
Lip2

 

¶
= −∞

lim
→0

 logP
¡¯̄
0 − 00

¯̄
 

¢
= −∞

Let

  () = ( ()) (0 

0 ()  B ())

denote the unique -wise defined RDE solution to

 =   () B (19.4)

started from  
0 (). Then (

 :   0) satisfies a large deviation principle

in the topology in -Hölder topology, for any  ∈ [0 12), with good rate
function

() = inf
©
() : ( 0)

¡
0 00;

¢
= 

ª


Proof. Without loss of generality, assume  ∈ (13 12) and take 0 ∈
( 12). We know that {B :  ≥ 0} satisfies a large deviation principle
in 0-Hölder rough path topology. The assumptions on the vector fields
and the initial conditions give that

³
0 (


 )1≤≤  B

´
satisfies a large

deviation principles in

R × Lip2 × 0
0-Höl ¡[0  ]  2 ¡R¢¢ 

From continuity of (0 x) 7→ ( ) (0 0x), see theorem 10.44 (or: corol-

lary 10.30 when  ⊂ Lip with   2), we conclude with the contraction

principle.
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We can also deal with large deviations at the level of stochastic flows.

To this end, recall from corollary 11.16 that, granted sufficient regularity,

we have continuity of x 7→  (0 ·x) ∈ D (R) in the sense of flows of
-diffeomorphisms3. Using the large deviation principle for (B) it is an

immediate application of the contraction principle to obtain

Theorem 19.13 (Large deviations for stochastic flows) Assume  ∈
Lip+−1 with   2 and  ∈ {1 2    }. Then, the D (R)-valued random
variable given by  (0 · B), i.e. the stochastic flow of the Stratonovich
equation   =

P
=1  ( ) ◦ , satisfies a large deviation principle

with good rate function

 () = inf
©
 () : ( ) (0 ·;) =  ∈ D (R)

ª


19.4 Large deviations for SDEs driven by other
stochastic processes

Using the large deviation results for enhanced Gaussian andMarkov processes

established in section 15.7 resp. 16.7, we can generalize the previous sec-

tion to RDEs driven by Gaussian and Markovian signals. The proofs are

the same:

Proposition 19.14 Assume that

(i)  =
¡
1    

¢
is a centered continuous Gaussian process on [0 1]

with independent components;

(ii) H denotes the Cameron—Martin space associated to ;

(iii) the covariance of  if of finite -variation dominated by some 2D

control , for some  ∈ [1 2);
(iv) X denotes the natural lift of  to a [2]

¡
R
¢
-valued process (with

geometric rough sample paths);

(v)  = (1     ) is a collection of Lip
-vector fields on R with   2;

(vi)   = ( ) (0 0; X) is the RDE solution to

  =  ( ) X  (0) = 0 ∈ R
Then, for any   2, (  :   0) satisfies a large deviation principle in

-variation topology, with good rate given by

 () = inf

½
1

2
||2H : ( ) (0 0;) = 

¾
where we agree that ||2H = +∞ when  ∈ H.
If  is Hölder dominated, then the above large deviation principle also holds

in 1-Hölder topology.

3The Polish space D (R) was defined in 11.5.
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Proposition 19.15 Assume that

(i)  =
¡
1    

¢
is a Markov process with uniformly elliptic generator

in divergence form, 1
2

P
=1 

¡
 (·)  ·

¢
understood in a weak sense (i.e.

via Dirichlet forms) where  ∈ Ξ1 (Λ), that is, measurable, symmetric and
Λ−1 ≤  ≤ Λ in the sense of positive definite matrices;
(ii) X denotes the natural lift of  to a 2

¡
R
¢
-valued process (with geo-

metric rough sample paths);

(iii)  = (1     ) is a collection of Lip
2-vector fields on R;

(iv)   = ( ) (0 0;X
) is the RDE solution to

  =  ( ) X  (0) = 0 ∈ R

where X (·) ≡ X (·).
Then (  :   0) satisfies a large deviation principle in the topology in

-Hölder topology, for any  ∈ [0 12), with good rate function

() = inf
©
() : ( ) (0 0;) = 

ª
where

 () =
1

2
sup

⊂D[0 ]

X
:∈

¯̄

¡
  +1

¢¯̄2
|+1 − |

and  is the intrinsic distance on R associated to .

It is clear that these theorems can be also formulate for stochastic flows or

with random vector fields, initial conditions along the lines of theorem 19.13

and theorem 19.13. Inclusion of drift vector fields is a similarly straight-

forward matter.

19.5 Support theorem and large deviations for a
class of SPDEs

Let us return to the study of SPDEs of the form

 = 
¡
 2

¢
+ ( ) ·  () ◦  (19.5)

 (0 ·) = 0 ∈ BUC(R) 

understood as RPDE (cf. sections 11.3 and 17.7),

 = 
¡
 2

¢
+ ( ) ·  () B ()

with (enhanced) Brownian noise signal B () = exp (). To this end we

assume that  =  (  ) ∈  ([0  ] RR ) is degenerate elliptic
and Φ(3)-invariant comparison (as discussed in detail and with examples

in section 11.3). We also assume that  = (1     ) ⊂ Lip    4.
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Under these assumptions we saw that (0B) 7→  ∈ BUC([0  ]×R) is
continuous4. The following two theorems concerning large deviations and

support descriptions for such SPDEs are then proved, mutatis mutandis,

with the arguments that we have already used for SDEs. We have

Theorem 19.16 (Large deviations for stochastic partial differen-

tial equations) Let  =  ( ;B ()) denote the (-wise unique BUC-)

solution to

 = 
¡
 

2
¢
+ ( ) ·  () ◦  (19.6)

 (0 ·) = 0 ∈ BUC(R) 
Then the family ( :   0) of BUC([0  ]×R)-valued random variables

satisfies a large deviation principle with good rate function

 () = inf
∈H

©
 () :  = 

ª
whereH =

12
0

¡
[0  ] R

¢
and  is the unique BUC([0  ]×R)-solution5to

 = 
¡
 2

¢
+ ( ) ·  () 

 (0 ·) = 0 ∈ BUC(R)
Theorem 19.17 (Support theorem for stochastic partial differen-

tial equations) Let  =  ( ;B ()) be the(-wise unique BUC-) solu-

tion to

 = 
¡
 2

¢
+ ( ) ·  () ◦  (19.7)

 (0 ·) = 0 ∈ BUC(R) 
Then, for any   0

lim
→0

P
³ ¯̄

 − 
¯̄
∞;[0 ]  

¯̄̄
| − |∞[0 ]  

´
→ 1

(Euclidean norm is used for the conditioning | − |∞[0 ]  ). In par-

ticular, the topological support of the law of  , viewed as Borel measure

on BUC([0  ]×R), is precisely { :  ∈ H}, where the closure is with
respect to locally uniform convergence.

19.6 Comments

The rough path approach to the Stroock—Varadhan support description

[157] (and then [12, 122, 2]) and the Freidlin—Wentzell large deviation es-

timates (e.g. [38, 37] and the references therein) was first carried out by

4Unless otherwise stated, BUC-spaces are equipped with the topology of locally uni-

form convergence.
5 In viscosity sense, cf. section 11.3.
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Ledoux et al . in [94], by establishing the relevant support and large de-

viation properties for EBM (in -variation rough path topology,   2).

Our theorem 19.1 is based on the (conditional) support result for EBM in

Hölder rough path topology, as obtained in 13.7 (which itself follows [53],

see comments at the end of chapter 13). Theorem 19.5 on the support of sto-

chastic flows is known (e.g. [89]), although our (rough path) proof appears

to be a new. As as seen in this chapter, the "rough-path" pattern of proof

for these support theorems extends without changes to other (Gaussian-,

Markovian-) driving signals, for which support descriptions in rough path

topology are available. Such results were obtained in section 15.8 and 16.8

and we refer to the comments sections in these chapters for pointers to

the literature. Support theorems for (simple) differential equations driven

by Gaussian processes have been used in a financial context to construct

markets without arbribtrage under transaction costs [70]. It will also play a

rôle when discussing RDEs driven by Gaussian signals under Hörmander’s

condtion, to be discussed in section 20.4.

Theorem 19.9 is a classical result in the theory of large deviations (e.g.

[38, 37, 5]); so are large deviation results for anticipating SDEs [121] (with

a rough path proof, cf. theorem 19.12, taken from [26]) and stochastic flows

[11] (the rough path proof of theorem 19.13 is new).

Support theorems for classes of (linear) stochastic differential equations

appear in [75] and also [89]. We are unaware of small large deviations

results for SPDEs of the type of theorem 19.16.
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Malliavin Calculus for RDEs

We consider stochastic differential equations driven by a -dimensional

Gaussian process in the rough path sense, cf. section 17.3. Examples to

have in mind include Brownian motion, the Ornstein-Uhlenbeck process,

fractional Brownian motion with Hurst parameter   14 and various

(Brownian or other Gaussian) bridge processes. Let us note that if the

driving signal is also a semi-martingale (e.g. in the case of Brownian motion

or the Ornstein-Uhlenbeck process) it follows from theorem 17.4 we actu-

ally work with classical stochastic differential equations in the Stratonovich

sense.

The (driving) Gaussian process induces a Gaussian measure on 
¡
[0 1] R

¢
and can be viewed as abstract Wiener space, which serves as the under-

lying probability space on which the enhanced Gaussian process was con-

structed, cf. section 15.3.3. Solving a rough differential equations thus yields

an (abstract) Wiener functional and is, a priori, accessible to methods of

Malliavin calculus. In particular, we shall see in this chapter that, subject to

certain non-degeneracy conditions, solutions to stochastic differential equa-

tions driven Gaussian processes in the rough path sense, admit a density

with respect to Lebesgue measure.

20.1 H-regularity of RDE solutions
We assume  =

¡
1    

¢
is a centered continuous Gaussian process

on [0  ] with independent components. The associated Cameron—Martin

space is denoted by

H ⊂ 
¡
[0  ] R

¢


Recall from proposition 15.8 that H → -var
¡
[0  ] R

¢
if we assume

that covariance of  if of finite -variation in 2D sense. Let us also recall

that   2 is a sufficient (and essentially sharp) condition for  to admit

a natural enhancement X to a geometric -rough path,  ∈ (2 4). It is
important to understand perturbations ofX in Cameron-Martin directions.

More specifically, having realized  as the coordinate process on path-

space,  () = , we want to understand X ( + )  It is clear from the

Cameron—Martin theorem that, for every fixed  ∈ H,  7→ X ( + ) is a

well-defined Winer functional. On the other hand, the formal computationZ
( + )⊗  ( + ) =

Z
 ⊗  +

Z
⊗  +

Z
 ⊗ +

Z
⊗ 
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suggests that X ( + ) can expressed in terms of X () and cross-integrals

of  and . Under the standing assumption that   2, the last integralR
⊗ is obviously a well-defined Young integral. On the other hand, the

integral Z
⊗  (20.1)

may not be a (pathwise defined) Young integral since 1 + 1 ≯ 1, in

general when   2 and   2. The following condition is designed to

ensure that (20.1) does make sense as Young integral.

Condition 20.1 Let  =
¡
1    

¢
be a centered continuous Gaussian

process on [0  ] with independent components which admits a natural lift

in the sense of section 15.3.3 to a (random) geometric -rough path X. We

assume that H has complementary Young regularity to  by which

we mean that

H → -var
¡
[0  ] R

¢
for some  ≥ 1 with 1+ 1  1.
For instance, condition 20.1 is satisfied if the covariance of  has finite

-variation for some   32. This covers in particular Brownian motion

(where we can take  = 2 +  and  = 1) and fractional Brownian motion

with   13. In fact, thanks to a certain Besov regularity of H , the

Cameron—Martin space associated to fractional Brownian motion, we can

also cover the regime  ∈ (14 13], despite the fact (cf. proposition 15.5)
that  ∈ (13 14) corresponds to  ∈ (32 2). Part (i) of exercise 20.2
below gives a hint of what happens in the case  ∈ [32 2).
Exercise 20.2 Throughout this exercise, assume  is a centered continu-

ous Gaussian process on [0  ] with independent components, with covari-

ance of finite -variation in 2D sense.

(i) Assuming  ∈ [1 2) show that (20.1) makes sense as Young-Wiener
integral in the sense of proposition 15.41.

(ii) Assuming  ∈ [1 32) show that condition 20.1 is satisfied (in partic-
ular, (20.1) makes sense as classical Young integral).

(iii) Consider -dimensional fractional Browninan motion with Hurst pa-

rameter . Using the fact (cf. remark 15.11) that

H → -var for any   ( + 12)
−1

show that, for any   14, condition 20.1 is satisfied.

Exercise 20.3 Let  ∈ -var ([0  ] R) and  a real-valued, centered

continuous Gaussian process with covariance  =  ( ) of finite -variation

in 2D sense. Assume  ∈ [1 2) and show that the Young-Wiener integralZ 

0
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is a Gaussian random-variable with zero-mean and variance given by the

2D Young integral Z 

0

Z 

0

 () ()  ( ) .

A convenient consequence of condition 20.1 is the possibility to consider

X ( + ) simultanously for all  ∈ H; in contrast to the general case,
where  7→ X ( + ) is only defined up to -depended nullsets. We have

Lemma 20.4 Assume  is a Gaussian process which satisfies condition

(20.1). Then, writing X for the natural lift of , the event

{ : X ( + ) ≡ X () for all  ∈ H} (20.2)

has probability one.

Proof. Recall from theorem 15.34 that X () was defined as

lim


[] (
 ())

(for suitable   4) in probability where  is a (piecewise linear or mol-

lifier) approximation to a (sample) path . It is clear that

[] (
 ( + )) = [] (

 + ) =  (
) 

By definition of X (), the left hand side will converge uniformly (and even

in -variation) to X ( + ). On the other hand, the assumption 1 +

1  1 allows us to use (continuity) properties of the translation operator

(x) 7→ x to see that, with probability one,

 (
)→ x.

The proof is then easily finished.

Proposition 20.5 Assume  =
¡
1    

¢
is a Gaussian process which

satisfies condition (20.1) and write X for its natural lift, a (random) geo-

metric -rough path X. Assume  = (1     ) ⊂ Lip (R) with   .

Then, the (unique) RDE solution to

 =  ( ) X 0 = 0 ∈ R

is almost surely continuously H-differentiable; i.e. for for almost every ,
the map

 ∈ H 7→( ) (0 ·;X ( + )) ∈ -var ([0  ]R)

is continuously differentiable in Fréchet sense. In particular, the R-valued
Wiener functional

 =  () = ( ) (0 0;X ())



548 20. Malliavin Calculus for RDEs

admits an H-valued derivative  =  () with the property that, with

probability one,

∀ ∈ H :  := h iH =
Z 

0

X
=1

X← ( ()) 

 (20.3)

where X← = X← () denotes the Jacobian of ( ) ( ·;X ()). (The
integral above makes sense as Young integral since the integrand has finite

-variation regularity.)

Proof. By assumption, H → -var
¡
[0  ] R

¢
, with 1 + 1  1, the

embedding is (trivially) Fréchet smooth. On the other hand, for any  in

set of full measure on which (20.2) holds we have

( ) (0 0;X ()) = ( ) (0 0;X ( + )) 

Using Fréchet regularity of the Itô map, as detailed in section 11.1.2, we

see that

 ∈ -var 7→ ( ) (0 0;X ()) ∈ -var ([0  ]R) 

and hence also

 ∈ H 7→( ) (0 0;X ( + )) ∈ -var ([0  ]R) 

must be continuouslyH-differentiable. At last, time- evaluation on -var ([0  ]R)
is trivially Fréchet smooth so that

 ∈ H 7→( ) (0 0;X ( + )) ∈ R

also is continuously H-differentiable. The representation (20.3) then follows
from the fact that, with probability one,

∀ ∈ H : ( ) ( ·;X ( + )) = ( ) ( ·;X ())
and Duhamel’s principle as discussed in exercise 11.10. The proof is now

finished.

Exercise 20.6 What will be needed in the sequel is the conclusion from

proposition 20.5 that  is a.s. continuously H-differentiable with explicit
representation given in (20.3). One can arrive at this conclusion without re-

lying on the Fréchet smoothness results of section 11.1.2 but only by relying

on some knowledge about directional derivatives. To this end, recall from

section 11.1.1 that, given a geometric -rough path x ,  ≥ 1 : 1+1  1
and  ⊂ Lip (R)    ,

 ∈ -var
¡
[0  ] R

¢ 7→ ( ) (0 0;x) ∈ R
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admits directional derivatives  :=
©


( ) (0 0;x)

ª
=0

with the

representation formula

 =

Z 

0

X
=1

← ( ()) 



where ← is the Jacobian of ( ) ( ·;x).
(i) Use this presentation formula to deduce existence of an H-valued deriv-
ative  so that  = h iH.
(ii) Use continuity of the Itô-Lyons map to show that  is a.s. continuously

H-differentiable.

20.2 Non-degenerate Gaussian driving signals

We remain in the framework of the previous section. In particular,  =¡
1    

¢
is again a centered continuous Gaussian process on [0  ] with

independent components which admits a lift X to a (random) geometric

-rough path. The over-all aim of this chapter is to find sufficient criteria

on the process  and vector fields  = (1     ) so that, for every

 ∈ (0  ], the R-valued random variable

( ) (0 0;X ())

admits a density with respect to Lebesgue measure on R. To this end,
condition 20.1 on the regularity of the Cameron-Martin space, namely

H → -var
¡
[0  ] R

¢
 1+ 1  1

will be in force throughout. As a simple consequence, thanks to Young’s

inequality, we have

-var
¡
[0  ] R

¢
→ H∗ ∼= H → -var

¡
[0  ] R

¢


where every  ∈ -var
¡
[0  ] R

¢
is viewed as en element in H∗ via

 ∈ H 7→
Z 

0



Condition 20.7 We assume non-degeneracy of the Gaussian process

 on [0  ] in the sense that for any  ∈ -var
¡
[0  ] R

¢
,ÃZ 

0

 ≡
X

=1

Z 

0


 = 0∀ ∈ H

!
=⇒  ≡ 0

(Note that non-degeneracy on [0  ] implies non-degeneracy on [0 ] for any

 ∈ (0  ].)
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It is instructive to see how this condition rules out the Brownian bridge

returning to the origin at time  or earlier; a Brownian bridge which returns

to zero after time  is allowed. The Ornstein-Uhlenbeck process is another

example for which condition 20.7 is satisfied; and so is fractional Brownian

motion for any value of its Hurst parameter , simply because

∞0
¡
[0  ] R

¢ ⊂ H 

as was pointed out in (15.5), remark 15.11, and thanks to

Exercise 20.8 Show that condition 20.7 is satisfied if every smooth path

( :  ∈ [0  ]), possibly pinned at zero, is contained in H.
Solution 20.9 We see that  is orthogonal to any ̇ ∈ ∞

¡
[0  ] R

¢
,

hence must be zero in 2
¡
[0  ] R

¢
and thus is identically equal to zero

by continuity).

Lemma 20.10 The requirement that
R 
0
 = 0∀ ∈ H in condition 20.7

can be relaxed to the quantifier "for all  in some orthonormal basis of H".

Proof. It suffices to check that(Z 

0

 = 0∀ ∈ H
)
⇔
(Z 

0

 = 0∀ ∈ N
)

where () is an orthonormal basis for H. Only the "⇐=" direction is
not-trivial. Assuming

R 
0
 = 0 for all  impliesZ 

0

[] = 0 for all 

[] ≡P
=1 h i is the Fourier expansion of . It obviously converges

in H (and hence also in -var) to  and we conclude by continuity of the

Young integral.

20.3 Densities for RDEs under ellipticity
conditions

We have the following density result for RDEs driven by a Gaussian rough

paths X.

Theorem 20.11 Let  =
¡
1    

¢
be a centered continuous Gaussian

process on [0  ] with independent components which admits a natural lift

in the sense of section 15.3.3 to a (random) geometric -rough path X.
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Assume that

(i) H has complementary Young regularity to  i.e.H → -var
¡
[0  ] R

¢
with 1 + 1  1;

(ii)  is non-degenerate in the sense of condition 20.7;

(iii) 0 ∈ R is a fixed "starting" point;
(iv) there are vector fields  = (1     ) ⊂ Lip (R)     which

satisfy the following ellipticity condtion at the starting point,

() : span {1     }|0 = T0R ∼= R

Then, for every  ∈ (0  ], the R-valued RDE solution

( ) (0 0;X ())

admits a density with respect to Lebesgue measure on R.

Proof. Fix  ∈ (0  ]. From proposition 20.5 we know that R-valued
Wiener functional

 () := ( ) (0 0;X ())

is a.s. continuouslyH-differentiable. By a well-known criterion due to Bouleau—
Hirsch, cf. appendix D.5, all we have to do is to show that the so-called the

Malliavin covariance matrix

 () :=
³D

 
 




E
H

´
=1

∈ R×

is invertible with probability one. To see this, assume there exists a (ran-

dom) vector  ∈ R which annihilates the quadratic form . Then
1

0 =  =

¯̄̄̄
¯
X

=1

 


¯̄̄̄
¯
2

H
and so  ≡

X
=1

 
 ∈ 0 ∈ H.

Using the representation formulat (20.3) this says precisely that

∀ ∈ H :  =

Z 

0

X
=1

X← ( ()) 

 = 0 (20.4)

where the last integral makes sense as Young integral since the (continuous)

integrand has finite -variation regularity. Noting that the non-degeneracy

condition on [0  ] implies the same non-degeneracy condition on [0 ] we

see that the integrand in (20.4) must be zero on [0 ] and evaluation at

time 0 shows that for all  = 1  ,

X←0 ( (0)) = 0

1Upper  denotes the transpose of a vector or matrix.
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It follows that the vector X←0 is orthogonal to  (0)   = 1  

and hence zero. Since X←0 is invertible, this follows immediately from the

chain-rule and

( )
¡
0 ( ) (0 ·x) ←−x

¢

= Id|R where ←−x (·) = x (− ·) 

we see that  = 0. The proof is finished.

Exercise 20.12 Let  () :=
³D

 
 




E
H

´
=1

∈ R× denote
the Malliavin covariance matrix of the RDE solution  ≡ ( ) (0 0;X ())

where X () is the lift of some Gaussian process
¡
1 

¢
which covari-

ance of finite -variation for  ∈ [1 32). Show that

 =

X
=1

Z 

0

Z 

0

X← ( ())⊗ X←0 ( (0))  ( 0)

where the right-hand-side is a well-defined 2D Young integral. Let  ∈
(2 3) and show that  () = ̂ (X ()) where ̂ is a continuous map

from -var
¡
[0  ]  2

¡
R
¢¢
to R×.

Solution 20.13 Let
³

()
 : 

´
be an orthonormal basis ofH(), the Cameron—

Martin space associated to . It follows that
³

()
 :  = 1 2 ;  = 1  

´
is an orthonormal basis of H = ⊕=1H() where we identify

(1) ∈ H(1) ≡

⎛⎜⎜⎝

(1)


0



0

⎞⎟⎟⎠ ∈ H
and similarly for  = 2  . From Parseval’s identity,

 =
³D

 
 




E
H

´
=1

=
X


D
 

()


E
H
⊗
D
 

()


E
H

=
X


X


Z 

0

X← ( ()) 
()
 ⊗

Z 

0

X← ( ()) 
()


=
X


Z 

0

Z 

0

X← ( ())⊗ X←0 ( (0)) 
() ( 0) 

For the last step we used thatX


Z 

0



Z 

0

 =

Z 

0

Z 

0

 ()  ()  ( )
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whenever  =  ( ) and  are such that the integrals are a.s. well-defined

Young-integrals. We then conclude with  ( ) = E () and the 2-

expansion of the Gaussian process ,

 () =
X


 () ()

where  () form an IID family of standard Gaussians.

20.4 Densities for RDEs under Hörmander’s
condition

In the case of driving Brownian motion, it is well-known that solutions to

SDEs of the form

 =

X
=1

 ( ) 


started at 0 ∈ R admit a (smooth) density provided the vector fields, now
assusmed to be ∞-bounded, satisfy Hörmander’s condition at the starting
point. By this we mean that the linear span of {1     } and all iterated
Lie brackets at 0 have full span. (There is well-known extension to SDEs

with drift vector field 0 in which case () is replaced by the condition of

full span by {1     } and all iterated Lie brackets of {0 1     } at
0.) The aim of the section is establish a similar density result for RDEs

driven by a Gaussian rough paths. Our focus will be the drift free case,

i.e. when 0 ≡ 0. Also, the conditions on the underlying Gaussian driving
signals are somewhat more involved than those required in theorem 20.11,

but still remain checkable for many familiar Gaussian processes. We have

Theorem 20.14 Let
¡
1
     




¢
= ( :  ∈ [0  ]) be a continuous,

centered Gaussian process with independent components 1    . As-

sume  satisfies the conditions listed in section 20.4.1 below. (In particular,

 is assumed to admit a natural lift X to a random geometric rough path.)

Let  = (1  ) be a collection of 
∞-bounded vector fields on R which

satisfies Hörmander’s condition

() : Lie [1     ]|0 = T0R ∼= R

at some point 0 ∈ R. Then the random RDE solution

 () = ( ) (0 0;X ())

admits a density with respect to Lebesgue measure on R for all times  ∈
(0  ]
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Note that when ( :  ∈ [0  ]) happens to be a semi-martingale on (such
as a Brownian motion, an Ornstein-Uhlenbeck precess, a Brownian bridge

returning to the origin after time  ,...) theorem 20.14 really yields infor-

mation about classical solutions to the Stratonovich SDE

 =

X
=1

 ( ) ◦  0 = 0 ∈ R.

20.4.1 Conditions on the Gaussian process

We assume that  =
¡
1    

¢
be a centered continuous Gaussian

process on [0  ] with independent components which admits a natural lift

in the sense of section 15.3.3. Recall that this requires

∃ ∈ [1 2) : ||-var;[01]2 ∞

where  denotes the covariance function of . Equivalently, setting  =

1 (2), this condition may be stated as

∃ ∈ (14 12] : ||(12)-var;[01]2 ∞

Given such a process  one can, cf. exercise 15.37, find a determinstic

time-change  : [0  ] → [0  ] such that ̃, the covariance function of

̃ =  ◦  satisfies

∀   in [0  ] :
¯̄̄
̃
¯̄̄
(12)-var;[]2

 (const)× |− |2  (20.5)

Since the conclusion of theorem 20.14 is invariant under such a time-change

we can in fact assume, without loss of generality, that the covariance of 

itself has Hölder dominated 1 (2)-variation in the sense of (20.5). It now

follows from theorem 15.34 that the natural lift X has 1-Hölder sample

paths for any   1 and also that

sup
0≤≤

E

⎛⎝exp
⎛⎝

"
 (XX)

|− |
#2⎞⎠⎞⎠ ∞

Although the parameter  is reminiscent of fractional Brownian motion

with Hurst parameter  we insist that, up to this point, our assumption

cover every enhanced Gaussian process (up to irrelevant deterministic time-

change).

Condition 20.15 H has complementary Young regularity to  i.e. H →
-var

¡
[0  ] R

¢
with 1 + 1  1.
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Condition 20.16  is non-degenerate on [0  ]; recall that this means

that for any  ∈ -var
¡
[0  ] R

¢
,ÃZ 

0

 ≡
X

=1

Z 

0


 = 0∀ ∈ H

!
=⇒  ≡ 0

Condition 20.17  obeys a Blumenthal zero-one law in that sense

that the germ -algebra ∩0 ( :  ∈ [0 ]) contains only events of prob-
ability zero or one.

Condition 20.18 Let X denote the natural lift of  and assume that for

all  ≥ []  the step- Lyons lift of X has -rescaled full support in

the small-time limit by which we mean that for all  ∈ 
¡
R
¢
and for

all   0,

lim inf
→0

P
³

³
− (X)0  

´
 

´
 0

Some remarks are in order.

• Conditions 20.15,20.16 were already in power in our "elliptic" discus-
sion and are just repeated for the completeness.

• Condition 20.17 holds whenever  can be written as an adapted

functional of Brownian motion. This includes fractional Brownian

motion and more generally all examples in which  has a so-called

Volterra presentation2 of the form

 =

Z 

0

 ( )  (Itô integral)

It also includes (non-Volterra) examples in which ( :  ∈ [0  ]) is
given as strong solution of an SDE driven by Brownian motion, such

as a Brownian bridge returning to the origin after time  , say. An

example where the 0-1 law fails is given by the random-ray  :  7→
 () in which case the germ-event { :  () |=0+ ≥ 0} has
probability 12. (In fact, sample path differentiability at 0+ implies

non-triviality of the germ -algebra see [42] and references therein).

We observe that the random ray example is (a) already ruled out by

condition 20.16 and (b) should be ruled out anyway since it does not

trigger to the bracket phenomenon needed for a Hörmander state-

ment.

• Condition 20.18 says - in essence - that the driving signal must have,
at least approxitaely and for small times, a fractional scaling behav-

iour similar to fractional Brownian motion with Hurst parameter .

2 See [36].
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As will be seen in the following proposition (see also exercise 20.20)

this condition can be elegantly verifed via the support theorem ob-

tained in section 15.8.

Proposition 20.19 Let  denote -dimensional fractional Brownian mo-

tion with fixed Hurst parameter  ∈ (14 12] and consider the lift to a
(random) geometric -rough path, denoted by X = B , with  ∈ (2 4).
Then it satisfies condition 20.18.

Proof. Let us observe that  (and thenB) has finite 1-Hölder sample

paths for any   1. To keep notation simple, we shall write B rather

than  B and also set B̃ =  (B)  From the support theorem for

Gaussian rough paths, theorem 15.64, we know that the support of the law

of B in -variation topology is precisely

[] (H) = 
0-var
0

³
[0  ]  []

¡
R
¢´



using, for instance, that fact that ∞0
¡
[0  ] R

¢ ⊂ H. By continuity of
the Lyons-lift  : B 7→ B̃, followed by evaluation of the path at time 1 it

is clear that B̃1 has full support full, that is,

∀ ∈ 
¡
R
¢
   0 : P

³

³
B̃1 

´
 

´
 0

On the other hand, fractional scaling
¡
 :  ≥ 0

¢ D
= ( :  ≥ 0) im-

plies  B̃1
D
= B̃1 and so, thanks to full support of B̃1 

lim inf
→∞

P
³

³
 B̃1 

´
 

´
= P

³

³
B̃1 

´
 

´
 0

Exercise 20.20 Show that condition 20.18 holds for any centered, contin-

uous Gaussian process  which is assumed to be asymptotically compa-

rable to  in the small-time limit in the following sense:

(i) there exists a probability space3 , such that  and fractional Brownian

motion can be realized jointly as (2)-dimensional Gaussian process¡


¢
=
¡
1 ;1     ;

¢


with
¡
 ;

¢
independent for  = 1  ;

(ii) the (2)-dimensional Gaussian process
¡


¢
has covariance of finite

(12)-variation in the 2D sense;

(iii) we have

−2 |− |∞;[0]2 → 0 as → 0 (20.6)

where − is the covariance of the R-valued Gaussian process
¡
 −

¢
.

3Effectively: a Gaussian measure on 

[0  ] R2


.
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Proof. To keep notation simple, we shall write again B rather than

 B . Let us also set 1 = . By independence of the pairs
¡
 

¢
the covariance matrix − is diagonal and we focus on one entry. With

mild abuse of notation (writing  instead of  ) we have

−2 |−|∞;[01]2
= sup

∈[01]
E[

¡
 −

¢


¡
 −

¢
]

which can be rewritten in terms of the rescaled process () = ·,
and similarly for , as

sup
∈[01]

E
h³
()
 −()



´³

()
 −

()


´i
=
¯̄
()−()

¯̄
∞;[01]2 

By assumption, in particular (20.6) and continuity estimates for Gaussian

rough paths obtained in theorem 15.39 we see that

-var

³
X()B()

´
→ 0 as →∞ in probability.

By continuity of  , still writing X̃
() = 

¡
X()

¢
for fixed  , and simi-

larly for B(), we have


³
X̃
()
1  B̃

()
1

´
≤ -var;[01]

³
X̃() B̃()

´
→ 0 in probability.

But then

P
³

³
X̃1 

´
 

´
= P

³

³
X̃
()
1  

´
 

´
≥ P

³

³
X̃
()
1  B̃

()
1

´
+ 

³
B̃
()
1  

´
 

´
≥ P

³

³
B̃
()
1  

´
 2

´
−P

³

³
X̃
()
1  B̃

()
1

´
 2

´
and so

lim inf
→∞

P
³

³
X̃1 

´
 

´
≥ lim inf

→∞
P
³

³
B̃
()
1  

´
 2

´
and this is positive thanks to proposition 20.19.

Exercise 20.21 Show that theorem 20.14 applies to the following multi-

dimensional Gaussian driving processes:

(i) Brownian motion ;

(ii) fractional Brownian motion  with Hurst parameter,   14;
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(iii) the Ornstein-Uhlenbeck process, realized (for instance) by Wiener-Itô

integration,


 =

Z 

0

−(−)
 with  = 1  ;

(iv) a Brownian bridge returning to zero at after time  , e.g. + with

  0 where

+
 :=  − 

 + 
+ for  ∈ [0  ] 

Solution 20.22 (i), (ii) are immediate from the comments made above

and proposition 20.19.

(iii) We leave it to the reader to check that in H → 1-var
¡
[0  ] R

¢
and

the process is non-degenerate on [0  ]. To see validity of the zero-one law

it suffices to note that  has Volterra structure. At last, condition 20.18 is

satisfied since  is asymptotically comparable to Brownian motion in the

small-time limit in the sense of exercise 20.20. Indeed, take   ∈ [0 ] and
compute, with focus on one non-diagonal entry,

− ( ) ≡ E[ ( −) ( −)]

=

Z 

0

³
−(−) − 1

´³
−(−) − 1

´
 = 

¡
3
¢


(iv) Again, H → 1-var
¡
[0  ] R

¢
and non-degeneracy on [0  ] are easy

to see. Validity of the zero-one law follows by writing  = + as strong

solution to an SDE driven by Brownian motion with (well-behaved) drift

(on [0  ]). At last, take   ∈ [0 ] ⊂ [0 1] and compute

− ( ) ≡ E[ ( −) ( −)]

=

Z 

0


+

 + 

+

 + 
 ≤ 3

 + 

so that, as one expects, the Brownian bridge is asymptotically comparable

to Brownian motion in the small-time limit.

20.4.2 Taylor expansions for rough differential equations

Given a smooth vector field and smooth driving signal  (·) for the ODE
 =  () , it follows from basic calculus that

0← ( ( )) = (0) +

Z 

0

0← ([ ] ( )) 
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where Einstein’s summation convention is used throughout. Iterated use of

this leads to the Taylor expansion

0← ( ( )) =  |0 + [ ] |0x1;0
+ [ [  ]] |0x2;0

+   

+ [1     [  ]] |0x;10

+ · · · (20.7)

where we write

x
;1
0 =

Z 

0

Z 

0



Z 2

0

11 




Note that such an expansion makes immediate sense when  is replaced

by a weak geometric -rough path x. In this case, x0 =  ( (x0))

where  denote the Lyons-lift. Remainder estimates can be obtained via

Euler estimates, at least when expressing 0← ( ( )) as solution to a

differential equations (ODE resp. RDE) of the form

 = ̂ () 

(Cf. proposition 10.3 and corollary 10.17 and the resulting stochastic corol-

laries of section 18.1). This is accomplished by setting

 :=
¡
1 2 3

¢
:= ( 0← 


0← ( ( ))) ∈ R ⊕R× ⊕R

Noting that 0← ( ( )) is given by 
2 · ¡

1
¢
in terms of matrix mul-

tiplication we have

1 = 
¡
1
¢


2 = −2 ·
¡
1
¢


3 =
¡
2
¢ · ¡

1
¢
+ 2 ·  ¡ ¡

1
¢¢

= 2 · ¡−
¡
1
¢ · ¡

1
¢
+

¡
1
¢ ·  ¡1¢¢ 

= 2 · [ ] |1

started from 0 = (0  (0)) where  denotes the identity matrix in

R× and we see that ̂ is given by

̂
¡
1 2 3

¢
=

⎛⎝ 
¡
1
¢

−2 ·
¡
1
¢

2 · [ ] (1)

⎞⎠   = 1   (20.8)

We now consider the corresponding rough differential equation,  = ̂ () x

where  is weak geometric -rough path. From the very construction of ̂

it is clear that an expansion of the form

 = 0 + ̂ (0)x
1
0 + ̂ ̂ (0)x

2
0 +    
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after projection to the third component of  =
¡
1  

2
  

3


¢
 yields precisely

the expansion (20.7). To be more precise, let us recall that, given smooth

vector fields  = (1  ) on R, an element g ∈ ⊕=0
¡
R
¢⊗

and

 ∈ R we write

E( ) (g) :=
X
=1

X
1
∈{1}

g;1··· 1 · · · () 

(Here  denotes the identity function on R and vector fields are identified
with first order differential operators.) In a similar spirit, given another

sufficiently smooth vector field  , we first set

[1  2  · · ·  ] := [1  [2  · · · [  ] · · · ]]
and then

g · [      ] |0 :=
X

1
∈{1}

g1···  [1  2  · · ·  ]  (0) (20.9)

with the convention that g0 ·  = . We can then state the following

lemma.

Lemma 20.23 Write 3 : R ⊕ R× ⊕ R → R for the projection given
by
¡
1 2 3

¢ 7→ 3. Let  be a smooth function on R lifted to ̂ =  ◦ 3,
a smooth function ̂ on R⊕R×⊕R. With the vector fields ̂ as defined

in (20.8) and 0 = (0  (0)) we have

̂1 · · · ̂ |0 ̂ = [1  · · ·    ] |0
As a consequence, for any g ∈ 

¡
R
¢
,

3

h
E(̂ ) (0g)

i
= |0 −

X
=1

π (g) · [ · · ·   ] |0 

Proof. Taylor expansion of the evolution equation of 3 () shows that

̂1 · · · ̂ |0 = [1  · · ·    ] |0 , as required.
Corollary 20.24 Fix  ∈ T0R ∼= R with || = 1. Let  ∈ (14 12]
and X be a Gaussian rough path with the the covariance of the underlying

Gaussian process satisfies (20.5). Then, writing  for the solution to the

random RDE  =  () X started at 0, and  for the Jacobian of its

flow, we have that for all   0

lim
→∞

P

⎡⎣¯̄̄̄¯0← ( ())−
X
=0


¡
X
0 · [ · · ·   ] |0

¢¯̄̄̄¯
=1




2
−

⎤⎦ = 0
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Proof. As discussed in the beginning of section 20.4.1 assumption (20.5)

implies

sup
0≤≤

E

⎛⎝exp
⎛⎝

"
 (XX)

|− |
#2⎞⎠⎞⎠ ∞

which was the standing assumption for remainder estimates of Azencott-

type established in theorem 18.1. Thanks to || = 1 and the previous

lemma, applied with g =  (X0), we can write

P

⎡⎣¯̄̄̄¯0← ( ())−
X
=0


¡
X
0 · [ · · ·   ] |0

¢¯̄̄̄¯
=1




2
−

⎤⎦
≤ P

h
(̂ ) (0 0X)01 − E(̂ )

³
0  (X)01

´




2
−

i


The vector fields ̂ as defined in (20.8) are smooth but, in general,

unbounded. Using the remainder estimates given in theorem 18.1 in the

small-time limit (valid for Lip-vector fields) we then obtain (as pointed

out explicitly in example 18.2) the required convergence.

20.4.3 Hörmander’s condition revisited

Let  = (1  ) denote a collection of smooth vector fields defined in a

neighbourhood of 0 ∈ R. Given a multi-index  = (1  ) ∈ {1  },
with length || = , the vector field  is defined by iterated Lie brackets

 := [1  2    ] ≡ [1  [2   [−1   ]] (20.10)

If  is another smooth vector field defined in a neighbourhood of 0 ∈ R
we write4

|{z}
∈(R)⊗(−1)

· [      ]| {z }
length 

:=
X

1−1
∈{1}

1−1 [1  2   −1  ]

Recall that the step- free nilpotent group with  generators, (R), was
realized as submanifold of the tensor algebra

 ()
¡
R
¢ ≡ ⊕=0 ¡R¢⊗ 

Definition 20.25 Given  ∈ N we say that condition (H) holds at 0 ∈
R if

span { |0 : || ≤ } = T0R ∼= R; (20.11)

we say that Hörmander’s condition (H) is satisfied at 0 if (H) holds

for some  ∈ N.

4We introduced this notation already in the previous section, cf. (20.9).



562 20. Malliavin Calculus for RDEs

An element g ∈ ⊕∞=0
¡
R
¢⊗

is called group-like iff for any  ∈ N,

(0 (g)       (g)) ∈ 
¡
R
¢ ⊂ ⊕=0 ¡R¢⊗ 

The following results tells us that Hörmander’s condition is equivalent to

a (seemingly stronger, "Hörmander-type") condition that involves only Lie

brackets of  contracted against group-like elements. It will be important

in carrying out the crucial induction step in the proof of theorem 20.14.

Definition 20.26 Given  ∈ N we say that condition (HT) holds at

0 ∈ R if the linear span of⎧⎪⎨⎪⎩−1 (g) · [   ]| {z } |0
length 

:  = 1  ;  = 1   g ∈ −1(R)

⎫⎪⎬⎪⎭
(20.12)

is full; that is, equal to T0R ∼= R.
Proposition 20.27 Let  ∈ N and  = (1  ) a collection of smooth

vector fields defined in a neighbourhood of 0 ∈ R. Then the (H)-span,
by which we mean the linear span of (20.11), equals the (HT)-span, that

is, the linear span of (20.12). In particular, Hörmander’s condition (H) is

satisfied at 0 if and only if the span of (20.12) is full for some  large

enough.

Proof. We first make the trivial observation that (HT) implies (H) for

any  ∈ N. For the converse, fixing a multi-index  = (1  −1 ) of
length  ≤  and writing 1  for the canonical basis of R, we define

g = g (
1
     −1)

= exp (
1
1)⊗ · · ·⊗ exp

¡
−1−1

¢
∈ −1(R) ⊂  −1 ¡R¢ .

It follows that any

−1 (g) · [    ]| {z } |0
length 

lies in the (HT)-span. Now, the (HT)-span is a closed linear subspace of

T0R ∼= R and so it is clear that any element of form
−1 (g) · [    ]| {z } |0

length 

where  stands for any higher order partial derivative with respect to

1  −1 i.e.

 =

µ


1

¶1
  

µ


−1

¶−1
with  ∈ (N ∪ {0})−1
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is also in the (HT)-span for any 1     −1 and, in particular, when eval-
uated at 1 = · · · = −1 = 0. For the particular choice  = (1     1) we
have

−1

1    −1
g|1=0−1=0 = 1 ⊗ · · ·⊗ −1 =: h

where h is an element of  −1 ¡R¢ with the only non-zero entry arising
on the ( − 1) tensor level, i.e.

−1 (h) = 1 ⊗ · · ·⊗ −1 

Thus,

−1 (h) · [    ]| {z } |0
length 

=
£
1      −1  

¤ |0
is in our (HT)- span. But this says precisely that, for any multi-index  of

lenght  ≤  the bracket vector field evaluated at 0 i.e.  |0 is an element
of our (HT)-span.

20.4.4 Proof of theorem 20.14

We are now in a position to give the proof of theorem 20.14.

Proof. We fix  ∈ (0  ]. As usual it suffices to show a.s. invertibility of

 =
³D

 
 




E
H

´
=1

∈ R×

In terms of an orthonormal basis () of the Cameron Martin space we can

write

 =
X


h iH ⊗ h iH (20.13)

=
X


Z 

0

X← ( ()) 

 ⊗

Z 

0

X← ( ()) 



(Summation over up-down indices is from here on tacitly assumed.) Invert-

ibility of  is equivalent to invertibility of the reduced covariance matrix

 :=
X


Z 

0

X0← ( ()) 

 ⊗

Z 

0

X0← ( ()) 



which has the advantage of being adapted, i.e. being  ( :  ∈ [0 ])-
measurable. We now assume that

P (det = 0)  0
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and will see that this leads to a contradiction with Hörmander’s condition.

Step 1: Let  be the random subspace of T0R ∼= R. spanned by©
X0← ( ()) ;  ∈ [0 ]   = 1  

ª


The subspace 0+ = ∩0 is measurable with respect to the germ -

algebra and by our "0-1 law" assumption, deterministic with probability

one. A random time is defined by

Θ = inf { ∈ (0 ] : dim  dim0+} ∧  (20.14)

and we note that Θ  0 a.s. For any vector  ∈ R we have

 =
X


¯̄̄̄Z 

0

X0← ( ()) 



¯̄̄̄2


Assuming  = 0 implies

∀ :
Z 

0

X0← ( ()) 

 = 0

and hence, by our non-degeneracy condition on the Gaussian process and

lemma 20.10,

X0← ( ()) = 0

for any  ∈ [0 ] and any  = 1   which implies that  is orthogonal to

. Therefore, 0+ 6= R, otherwise  = R for every   0 so that 

must be zero, which implies  is invertible a.s. in contradiction with our

hypothesis.

Step 2: We saw that 0+ is a deterministic and linear subspace of R

with strict inclusion 0+ $ R In particular, there exists a deterministic
vector  ∈ R\ {0} which is orthogonal to 0+  We will show that  is

orthogonal to to all vector fields and (suitable) brackets evaluated at 0,

thereby contradicting the fact that our vector fields satisfy Hörmander’s

condition. By definition (20.14) of Θ, 0+ ≡  for 0 ≤   Θ and so for

every  = 1 

X0← ( ()) = 0 for  ≤ Θ (20.15)

Observe that, by evaluation at  = 0, this implies  ⊥ span{1  } |0 .
Step 3: In view of proposition 20.27, it suffices to show that  is or-

thogonal to all iterated Lie-bracket of  = (1     ) contracted against

group-like elements. To this end, we keep  ∈ {1     } fixed and make
the induction hypothesis  (− 1) :

∀g group-like,  ≤ − 1 :  (g) [ · · ·   ;]|0 = 0
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We can now take the shortest path  : [0 1] → R such that  ()
equals 1 (g), the projection of g to the free step- nilpotent group

with  generators, denoted 
¡
R
¢
. Then

||1-var;[01] = k1 (g)k(R) ∞

and the scaled path

 () = − ()   ∈ (0 1)

has length (over the interval [0 1]) proportional to − which tends to

0 as →∞. Our plan is to show that

∀  0 : lim inf
→∞

P
³¯̄̄




0←1
³


³




1

´´¯̄̄
 

´
 0 (20.16)

which, since the event involved is deterministic, really says that¯̄̄




0←1
³


³




1

´´¯̄̄
 

holds true for all  ≥ 0 () large enough. Then, sending →∞, a Taylor
expansion and  (− 1) shows that the left-hand-side converges to¯̄̄̄

¯̄̄ ( (
))| {z }

=(g)

· [ · · ·   ;]|
0

¯̄̄̄
¯̄̄  

and since   0 is arbitrary we showed  () which completes the induction

step.

Step 4: The only thing left to show is (20.16), that is, positivity of lim inf

of

P
³¯̄̄




0←1
³


³




1

´´¯̄̄
 

´
≥ P

µ¯̄̄
X0←· ( (·))− 



0←·
³


³




·
´´¯̄̄

·=1
 

¶
−P (Θ ≤ 1)

and since Θ  0 a.s. it is enough to show that

lim inf
→∞

P
µ¯̄̄
X0←· ( (·))− 



0←·
³


³




·
´´¯̄̄

·=1
 

¶
 0

Using  (− 1) + stochastic Taylor expansion (more precisely, corollary

20.24) this is equivalent to show positivity of lim inf of

P
µ¯̄̄
X

0· [ · · ·   ;]− 


0←·
³


³




·
´´¯̄̄

·=1




2


¶
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(Let us remark that the assumption   1 + 1 needed to apply

corollary 20.24 is satisfied thanks to condition 20.18, part (ii), and the

remark that our induction stops when  has reached , the number of

brackets needed in Hörmander’s condition.) Rewriting things, we need to

show positivity of lim inf of

P
³
| [ · · ·   ;]X

01 − 


0←1
³


³




1

´´
| {z }

→ [···  ;](g)

|  

2

´

or, equivalently, that

lim inf
→∞

P
³¯̄̄
 [ · · ·   ;]|0

³
X

01 −  (g)
´¯̄̄




2

´
 0

But this is implied by condition 20.18 and so the proof is finished.

20.5 Comments

The bulk of the material of sections 20.1, 20.2 and 20.3 is taken from [22].

Let us note that H-differentiability of a Wiener functional implies D12-
regularity where D12 is the defined as subspace of 2 (P) obtained as the
closure of "nice" Wiener functionals with respect to kkD12 = | |2(P) +
| |2(PH).In particular, the H-derivative is then precisely the Malliavin
derivative.; some details and references on this are given in appendix D.5.

Exercise 20.12 on the representation of the Malliavian covariance matrix

generalizes has well-known special cases: in the case of Brownian motion

 ( 0) is a Dirac measure on the diagonal { = 0}) and the double
integral reduces to a (well-known) single integral expression; in the case of

fractional Brownian motion with   12,  ( ) ∼ |− |2−2 ,
which is integrable at zero iff   12. (The resulting double-integral

representation of the Malliavin covariance is also well-known and appears,

for instance, in [32, 131, 9].)

Our discussion of RDEs under Hörmander’s condition follows closely [21].

In the case of driving Brownian motion all this is of course classical and

closely related to Hörmander’s work on hypoellipticity. Previous works in

this direction were focused on driving fractional Brownian motion  , with

Hurst paramter   12, so that  =  ( )  makes sense as Young

differential equation. A density result under the ellipticity condition on 

appeared in [32]. The deterministic estimate (cf. exercise 11.11),¯̄̄

0X
·←0

¯̄̄
-var;[0 ]

≤  exp
³
 kXk-var;[0 ]

´
(20.17)
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can be applied in a step-1 setting5 to see that
¯̄̄

0X
←0

¯̄̄
∈  (P) for all  

∞of all orders, thanks to Gaussian integrability of
¯̄
 ()

¯̄
-var;[0 ]

This

allows to obtain -estimates on the inverse of the covariance matrix from

which one obtains existence of a smooth density. This was carried out, again

under the ellipticity condition on  in [131]. Existence of a smooth density

under Hörmander’s condition was then obtained in [9], relying on some

specific properties of fractional Brownian motion. At present, the question

of how to obtain -estimates in the regime  ∈ [1 2) is open. It is worth-
while noting [55] that the deterministic estimate (20.17) is optimal, so that

-estimates in the regime for  ∈ [1 2) will require further probabilistic
input, presumably in the form of Gaussian chaos integrability.

5 I.e. with  ∈ (1 2), and kXk-var;[0 ] =
 ()


-var;[0 ]
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Appendix A

Sample Path Regularity and
Related Topics

A.1 Continuous processes as random variables

A.1.1 Generalities

A stochastic process with values in some measure space ( E) is a collection
of random variables, i.e. measurable maps  : (ΩAP)→ ( E) indexed
by  in some set T. Equivalently,  is a measurable map  : (ΩAP) →¡
T ET¢ where T is the space of -valued functions on T and ET is

the smallest -algebra such that all projections  : 
T → , defined

by  7→ , are measurable maps. The law or distribution of  is the

image measure P := ∗P defined on
¡
T ET¢. Since the underlying

probability model (ΩAP) is usually irrelevant it can be replaced by the
canonical model

¡
T ETP¢ and  :

¡
T ETP¢ → ( E) given by

 7→  () =  is the canonical version of the stochastic process . More

precisely,  and  are versions of each other in the following sense. One

says that two processes  and  0 defined respectively on the probability
spaces (ΩAP) and (Ω0A0P0), having the same state space ( E), are
versions of each other - or that they are "versions of the same process" -

if for any finite sequence 1      and sets  ∈ E,
P [1 ∈ 1     ∈ ] = P0

£
 0
1
∈ 1    

0

∈ 

¤
.

Two processes  and  0 defined on the same probability space are said to
be modifications of each other if P [ =  0

 ] = 1 for all . At last, they

are said to be indistinguishable if P [ =  0
 for all  ] = 1.

Let us now assume that T = [0  ] and  is Polish (with E = B, the
Borel -algebra). It is natural to ask if

 =
©
 ∈ T :  : T→  is continuous

ª
has P-measure one. Unfortunately, the above set need not be ET-measurable
but we can still ask if C has full outer measure. If this is the case then, still
writing  () =  () = , the measure P on T induces a probability

measure Q on , defined on the -algebra C ≡  ( :  ∈ T) = ET ∩  by

setting Q (Γ) := P
³
Γ̃
´
where Γ̃ is any set in ET such that Γ = Γ̃ ∩ .

Obviously the process  defined on ( CQ), better denoted by

̃ :

½
( CQ)→ ( E)
 7→  () = 
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is another version of  and, moreover, a genuine ( C)-valued random
variable. This version again is defined on a space of functions and is made

up of coordinate mappings and will also be referred to as canonical; we

will also write P or ∗P instead of Q; this causes no confusion so long
as we know the space we work in. We say that a stochastic process  :

(ΩAP) → ¡
T ET¢ is continuous if the set of continous functions from

T→  has (outer) measure one. In this case, there is a version of  which

is a genuine ( C)-valued random variable. Let  denote this continuous

version. Then

 : (ΩAP)→ ( ([0  ]  )  C)
where C is the -algebra generated by the coordinate maps in  ([0  ]  ).
On the other hand,  ([0  ]  ) is a Polish space under the topology in-

duced by uniform distance1 and there is a natural Borel -algebra B gener-
ated by the open sets. The law of, i.e.∗P, defines in fact a Borel measure
on B. This follows from B = C which is easy to see. (All coordinate maps
 are continuous which shows that C ⊂ B. Conversely,  ([0  ]  ) has a
countable basis for its topology of form ∩∈[0 ]∩Q

n
 : 

³
 ̃

´
 

o
∈ C,

̃ ∈  ([0  ]  ).

If  has a compatible2 group structure we can define increments

 = −1 

and then Hölder metrics of the form  (0 0) + -Höl;[0 ] ( ) where

-Höl;[0 ] ( ) = sup
0≤≤

 ( )

|− | 

The resulting path space -Höl ([0  ]  ) is not separable in general but,

at last when  = R or 
¡
R
¢
, there are Polish subspace (cf. sections

5.3 and 8.6), denoted by 0-Höl ([0  ]  ), defined as the set of all  ∈
 ([0  ]  ) such that

| |-Höl;[0 ] ≡ sup
0≤≤

 ( )

|− | ∞ and lim→0 sup
0−

 ( )

|− | = 0

By restricting    to rationals one easily sees that 0-Höl ([0  ]  ) and

the -algebra C0, generated by the coordinate maps in 0-Höl ([0  ]  ),
coincides with

©
 ∩ 0 :  ∈ Cª. On the other hand, there is a natural

Borel -algebra denoted by B0 on 0-Höl ([0  ]  ). Using, in particular,
separability of 0-Höl ([0  ]  ) and continuiuty of the group operations,

it is easy to see that the Borel -algebra B0 equals C0. In summary, a

1See Stroock [154], for instance.
2 I.e. all group operations are continuous.
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continuous process

 : (ΩAP)→ ( ([0  ]  )  C)
which assigns full measure to 0-Höl can be regarded as a0-Höl ([0  ]  )-

valued random variable whose law is a well-defined Borel measure on B0.
Identical remarks apply to -variation spaces.

A.2 The Garsia—Rodemich—Rumsey estimate

A.2.1 Garsia—Rodemich—Rumsey on metric spaces

We discuss the Garsia—Rodemich—Rumsey result and several consequences,

including a frequently used Besov—Hölder embedding and a simple proof of

Kolmogorov’s tightness criterion. Unless otherwise stated, ( ) denotes a

complete metric space.

Theorem A.1 (Garsia—Rodemich—Rumsey) Consider  ∈  ([0  ] )

where ( ) is a metric space. Let Ψ and p be continuous strictly increas-

ing functions on [0∞) with p(0) = Ψ(0) = 0 and Ψ() → ∞ as  → ∞.
Then Z 

0

Z 

0

Ψ

µ
 ( )

p(|− |)
¶
 ≤  (A.1)

implies, for 0 ≤    ≤  ,

 ( ) ≤ 8
Z −

0

Ψ−1
µ
4

2

¶
p() (A.2)

In particular, if osc ( ) ≡ sup { ( ) :   ∈ [0  ]  |− | ≤ } denotes
the modulus of continuity of  , we have

osc ( ) ≤ 8
Z 

0

Ψ−1
µ
4

2

¶
p()

Proof. Given  ∈  ([0  ]  ) and p (·) we can set ̃ (·) =  ( ·) and
p̃ (·) = p ( ·) and a simple change of variable shows that the " = 1"-

estimates obtained for ̃  p̃ imply the required estimates for  ,p. Thus, we

can and will take  = 1 in the remainder of the proof. Define  () =R 1
0
Ψ ( ( ) p(|− |)) . Since R 1

0
 () =  , there exists 0 ∈ (0 1)

such that  (0) ≤  . We shall prove that

 (0  0) ≤ 4
Z 1

0

Ψ−1
µ
4

2

¶
p() (A.3)

By a similar argument

 (1 0) ≤ 4
Z 1

0

Ψ−1
µ
4

2

¶
p()
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and combinig the we will have (A.2); first for  = 0  = 0 and then for

arbitrary 0 ≤    ≤ 1 by reparametrization. To prove (A.3) we shall pick
recursively two sequences {} and {} satisfying

0  1  1  2  · · ·  −1      +1     

so that   & 0 as  → ∞, in the following manner. By induction, if
−1 has already been chosen, pick

 ∈ (0 ) : p () = 1

2
p (−1) 

Trivially then,
R 
0

 ()  ≤  and also
R 
0

 ()  ≤ R 1
0
 ()  =

 (−1) where we set

 () := Ψ
¡

¡
 −1

¢
p(|−1 − |)¢ 

Now,  ∈ (0 ) is chosen so that  () ≤ 2 and also so that  () ≤
2 (−1) (To see that this is possible, assume the contrary so that
(0 ) = 1 ∪ 2 where

1 = { ∈ (0 ) :  ()  2} 
2 = { ∈ (0 ) :  ()  2 (−1) } 

Then |1| 2 ≤
R
1
 ()  ≤  and since the inequality is strict if

|1|  0 we have |1|  2. The same argument gives |2|  2

and we have the desired contraction |1 ∪ 2|  .) Have completed the

construction of {} and {}, we note that, by the defining properties of
{} 

Ψ

Ã

¡
  −1

¢
p (−1 − )

)

!
≤ 2 (−1)


≤ 4

−1
≤ 4

2

and this implies, using p (−1 − ) ≤ p (−1) ≤ 2p () ≤ 4 (p ()− p (+1)),


¡
  −1

¢ ≤ −1
µ
4

2

¶
p (|−1 − |)

≤ 4−1
µ
4

2

¶
(p ()− p (+1))

≤ 4

Z 

+1

−1
µ
4

2

¶
p () 

Using continuity of  , summation over  = 1 2    we get

 (0 0) ≤ 4
Z 1

0

−1
µ
4

2

¶
p ()

and we are done.
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Corollary A.2 (Besov—Hölder embedding) Let   1  ∈ (1 1)

and  ∈  ([0  ]  ) and set

 := ||;[] :=

Z Z
[]2

 ( )


| − |1+
.

Then there exists  =  ( ) such that for all 0 ≤    ≤  ,

 ()
 ≤  |− |−1  (A.4)

or ||(−1)-Höl;[] ≤  ||;[]  (A.5)

and a possible choice of the constant is  = 32 (+ 1)  (− 1) 
Proof.We takeΨ () =  and p ()=+1 in (A.2) and a simple compu-

tation yields the claimed estimate with constant 841 (+ 1)  (− 1) ≤
32 (+ 1)  (− 1).
Corollary A.3 (Besov-variation embedding) Under the assumptions

of the previous statement we have, for all 0 ≤    ≤  ,

||(1)-var;[] ≤  |− |−1 ||;[] 

Proof. From (A.4),

 ()
1 ≤  |− |1− 1

 
1


 

Obviously, 1 ( ) = −  and 2 ( ) =  are controls. But then

1−1 2

with  = 1 () ∈ (0 1) is also a control and so we can replace  ()1

by
³
||(1)-var;[]

´1
in the above estimate.

Exercise A.4 Assume ||(−1)-Höl ≡   ∞. Give a direct proof of
(A.4) with  =  ( ), but not dependent on .

Solution A.5 For brevity, let us write || instead of  (). By the
triangle inequality,

|| ≤ ||+ ||+ ||

and we average this over  ∈ [ + ] and  ∈ [−  ] where  will be

chosen later (in fact, equal to  = (14)
1

−1 |− |). This yields

|| ≤ 1


Z +



||  + 1


Z 

−
|| + 1

2

Z 



Z 



|| 
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Using the (1 − )-Hölder modulus of  the first two integrals on the right

hand side are estimated by 2−1. For the last term,we write the double
integral as Z 



Z 



Ã
||

|− |1+
! 1

 ³
|− |(1+)0

´ 1
0


≤ ||;[]

µZ 



Z 



³
|− |(1+)0

´


¶ 1
0

≤ ||;[] |− |( 1+)+ 2
0
0

where we used Hölder’s inequality with 0 =  ( − 1). Putting things to-
gether, we have

|| ≤ 2−1 +
1

2
|− |2+−1 ||;[]

Choosing  =  |− | makes the right-hand-side a multiple of |− |− 1


from which we learn that  ≤ 2−1 + −2 ||;[]. Choosing 

such that 2−1 = 12 turns this into an estimate on , namely  ≤
2−2 ||;[] and the proof is finshed.

Corollary A.6 (Besov—Lévy modulus embedding) Let  ∈  ([0  ]  ),

  1 and assume

∃  0 :
Z Z

[]2
exp

⎡⎣Ã  ( )

| − |1

!2⎤⎦  =  ∞

Then there exist a constant  depending on  only such that for all 0 ≤
   ≤  ,

 () ≤ 
1

12
 (− )×

q
log ( ∨ 4)

where  () =
R 
0
1−1

p
log (1 + 12) . As a consequence,

exp

"


2

µ
sup

≤≤

 ()

 ( − )

¶2#
≤  ∨ 4

Remark A.7  () ∼ 1
p
log 1 as  → 0+ in the sense that their

ratio converges to a constant  ∈ (0∞).
Remark A.8 From monotonicity of  and ( ) 7→  we see that for

any [ ] ⊂ [ ]

||0;[] ≤ 
1

12
 (− )×

q
log ( ∨ 4)
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so that

exp

⎡⎣ 

2

Ã
sup

≤≤

||0;[]
 ( − )

!2⎤⎦ ≤  ∨ 4

Proof. Using Ψ () = 
2 − 1 and p () = 1 in (A.2) leads to an

estimate of form

 () ≤ 8
Z −

0

1−1
r
1


log (1 + 42)d

Obviously, we may replace  by ̃ =  ∨ 4 in the above estimate.
Then, by a change-of-variable,

 () ≤ 8

12
̃
1(2)
 

⎛⎝ − q
̃

⎞⎠ 

It is easy to check that for suitable constansts 1 2  0

 () ≤ 1 ()  () for   ∈ (0 1) 
 () ≤ 2

1
p
log 1 for  ∈ (0 12) 

We see that 

µ
(− ) 

q
̃

¶
≤ ()× (− )×̃−12

q
log ̃ and

so

 () ≤ 3
12 (− )

r
log
³
̃

´


as claimed.

A.2.2 Garsia—Rodemich—Rumsey on 
¡
R
¢
-valued paths

We now specialize from the general metric setting to the free step- nilpo-

tent group
¡


¡
R
¢
⊗¢, a metric space under ( ) 7→  ( ) =

°°−1 ⊗ 
°°.

The resulting path spaces were discussed in section 8.1.

Proposition A.9 Let   2 ≥ 2 and x ∈ 
¡
[0  ] 

¡
R
¢¢
such thatZ 

0

Z 

0

 ( )


|− |
 ≤

Set  =
³
1

− 2



´−1
 1. Then, there exists  =  ( ), which can be

chosen non-increasing in  ∈ (2∞),

kk1-Höl;[0 ] ≤ 
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Proof. An immediate consequence of corollary A.2 which also shows that

a possible choice of  is given by  ( ) = 32


³
1

− 2



´


We observe that the constant in the previous proposition does not depend

on  . One can reconfirm this with the following scaling argument: rescale

by defining ̃ (·) :=  ( ·) so that

k̃k1-Höl;[01] =  1 kk1-Höl;[0 ]ÃZ 1

0

Z 1

0

 (̃ ̃)


|− |


! 1


=  1−2
ÃZ 

0

Z 

0

 ( )


|− |


! 1




with identical scaling in  since 1 = 1 − 2. Similarly, we haveÃZ 1

0

Z 1

0

| (x − y)|
|− |



!

=  −2
ÃZ 

0

Z 

0

| (x − y)|
|− |



!1

=  

ÃZ 

0

Z 

0

| (x − y)|
|− |



!1
sup

0≤≤1

| (x − y)|
|− |

=   sup
0≤≤

| (x − y)|
|− |



which reduces the proof of the following result to  = 1.

Proposition A.10 Let   2 ≥ 2 and xy ∈ 
¡
[0  ] 

¡
R
¢¢
such

that, for non-negative constants  and ÃZ 

0

Z 

0

kxk
|− |



!1
≤ and

ÃZ 

0

Z 

0

kyk
|− |



!1
≤

(A.6)ÃZ 

0

Z 

0

| (x − y)|
|− |



!

≤  for  = 1      (A.7)

Then, setting  =
³
1

− 2



´−1
 1, there exists  =  ( )  non-increasing

in  such that

kxk1-Höl;[0 ] ≤  and kyk1-Höl;[0 ] ≤  (A.8)

and, for all  = 1      ,

sup
0≤≤

| (x − y)|
|− |

≤  (A.9)

where  can be chosen non-increasing in  ∈ (2∞).
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Proof. The above scaling argument, as already pointed out, allows us to

assume that  = 1 Moreover, at the cost of replacing x and y by 1x

and 1y, we can and will assume that  = 1.

In this proof, all the constants  when dependent in  but will be non-

decreasing in 

Inequalities (A.8) holds true follows from proposition A.9. We now prove

(A.9) by induction over the level  ∈ {1     }. The case  = 1 is, again,
a consequence of proposition A.9. Let us now assume that it is true for all

levels 1      − 1 and establish the estimate for level . Fix    ∈ [0 1] 
and define

 =  (x+ − y+) 

Fix    in [0 − ]. Using x+−x+ = x+⊗ (x++ − 1) and
 (x++ − 1) = 0 (or  (x++)) for  = 0 (or   0), we have

 −  =  (x+ − x+)−  (y+ − y+)

=

X
=1

− (x+)⊗  (x++)−
X

=1

− (y+)⊗  (y++)

=

X
=1

− (x+)⊗  (x++ − y++)

+

X
=1

− (x+ − y+)⊗  (y++) 

Furthermore, using 0 (x+ − y+) = 0, we obtain

 −  =

−1X
=1

− (x+)⊗  (x++ − y++)

+

−1X
=1

− (x+ − y+)⊗  (y++)

+ (x++ − y++) 

Hence,

ÃZ −

0

Z −

0

| − |
| − |



!1
≤ ∆1 + ∆2 +∆3
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where

∆1 = 1

−1X
=1

ÃZ −

0

Z −

0

kx+k(−) | (x++ − y++)|


| − |


!1

∆2 = 2

−1X
=1

ÃZ −

0

Z −

0

|− (x+ − y+)| ky++k


| − |


!1

∆3 = 3

ÃZ −

0

Z −

0

| (x++ − y++)|
| − |



!1
Now, kxk1-Höl;[01] ,kyk1-Höl;[01] ≤ 1 ( ) by proposition A.9 for a

constant 1, non-increasing in . Hence,

∆1 ≤ 4

−1X
=1

|− |
(−)


ÃZ −

0

Z −

0

| (x++ − y++)|
| − |



!1


From the induction hypothesis, we have

| (x++ − y++)|(1−
1
 ) ≤ 5

(1− 1
 ) |− |  (−1)  (A.10)

Hence, we obtain

∆1 ≤ 6

−1X
=1

|− |
(−1)
 (1−

1
 )

ÃZ −

0

Z −

0

| (x++ − y++)|
| − |



!1

≤ 6

−1X
=1

|− |
(−1)
 by assumption (A.7).

For     − we also have ky++k ≤ 1 ( )
 |− |(−1) ky++k

so that

∆2 ≤ 7

−1X
=1

|− |
(−1)


ÃZ −

0

Z −

0

|− (x+ − y+)| ky++k


| − |


!1
From the induction hypothesis, we have

|− (x+ − y+)| ≤ 8
−
 ≤ 8 |− | − ;

in particular, we see that

∆2 ≤ 9 |− |
(−1)


−1X
=1

ÃZ −

0

Z −

0

ky++k
| − |



!1
≤ 10 |− |

(−1)
 by assumption on y.
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Finally, using assumption (A.7), we have, definingΥ = sup∈[]
³
|(x−y)|

|−|
´


∆3 = 3

ÃZ −

0

Z −

0

| (x++ − y++)|
| − |



!1
Υ
1−1


≤ 3
1 sup

∈[]
| (x − y)|(1−

1
 ) |− | −1

(with 9 = max (3 1), not dependend on ). Hence, we see that

1

|− | −1

ÃZ −

0

Z −

0

| − |
| − |



!1
≤ 11

³
+ 1Υ

1−1


´
Another application of proposition A.9, gives

| −  |
|− |

≤ 12

³
+ 1Υ

1−1


´


i.e. we prove that that for all   ∈ [0  ] 
| (x − y)|

|− |
≤ 12

³
+ 1Υ

1−1


´


which readily implies that

Υ ≤ 12

³
+ 1Υ

1−1


´


or

Υ


≤ 12

"
1 +

µ
Υ



¶1− 1


#


This last inequality implies that
Υ

≤ 13 which concludes the induction.

A.3 Kolmogorov-type corollaries

A.3.1 Hölder regularity and tightness

Let ( :  ∈ [0  ]) be a stochastic process with values in some Polish space
( ) and assume there exists positive constants    such that for all

  ∈ [0  ]
E ( ()


) ≤  |− |1+ 

Kolmogorov’s Criterion asserts that  has then a continuous version, see

[139] for instance, which we shall also denote by  without further notice.
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In fact, as is well-known (and will be seen below),  can be chosen with

-Hölder continuous sample paths for any   . The above condition is

equivalent to the existence of   0 and    ≥ 1 such that

| ()|(P) ≤ |− |1 (A.11)

and we find it convenient in application to formulate the following criteria

in this form.

Theorem A.11 (Kolmogorov) Let   0    ≥ 1 and assume

(A.11) holds for all   ∈ [0  ]. Then, for any  ∈ [0 1 − 1) there
exists  =  (    ) non-increasing in  such that

E
³
||-Höl;[0 ]

´ 1
 ≤  ;

Proof. Fix  ∈ [0 1 − 1). Since   1 and  := 1 +   1 ≤ 1,
the Besov—Hölder embedding, established in corollary A.2 (equivalently:

proposition A.9) shows that there exists a constant 1 such that¯̄̄̄
 ()

|− |
¯̄̄̄
≤ 1

Z Z
[0 ]2

 ()


|− |1+
 = 1

Z Z
[0 ]2

 ()


|− |2+


After taking sup∈[0 ] and expectations we have,

E
³
||-Höl;[0 ]

´
≤ (1)

Z Z
[0 ]2

|− |−2+(1−)  ∞

using 1 −   1 to see that the last double integral is finite.

Assume now that  has enough structure that so that bounded sets

in 0-Höl ([0  ]  ) are precompact in -Höl ([0  ]  ) for   0. This
requires interpolation and Arzela-Ascoli and holds true, for instance, when

 = R or more generally 
¡
R
¢
, the step- free nilpotent group over

R, equipped with Carnot-Caratheodory distance. It will enough for us to
focus on this case. We have

Corollary A.12 (Kolmogorov—Lamperti tightness criterion) Let (X
 :

 ∈ [0  ]) be a sequence of continuous 
¡
R
¢
-valued processes. Let  

0    ≥ 1 and assume

sup

|(X

 X

 )|(P) ≤ |− |1

holds for all   ∈ [0  ]. Then (X) is tight in -Höl
¡
[0 1]  

¡
R
¢¢
for

any  ∈ [0 1 − 1).
Proof. Take   0  1 − 1. By the previous theorem

sup

E
³
kXk0-Höl;[0 ]

´
≤ () ∞
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Writing =
n
x ∈0-Höl

¡
[0  ]  

¡
R
¢¢
: kxk0-Höl;[0 ]  

o
it is clear

from Chebyshev’s inequality that

sup

P [X ∈ ]→ 0 as →∞.

The proof is then finished with the remark that  is precompact with

respect to -Hölder topology in -Höl
¡
[0 1]  

¡
R
¢¢
.

Although not strictly necessary for the next result, we remain in the

setting of 
¡
R
¢
-valued processes for the remainder of this section.The

following is a variation of theorem A.11 with the feature that the constant 

does not depend on . This will be important since in a typical application

 itself will be taken as function of  (e.g.  = 
¡
12

¢
as  → ∞ in a

Gaussian setting). and it is important that 2 does not depend on .

Theorem A.13 Let (X :  ∈ [0  ]) be continuous 
¡
R
¢
-valued process.

For any  ∈ [0 1) there exists 0 ( ) and  =  (   ) such that if

∀  ∈ [0  ] : | (XX)|(P) ≤ |− |1

holds for some for some  ≥ 0, then we also have

E
³
kXk-Höl;[0 ]

´ 1
 ≤ 

or, equivalently, for all  = 1    ¯̄̄̄
¯ sup
0≤≤

| (X)|
|− |

¯̄̄̄
¯


≤ () 

Proof. Pick 0 = 0 ( ) large enough so that for all  ≥ 0 :   1−2.
It follows that

kXk-Höl;[0 ] ≤ 

1 kXk(1−2)-Höl;[0 ]

≤ 

2

Z 

0

Z 

0

 ( )


|− |


with 1 2 dependent on    but not on  (we used that the constant in

proposition A.9 can be chosen non-increasing in .) After taking sup∈[0 ]
and expectations we have,

E
³
kXk-Höl;[0 ]

´
≤ (2)  2 ∞

If the previous result was about -Hölder sample path regularity of a


¡
R
¢
-valued process, the following is about the -Hölder distance of

two such processes.
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Theorem A.14 Let XY be continuous 
¡
R
¢
-valued processes. Let

 ∈ [0 1) Assume that for some constant  and for  ≥ 0 ( )  we

have for all   ∈ [0  ] 

| (XX)|(P) ≤  |− |1  (A.12)

| (YY)|(P) ≤  |− |1  (A.13)

| (X −Y)|(P) ≤  |− | for  ∈ {1     } (A.14)

Then, there exists  =  (  )  such that (i) for all  = 1      ,¯̄̄̄
¯ sup
0≤≤

| (X)|
|− |

¯̄̄̄
¯




¯̄̄̄
¯ sup
0≤≤

| (Y)|
|− |

¯̄̄̄
¯


≤ ()


¯̄̄̄
¯ sup
0≤≤

| (X −Y)|
|− |

¯̄̄̄
¯


≤  ()

;

and (ii),

|-Höl (XY)| ≤ max
³
 1

´


Remark A.15 In a typical (Gaussian) application, assumptions (A.12),(A.13),(A.14)

hold for all  with  = 12. In this case, the conclusions take the form

∀ ∈ {1     } :
¯̄̄̄
¯ sup
0≤≤

| (X −Y)|
|− |

¯̄̄̄
¯


≤ ̃2

for ̃ = ̃ (  ) and similarly¯̄
1-Höl (XY)

¯̄

≤ ̃max

³
 1

´
12 (A.15)

Proof. Pick 0 = 0 ( ) large enough so that for all  ≥ 0 :  

1 − 2 =: 1. It follows from proposition A.10 that there exists 1
which can be chosen independent of 

1


sup

0≤≤

| (X −Y)|
|− |

≤ sup
0≤≤

| (X −Y)|
|− |

≤ 1 max
=1

¯̄̄̄
¯
Z 

0

Z 

0

| (X)|
|− |



¯̄̄̄
¯


+1 max
=1

¯̄̄̄
¯
Z 

0

Z 

0

| (Y)|
|− |



¯̄̄̄
¯


+1
1


max

=1

¯̄̄̄
¯
Z 

0

Z 

0

| (X −Y)|
|− |



¯̄̄̄
¯
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Hence, if ∆ =
¡
1


¢ 
 E

µ¯̄̄
sup0≤≤

|(X−Y)|
|−|

¯̄̄ 


¶
, we have

∆ ≤ 

2 max

=1

Z 

0

Z 

0

E
³
| (X)|

´
|− |



+

2 max

=1

Z 

0

Z 

0

E
³
| (Y)|

´
|− |



+

2

1


max

=1
E

ÃZ 

0

Z 

0

| (X −Y)|
|− |



!

≤ 3

2  +

³2


´
 = (4)




which is equivalent to
¯̄̄
sup0≤≤

|(X−Y)|
|−|

¯̄̄


≤ 5
 which is

what we wanted to prove.

(ii) Take  = 1X with  =  |− |1 and similarly  = 1Y.

Note that by part (i),

¯̄̄̄
sup


| (X)|


¯̄̄̄




¯̄̄̄
sup


| (Y)|


¯̄̄̄


≤ 1¯̄̄̄
sup


| (X −Y)|


¯̄̄̄


≤ 

From proposition 7.49,

 ( ) ≤ 6

³
| − |+ | − |1 max (1 k||k)1−1

´
and so

sup


| (XY)|


≤ 6 max
=1

sup


| (X −Y)|


+6 max
=1

sup


¯̄̄̄ | (X −Y)|


¯̄̄̄1
max

Ã
1 max

=1
sup


¯̄̄̄
¯ | (X)|1



¯̄̄̄
¯
!1−1
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From Hölder’s inequality,
¯̄
1(1−1)¯̄


≤ ||1 ||(1−1) , we can

then bound
¯̄
sup | (XY)| 

¯̄


by a constant (namely 6) times

max


¯̄̄̄
sup


| (X −Y)|


¯̄̄̄


+max


¯̄̄̄
¯̄sup


¯̄̄̄ | (X −Y)|


¯̄̄̄1
max

Ã
1max


sup


¯̄̄̄
¯ | (X)|1



¯̄̄̄
¯
!1−1 ¯̄̄̄¯̄





≤ max
=1

¯̄̄̄
sup


| (X −Y)|


¯̄̄̄


+max
=1

¯̄̄̄
sup


¯̄̄̄ | (X −Y)|


¯̄̄̄¯̄̄̄1


max

Ã
1max



¯̄̄̄
¯sup

¯̄̄̄
¯ | (X)|1



¯̄̄̄
¯
¯̄̄̄
¯


!1−1

= + 1 using

¯̄̄̄
¯sup

¯̄̄̄
¯ | (X)|1



¯̄̄̄
¯
¯̄̄̄
¯


≤ 1

Since  =  |− |1 the proof is finished.

A.3.2 -convergence for rough paths

Theorem A.14 can obviously be used to establish -convergence (with

quantitative estimates!) of a sequence of continuous
¡
R
¢
-valued processes.

In can be useful to have the following "soft" criterion for -convergence

which only relies on basic interpolation estimates.

Proposition A.16 Let XX∞ be continuous 
¡
R
¢
-valued process de-

fined on [0  ]. Let  ∈ [1∞) and assume that we have pointwise conver-
gence in  (P) i.e. for all  ∈ [0  ],

 (X
 X

∞
 )→ 0 in  (P) as →∞; (A.16)

and uniform Hölder bounds, i.e.

sup
1≤≤∞

E
³
kXk-Höl;[0 ]

´
∞ (A.17)

then for 0  

0-Höl;[0 ] (X
X∞)→ 0 in  (P) 

Remark A.17 To check condition (A.17) one typically uses theorem A.13.

Let us also note that (A.16) may be replaced by the assumption of point-

wise convergence in probability; in this case, it is clear from (A.17) that

 (X
 X

∞
 )

0
is uniformly integrable for any 0 ∈ [1 ) and hence the con-

clusion becomes

0-Höl (X
X∞)→ 0 in 

0
(P) 
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Obviously, there is no need to distinguish between  and 0 if (A.17) holds
for all  ∞. (This is typical in our appications.)
Proof. It is enough to show ∞ convergence in  Indeed, once we have ∞
convergence in  we have 0 convergence in 

 and then by interpolation,

we have 0-Höl convergence in  For any integer 

21−E [∞ (XX∞)]

≤ E
∙
sup

=1


³
X




X∞




´¸
+ E

"
sup

|−| 


¡°°X


°° + °°X∞°°¢
#

≤
X
=1

E
³

³
X




X∞


´´
+

µ




¶
× 2 sup

1≤≤∞
E
h
kXk-Höl;[0 ]

i


By first choosing  large enough, followed by choosing  large enough we

see that ∞ (XX∞)→ 0 in  as required.

A.4 Sample path regularity under Gaussian
assumptions

We start with a simple characterization of Gaussian integrability.

Lemma A.18 For a real-valued non-negative variable  the following three

conditions are equivalent:

(i) (Gauss-tail) there exists 1  0 such that

P [  ] ≤ 1

1
−1

2

;

(ii) (Gaussian integrability) there exists 2  0 such that

E
³
2

2
´
∞;

(iii) (Square-root growth of moments) there exists 3  0 such that for all

 ∈ [1∞)
||(P) ≤

1

3

√
 ∞

When switching from  to the  statement, the constant  only depends

on .

Proof. (i) implies (ii) by Chebyshev’s inequality and the converse hold by

using the formula

E [] =
Z ∞
0

P [ ≥ ] 
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Using the same formula, (i) implies (iii) since

E
£
2

¤
=

Z ∞
0

P
£
2 ≥ 

¤
 ()

≤ 1



Z ∞
0

− () =


+1
Γ () 

Stirling’s approximation for the Gamma function is given by

Γ () =
p
2

³


´
(1 + (1))

≤
³


´
for  large enough.

It is then clear that ||2 ≤ 
√
 and by making  =  () large enough

this holds for all . To see that (iii) implies (ii) we simply expand the

exponential

E
³


2
´

=

∞X
=1

1

!
 (||2)2

≤
∞X
=1

¡
22

¢
!



and we see with Stirling, Γ (+ 1) = !, that this sum is finite for  =  ()

small enough.

We shall nowsee that (often sharp) generalized Hölder- or variation reg-

ularity of a stochastic process can be shown from the following simple con-

dition Gaussian integrability condition. It is not only satisfied by Brownian

motion, a generic class of Gaussian processes and Markov processes with

uniform elliptic generator in divergence form but also by all respective en-

hancements to rough paths (provided one works with homogenous "norms"

and distances on the rough path spaces).

Condition A.19 (Gaussian integrability ()) Given a (continuous3) process

 on [0  ] with values in a Polish space ( )  there exists  ≥ 1   0

such that

sup
0≤≤

E exp

⎛⎝

"
 ()

|− |1

#2⎞⎠ ∞ (A.18)

Let us note that, fom lemma A.18, condition (A.18) is equivalent to

sup
0≤≤

¯̄̄̄
¯ ()

|− |1

¯̄̄̄
¯
(P)

=  (
√
) as  →∞

3Condition (A.18) is more than enough, with Kolmogorov’s Criterion, to guarantee

the existence of a continuous version of . We shall simply assume that  is continuous.
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It turns out that this rather generic condition implies a number of sample

path properties, many of which are well-known in the setting of Gaussian

processes (see [44] and the references therein). Given a "modulus"-function

 : [0∞)→ [0∞), 0 at 0 and strictly increasing, we set

||-Höl;[0 ] := sup
0≤≤

 ()

 (− )
= sup

0≤≤

||0;[]
 (− )

 (A.19)

(The second equality, with ||0;[] = sup∈[]  (), follows from

monotonicity of )

Theorem A.20 Assume ( :  ∈ [0  ]) is a continous process with values
in a Polish space ( ) which satisifies the Gaussian integrability condition

(A.18) with parameters  . Assume

lim sup
→0

1
p
log 1

 ()
∞

Then there exists  =  (  )  0 such that,

E exp
³
 ||2-Höl;[0 ]

´
∞

Proof. Without loss of generality, we may assume  = 1. (Otherwise,

replace the distance  by −12.) Condition (A.18) implies that

 () :=

Z Z
[0 ]2

exp

⎡⎣Ã ()

| − |1

!2⎤⎦ 
has finite expectation. By corollary A.6, there exists   0 such that

E exp

⎛⎝ sup
0≤≤

Ã
 ()

̂ (− )

!2⎞⎠ ≤ E ( () ∨ 4) ∞;
where ̂ () :=

R 
0
1−1

p
log (1 + 12) ∼ 1

p
log 1. By assump-

tion, there exist positive constants 1 2 so that

̂ () ≤ 1 () for  ∈ [0 2)

Moreover, by making  smaller if necessary, E exp
³
 ||20;[0 ]

´
 ∞ and

the general case follows from the split-up

||-Höl;[0 ] ≤ sup
:|−|≤2

||0;[]
̂ (− ) 1

+
1

 (2)
||0;[0 ] 
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Exercise A.21 Let 0  . Show that, under the assumptions of theorem

A.20,

sup
0≤≤

E exp

⎛⎝

"
||20-var;[]
|− |1

#2⎞⎠ ∞ (A.20)

Theorem A.20 implies that () has -modulus regularity where  () =

1
p
ln 1. We know from examples (e.g. Brownian motion with  = 2)

that this is the exact modulus, and in this sense Theorem A.20 is optimal.

This should be compared with the following law of iterated logarithm in

which, essentially, sup0≤≤ in (A.19) is restricted to fixed  = 0.

Theorem A.22 Assume ( :  ∈ [0  ]) is a process with values in a Pol-
ish space ( ) which satisifies the Gaussian integrability condition (A.18)

with parameters  . Then, there exists a (deterministic) constant  =

 ( ) ∞ s.t.

lim sup
↓0

||0;[0]
1

p
ln ln 1

≤  a.s.

Remark A.23 In the notation of definition 5.47, 1
p
ln ln 1 = 1−12 ()

as  ↓ 0. We insist that, in general, () will not have 1−12-modulus
regularity. However we will see below that () enjoys 2-variation reg-

ularity where 2 is Lipschitz equivalent (in the sense of lemma 5.52) to

the inverse of 1−12.

Proof. We start with a tail estimate on ||0;[0 ] =
¯̄̄
̃
¯̄̄
0;[01]

, introducing

the reparametrization ̃ (·) :=  ( ·) : [0 1] →  and noting that ̃

satisfies the Gaussian integrability condition with parameters   2.

It is then clear from theorem A.20 that ||0;[0 ]  1 enjoys Gaussian
integrability (uniformly in  ) and hence, by Chebyshev, has a Gaussian

tail; that is, for 1 large enough, not dependent on  ,

P
h
||0;[0 ] ≥ 

i
≤ 1 exp

µ
− 1
1

³ 

 1

´2¶


The main idea is now to scale by a geometric sequence. Fix   0

 ∈ (0 1), set 2 =
p
(1 + ) 1 and also set  () = 1

p
ln ln 1. Define

the event

 =
n
||0;[0] ≥ 2 (

)
o
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It follows that, for  large enough,

P () = P
h
||0;[0] ≥ 2 (

)
i

≤ 1 exp

Ã
− 1
1

µ
2 (

)



¶2!

= 1 exp

µ
− 1
1
22 ln ln 



¶
= 1 (− ln )−

2
21

This is summable in  and hence, by the Borel—Cantelli lemma, we get that

only finitely many of these events occur; i.e. | ()|0;[0]  2 (
) for

all  ≥ 0 ( ) large enough. For all  small enough, pick  such that

+1 ≤   

We then have

lim sup
↓0

||0;[0]
2 ()

≤ lim sup
→∞

2 (
)

2 (
+1)

||0;[0]
2 (

)

2
¡
+1

¢
2 ()

≤ −1
p
(1 + ) 1.

and the proof is finished. (Sending  ↑ 1, followed by  ↓ 0, actually shows
that one can take  =

√
1.)

We now turn to variational regularity of (). Theorem A.20 readily im-

plies -variation regularity provided  is taken is the inverse of the modulus

 () = 1
p
ln 1; equivalently (cf. lemma 5.52),  () = (

p
ln 1).

We shall establish a sharper results below (with ln replaced by the iter-

ated logarithm ln ln). There are examples (e.g. Brownian motion, theorem

13.71) in which this is the exact variation, and in this sense Theorem A.25

below is optimal.

Lemma A.24 Let  : [0 1] → R be a continuous path, and  : R+ ×
R+ → R+ a function increasing in the first dimension, and decreasing in
the second dimension. Then,

sup
()∈D([01])

X



¡

¡
  +1

¢
 +1 − 

¢ ≤ 2 ∞X
=2

2−4X
=0


³
||

0;[ 2 
+4
2 ]

 2−
´


Proof. For ( ) ⊂ [0 1]  we first find the integer  ∈ {0 1 2    }such
that

2−
−1  |− | ≤ 2− 

We then cover ( ) with the interval  = [ 
]  where

 = max
n
2−

−1  ∈
n
0     2

+1
o
 2−

−1 ≤ 
o

 = min
n
2−

−1  ∈
n
0     2

+1
o
 2−

−1 ≥ 
o
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Observe first that || 2+1 is equal to 2 or 3 Indeed, by definition of
, we have ¯̄


¯̄
2

+1 ≥ |− | 2+1  1
and as both 2

+1 and 2
+1 are integers, we must have || 2+1 ≥

2Also, if || 2+1 ≥ 4 it means that the interval
h
 +

1

2
+1

  − 1

2
+1

i
is of length greater than or equal to 2−



 and hence, as
h
 +

1

2
+1

  − 1

2
+1

i
⊂ [ ]  so is [ ]  That contradicts the definition of 
Observe then that if ( ) and ( ) are two disjoint intervals, then 

and  are not identical. Assume it were not the case. Without loss of

generalities, we can assume  ≥  Necessarly,  =  As  ≥  we

obtain  ≥  − 1
2+1

≥  +
1

2+1
 which contradicts the assumption

that  = 

For a fixed dissection () ∈ D ([0 1])  we have from the monotonicity

assumption on X



¡

¡
  +1

¢
 +1 − 

¢ ≤X



³
||0+1  2−

+1−1
´

and then define 
(2)

 = #
©
+1 =

£


2+1
 +2
2+1

¤ª
 

(3)

 = #
©
+1 =

£


2+1
 +3
2+1

¤ª
.

We have just seen that 
(2)

 
(3)

 ∈ {0 1} and in fact (2) +
(3)

 ≤ 1 We
therefore obtainX



¡

¡
  +1

¢
 +1 − 

¢ ≤
∞X
=0

2+1−2X
=0


(2)


³
||

0;[ 

2+1
 +2
2+1

]  2
−(+1)

´

+

∞X
=1

2+1−3X
=0


(3)


³
||

0;[ 

2+1
 +3
2+1

]  2
−(+1)

´

≤ 2

∞X
=1

2+1−4X
=0


³
||

0;[ 

2+1
 +4
2+1

]  2
−(+1)

´


using 
(2)

 +
(3)

 ≤ 1. It then suffices to the the supremum over all dissec-

tions.

The next result deals with generalized variation and we recall (cf. defin-

ition 5.47) that for  ≥ 1

2 () =

¯̄̄̄
¯ p
ln∗ ln∗ 1

¯̄̄̄
¯


with ln∗ () = max (1 ln) 

Theorem A.25 Assume ( :  ∈ [0  ]) is a process with values in a Pol-
ish space ( ) which satisifies the Gaussian integrability condition (A.18)

with parameters  . Then, there exists  =   0 such that

E
³
exp

³




 2
||22-var;[0 ]

´´
∞
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Proof. The reparametrization ̃ (·) :=  ( ·) : [0 1] →  satisfies the

Gaussian integrability condition with parameters   2. At the same

time, ¯̄̄
̃
¯̄̄
2-var;[01]

= ||2-var;[0 ]
and so we can assume without loss of generality that  = 1. Furthermore,

at the price of replacing the distance  by −12 we may assume  = 1.
After these preliminary remarks, let us define  by

 () = 2 () 12()

For a fixed   0 and a dissection () of [0 1]  and a fixed continuous

path  we have

X


2

Ã

¡
  +1

¢


!
=

X


2

Ã

¡
  +1

¢


!
1
2


( +1)




≤ +1−

2

+
X


 +1−
2

Ã

¡
  +1

¢


!

≤ 1

2
+
X


 +1−
2

Ã

¡
  +1

¢


!


Taking the supremum over all dissection, we see that,

||2-var ≤ inf
(
  0 sup

()∈D([01])
 +1−

2

Ã

¡
  +1

¢


!
≤ 1
2

)


Using the previous lemma, we obtain

||2-var ≤ inf
(
  0

∞X
=2

2−4X
=0

2−−1

Ã
||0[2−(+4)2−]



!
≤ 1
4

)


and in particular, that

P
³
||2− ≥

´
≤ P

Ã ∞X
=2

2−4X
=0

2−−1

Ã
||0[2−(+4)2−]



!

1

4

!


From theorem A.20 and (A.19) there exists 1  0 such that P (Ω ) ≤
1 exp

¡−21
¢
where

Ω =

⎧⎪⎨⎪⎩ sup
0≤≤1

||0;[]
|− |1

³
ln∗ 1

−
´12  

⎫⎪⎬⎪⎭ 
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Now, on the set Ω ,

2−−1

Ã
||0[2−(+4)2−]



!

≤ 2

µ³
2−(−2)

´1 ¡
ln∗ 2−2

¢12¶
1
2


||

0[2−(+4)2−]



2−−1



For  ≥ 2 we have

2

µ³
2−(−2)

´1 ¡
ln∗ 2−2

¢12¶ ≤ 0

µ³
2−(−2)

´1 ¡
ln∗ 2−2

¢12¶
= 2−(−2)

¡
ln∗ 2−2

¢2
≤ 42−max

³
1 (ln 2)

2
(− 2)2

´
≤ 42− (− 1)2 

and so

P
³
||2-var ≥

´
− P ¡Ω¢

≤ P
³
||2-var ≥ ∩Ω

´
≤ P

⎛⎜⎝P∞=2 2−(−2) (− 1)2P2−4
=0 1

2


||

0[2−(+4)2−]



2−−1

1Ω  1
4

⎞⎟⎠
Using P (

P
1  ) ≤P 1


E (1) =

P



P (), we obtain

P
³
||2-var ≥

´
− P ¡Ω¢

≤
∞X
=2

24− (− 1)2
2−4X
=0

P

Ã
2

Ã
||0[2−(+4)2−]



!
 2−−1 ∩ Ω

!

≤
∞X
=0

24− (− 1)2
2−4X
=0

P

Ã
2

Ã
||0[2−(+4)2−]



!
 2−−1

!


So it only remains to bound

P

Ã
2

Ã
||0[2−(+4)2−]



!
 2−−1

!
= P

Ã
||0[2−(+4)2−]

(42−)1




(42−)1
−12

¡
2−−1

¢!


Now, we have seen in theorem A.20 that, for a positive constants 2,

sup
0≤≤1

E exp

⎛⎝2

Ã
||0[]
|− |1

!2⎞⎠ ∞
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Then, from Chebyshev’s inequality and for large enough constant 3

P

Ã
2

Ã
||0[2−(+3)2−]



!
 2−−1

!
≤ 3 exp

µ
−

2

3

¯̄̄
2−12

¡
2−−2

¢¯̄̄2¶


and so

P
³
||2-var ≥

´
≤ 3

∞X
=2

(− 1)2 exp
µ
−

2

3

¯̄̄
2−12

¡
2−−2

¢¯̄̄2¶
+1 exp

¡−21
¢


We have seen in lemma 5.52 that 5−12 ≤ −1
2

 which implies that

for  ≥ 2, ¯̄̄
2−1

2

¡
2−−2

¢¯̄̄2 ≥ 5 ln
∗ ln∗ 2−2 ≥ 6 (1 + ln)

Hence, for a positive constant 7,

exp

µ
−

2

3

¯̄̄
2−1

2

¡
2−−2

¢¯̄̄2¶ ≤ exp ¡−72
¢


µ
1



¶72



For  large enough, we have 3
P

≥2 (− 1)2 −7
2

= 8 ∞ and so

P
³
||2-var ≥

´
≤ 8 exp

¡−72
¢
+ 1 exp

¡−21
¢


The proof is now finished.

Enhanced Brownian motion also satisfies a law of iterated logarithm. We

first recall Khintchine’s law-of-iterated-logarithm for a Brownian motion4

which states that, for a 1-dimensional Brownian motion ,

P
∙
lim sup

→0

||
 ()

= 

¸
= 1 (A.21)

where  ∈ (0∞) is a deterministc constant (equal to √2 in fact) and
 () =

p
 ln∗ ln∗ (1). (Observe that  is Lipschitz equivalent to the

inverse of 21 see lemma 5.52).

Proposition A.26 (Law of the Iterated Logarithm for EBM) Write

B for 2
¡
R
¢
-valued enhanced Brownian motion on [0  ]  Let  () =p

 ln∗ ln∗ (1). Then there exists a deterministic constant  ∈ (0∞)
such that

P

"
lim sup

→0

kBk0;[0]
 ()

= 

#
= 1

4 See McKean’s classical text [118, p.12] or [87, Thm 9.23], for instance; it can also

been obtained consequence of Schilder’s theorem, to be discussed in section 13.6.
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A.5 Comments

The Garsia—Rodemich—Rumsey result is well-known, e.g. [154], and so are

the resuling Besov—Hölder abd Besov—Lévy modulus embeddings. The Besov—

variation embedding is a more recent insight, [60]. Exercise A.4 is due to

Krylov, [88].

Everything up to and including Kolmogorov’s criteria is standard, see

[138] or [154] for instance. The -variation sample path behaviour of a

generic processes under the Gaussian integrability assumption A.19 is es-

sentially taken from [55]; it implies 21-variation regularity of Brownian

motion, a classical result of Taylor [164].



Appendix B

Banach Calculus

Throughout this appendix,  are Banach spaces with respective norms

|·| and |·| and we simply write |·| when no confusion is possible.

B.1 Preliminaries

We say that a map  from ( ) ⊂ R into a Banach space  is continuously
differentiable, in symbols  ∈ 1 (( )  ) if and only if ̇ () := 


() :=

lim→0 ( (+ )−  ())  exists (as strong limit in ) for all  ∈ ( )
with ̇ ∈  (( )  ). Similarly, the Riemann-integral of a continuous

function can be define as strong limit of Riemann-sum approximations and

the fundamental theorem of calculus is valid; see [41] for instance.

The following proposition is useful in showing that directional derivatives

of ODEs (resp. RDEs) solution in starting points and driving signal exists

a strong limits in 1-var ([0 1] R) (resp. -var ([0 1] R)), simply using the
continuous embedding -var ([0 1] R) →  ([0 1] R).

Proposition B.1 Assume  →  i.e.  is continuously embedded in  .

Assume  ∈ 1 (( )   ) such that its derivative ̇ (defined as strong limit

in  ) actually takes values in  and extends to a continuous function from

[ ] into . Assume furthermore that  () ∈ . Then  ∈ 1 (( )  )

with derivative given by ̇ .

Proof. By assumption, ̇ extends to a continuous function from [ ] into

 →  . By the fundamental theorem of calculus, for all  ∈ ( ) 

 ()−  () =

Z 



̇ () 

where the definite integral is the strong limit in  of approximating Rie-

mann sums. On the other hand, ̇ ∈  ([ ]  ) and so the definite integral

also exists as strong limit in  of approximating Riemann sums. Since con-

vergence in  implies convergence in  these integrals coincide and in

particular

 () =  () +

Z 



̇ ()  ∈ 

for all  ∈ ( ). By the fundamental theorem of calculus, we now see that

 is continuously differentiable in  with derivative given by ̇ . In other
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words, ̇ (which was defined as strong limit of difference quotients with

convergence in  ) is actually convergent in .

B.2 Directional and Fréchet derivatives

The space of linear, continuous maps from  to  is denoted by  ( )

and is itself a Banach space under operator norm

| | := sup
∈:||≤1

| ()| 

Definition B.2 Let  be an open set in  and  :  →  is Fréchet

differentiable at  ∈  iff there exists  () ∈  ( ) s.t. for all  ∈ 

| (+ )−  ()− ()| =  (||) 
It is said to be Fréchet differentiable on  , if  () exists for all  ∈  . If

 7→  () is continuous1 we say that  is 1 in Fréchet sense and write

 ∈ 1 ( ).

Definition B.3 We say that  :  ⊂  →  is has directional derivatice

at  ∈  in direction  ∈  if the following limit exists,

lim
→0

 (+ )−  ()


=  () 

Directional derivatives are automatically homogenous in  in the sense

that

 () =  lim
→0

 (+ )−  ()


=  ()   ∈ R.

However, existence of  () for all  ∈ , need not imply linearity in 

as is seen in the example  (0 0) = 0;  ( ) 7→ 2
¡
2 + 2

¢
. Obviously,

Fréchet differentiability implies existence of directional derivatives in all

directions and  () =  (). In applications one is often interested

in the converse. The following two propositions are useful criteria for this

purpose.

Proposition B.4 Let  be an open set in   :  →  a function

that has directional derivatives in all directions, and  :  →  ( ) a

continuous map such that

 () =  ()

for all  ∈   ∈ . Then  ∈ 1 ( ) and  () =  ()

1With respect to operator norm on  ( ).



Appendix B. Banach Calculus 597

Proof. By the fundamental theorem of calculus,

 (+ )− () =
Z 1

0

 (+ )


 =

Z 1

0

 (+ )  =

Z 1

0

 (+ ) 

It follows that

 (+ )−  ()− () =  ()

with  () ≡ R 1
0
( (+ )− ())  and

k ()k ≤
Z 1

0

k (+ )− ()k 
≤ max

∈[01]
k (+ )− ()k→ 0 as → 0

by continuity of .

Proposition B.5 Let  be an open set in  and  :  →  be a con-

tinuous map that admits directional derivatives at all points and in all

directions; more precisely, for all  ∈  and  ∈ 

 () = lim
→0

 (+ )−  ()


=




{ (+ )}=0

exists (as strong limit in  ). Assume further that

( ) ∈  × 7→  () ∈ 

is uniformly continuous on bounded sets. Then  is 1 in Fréchet sense.

We prepare the proof with the following:

Lemma B.6 Let  ⊂  and  :  ×  →  uniformly continuous such

on bounded sets that for all  ∈  the map

 7→  ( ) =:  ()

is linear. Then the map

̃ :  →  ( )

 7→ ( 7→  ())

is well defined and uniformly continuous on bounded sets.

Proof (Lemma): . Fixing , by assumption  7→  () is linear; by

the assumption on uniform continuity on bounded sets  7→  () is also

continuous and hence a well-defined element of  ( ). By the assumption

of uniform continuity on bounded sets, for every   0 and   0 there
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exists  such that for  0 ∈  and  0 ∈  with ||  |0| ≤  and

||  |0| ≤ 

|− 0|+ |− 0|   =⇒ | ( )−  (0 0)|  

Restricting attention to   1, given  0 ∈  with ||  |0| ≤  and

|− 0|   implies

|̃ ()− ̃ (0)|op ≡ sup
∈:||=1

| ()−  (0)|  

This says precisely that ̃ is uniformly continuous on bounded sets.

Proof (Proposition B.5):. We first show that  ( ) :=  () is

linear in . As remarked after the definition of the directional derivative,

homogeneity in  is clear. Given   ∈  we have

 (+  ( + ))−  ()

| {z }
→ +() as →0

=
 (+  ( + ))−  (+ )


+
 (+ )−  ()

| {z }
→() as →0



The first term of the right-hand-side hence converges as  → 0. We claim

it equals  (). To this end, using the fundamental theorem of calculus

and homogeneity,

 (+  ( + ))−  (+ ) =

Z 1

0




 (+  + ) 

= 

Z 1

0

 (+  + ) 

It follows that¯̄̄̄
 (+  ( + ))−  (+ )


− ()

¯̄̄̄
≤

Z 1

0

| (+  ( + ))− ()| → 0 as → 0

where we used in the last step uniform continuity of · (·) on bounded
sets. This completes the proof that  () is linear in .

By lemma B.6 linearity of  () in  together with the (uniform)

continuity (on bounded sets) assumption of ( ) 7→  () then implies

that  7→ { 7→  ()} ∈  ( ) is continuous and by proposition B.4

we can conclude that  ∈ 1 ().

The following result is sometimes referred to as "closedness of the differ-

entiation operator".

Proposition B.7 Assume  ∈ 1 ( ) where  is an open set in 

and  →  uniformly on bounded sets in  (which implies a priori  ∈
 ( ). Let  ∈  ( ( )) and assume that

 → 
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also uniformly on bounded sets. Then  ∈ 1 ( ) and  = .

Proof. Fix  ∈  and  ∈ . Then

 (+ )−  () = lim
→∞

 (+ )−  ()

= lim
→∞

Z 

0

 (+ ) 

=

Z 

0

 (+ ) 

thanks to  →  uniformly on bounded sets. By continuity of ,

 () =




½
 (+ )−  ()



¾
=0

exists and equals () =  () and so we can conclude with proposition

B.4.

B.3 Higher order differentiability

Definition B.8 We fix  an open set of  We say that  :  →  has a

directional derivatice at  ∈  in direction (1     ) ∈  if

(1) () := 1 · · · () (B.1)

exists.

The calculus example  (0 0) = 0 and  ( ) = 
¡
2 − 2

¢
2 + 2

otherwise (in which 1 =  (0 0) 6=  (0 0) = −1) shows that the
order of 1      can matter. Nonetheless, under reasonable condition

(namely continuity of the -directional derivatives),the order does not

matter and (1) () behaves multilinearly in (1     ).

Higher order Fréchet differentiable is defined inductively as follows.

Definition B.9 Let  ∈ {1 2    }  and  an open set of . A function

 :  →  is ( + 1)-times Fréchet differentiable on  if it is Fréchet

differentable on  and

 :  →  ( )

is -times Fréchet differentiable on  . The  order differential is a map

 :  →  (      ( ( ))) ∼= 
¡
⊗ 

¢
where 

¡
⊗ 

¢
is the space of multilinear bounded maps from ×· · ·×

( times) into  . If  is continuous then we say that  is  in Fréchet

sense and write  ∈  ( ) 

A map which is  Frechet for all  ≥ 1 is said to be Frechet smooth.
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Given ∈ 
¡
⊗ 

¢
we shall indicate multilinearity by writing h1     i

instead of  (1     ). The criteria we have seen to establish that a func-

tion is 1 in Fréchet sense all extend to the case of .

Proposition B.10 Suppose  ∈ {1 2    } and  is an open set of 

Assume that  :  →  is a function such that 1 · · · () exists for

all  ∈  and 1      ∈  and  = 1 2     . Further assume there

exists continuous functions  :  → 
¡
⊗ 

¢
such that

1 · · · () =  () h1     i
for all  ∈  1      ∈  and  = 1 2      Then  :  →  is  in

Fréchet sense.

Proposition B.11 Suppose  ∈ {1 2    } and  is an open set of Assume
that  :  →  is a function such that 1 · · · () exists for all  ∈ 

and 1      ∈  and  = 1 2     . Assume further that

(;1     ) ∈  × 7→ 1 · · · () ∈ 

is uniformly continuous on bounded sets. Then  is  in Fréchet sense.

Proof. Take  ∈ {1     } and define  (1     ) = 
³
+

P
=1 

´
and note that

(1)

⎛⎝+

X
=1



⎞⎠ =


1    


Since the order of the partial derivatives does not matter here we have

1 · · · () = (1) · · ·() () for any permutation  of {1     }.
In view of proposition B.5, it is clear that  ∈ 1 in Fréchet sense and so

(1) · · ·(−1)

¡
() ()

¢
= (1) · · ·(−1)

¡
 ()()

¢
This shows multilinearity in 1     . By assumption of uniformly conti-

nuity on bounded

 () h1     i := 1 · · · ()

defines a continuous map from  → 
¡
⊗ 

¢
and we conclude with

proposition B.10.

B.4 Comments

Fréchet regularity is a classical topic in non-linear functional analysis.

Propositions B.5 and B.10 appear in [41], for instance. We are unaware

of any reference for Propositions B.5, B.11.
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Large Deviations

C.1 Definition and basic properties

Let X be a topological space. A rate function is a lower semicontinuous

mapping  : X → [0∞], i.e. a mapping so that all level sets { ∈ X :  () ≤ Λ}
are closed. A good rate function is a rate function for which all level sets

are compacts subsetc of X . The set D := { ∈  :  () ∞} is called
domain of . Given  ⊂  we also set

 () = inf
∈

 () 

Lemma C.1 Let  be a good rate function. Then for each closed set  in

,

 ( ) = lim
↓0


¡
 
¢

where the open -neighbourhood of a set  ⊂  is defined as

 = ∪ { ( ) :  ∈ }   ( ) = { ∈  :  ( )  } 

Proof. [37, Lemma 4.1.6]

Unless otherwise stated, we assume that probability measures on X are

defined on the Borel sets, i.e. the smallest -algebra generated by the open

sets in X .

Definition C.2 A family { :   0} of probability measures on X the

large deviation principle (LDP) with good rate function  if, for every Borel

set ,

− (◦) ≤ lim inf
→0

 log () ≤ lim sup
→0

 log () ≤ −
¡
̄
¢


Remark C.3 Sometimes it is practical to parametrize the family of prob-

ability measures such as to consider 2 log ().

Before turing to (various) contraction principles, we state two basic prop-

erties of LDPs and refer to [37, Lemma 4.1.6] for proofs.

Proposition C.4 A family { :   0} of probability measures on a reg-
ular topological space can have at most one rate function associated with

its LDP.
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Proposition C.5 Let E be a measurable subset of X such that  (E) = 1
for all   0. Suppose that E is equipped with the topology induced by X . If
{} satisfies the LDP in E with (good) rate function  and D ⊂ E, then
the same LDP holds in E.

C.2 Contraction principles

Theorem C.6 (Contraction Principle) Let X such Y be Hausdorff topo-
logical spaces. Suppose  : X → Y is a continuous map. If {} satisfies
a LDP on X with good rate function , then the image measures {∗},
where ∗ ≡  ◦ −1, satisfy a LDP on Y with good rate function

 () = inf { () :  ∈ X and  () = } 
Proof. [37, Lemma 4.1.6]

Definition C.7 A family { :   0} of probability measures on a topo-
logical space X is exponentially tight if for every   ∞, there exists a
compact1 set  such that

lim sup
→0

 log (

 )  −

Theorem C.8 (Inverse Contraction Principle) Let X such Y be Haus-
dorff topological spaces. Suppose  : Y → X is a continuous injection and

that {} is an exponentially tight family of probability measures on Y. If
{∗} satisfies the LDP in X with the rate function  : X → [0∞], then
{} satisfies the LDP in Y with the good rate function  0 ≡  ◦ 
Proof. [37, Thm 4.2.2] combined with Proposition C.5 and the remark

that D ⊂  (Y) 
Theorem C.9 (Extended Contraction Principle) Let {} be a fam-
ily of probability measures that satisfies the LDP with good rate function 

on a Hausdorff topological space X . For  = 1 2    , let  : X → Y be

continuous maps, with (Y ) a separable metric space. Assume there exists
a measurable map  : X → Y such that for every Λ ∞

lim
→∞

sup
{:()≤Λ}

 ( ()   ()) = 0

Assume that {∗ } are exponentially good approximations of {∗} and
in the sense that2

lim
→∞

lim sup
→0

2 log ({ :  ( ()   ())  }) = −∞

1 Since 
 ⊂ 

 it is enough to require that  is precompact.
2The separability on Y guarantees measurability of { :  ( ()   ())  } 
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Then {∗} satisfies the LDP in Y with the good rate function  0 ≡
inf { () :  =  ()} 
Proof. [37, Thm 4.2.23]
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Appendix D

Gaussian Analysis

D.1 Preliminaries

We start with a description of the general set up of Gaussian analysis

on a Banach space; following closely Ledoux’ St. Flour notes [95]. Other

references with a similar point of view are [96] and [38, Chapter 4].

A mean zero Gaussian measure  on a real separable Banach space 

equipped with its Borel -algebra B and norm |·| is a Borel probability
measure on (B) such that the law of each continuous linear functional
on  is a zero-mean Gaussian random variable. We first claim that

2 = sup
∈∗||≤1

Z
h i2  () ∞

Indeed, writing  : ∗ → 2 () = 2 (B ;R) for the injection map, 
is the operator norm of  which is bounded by the closed graph theorem.

Since  is separable, the Banach norm |·| may be described as a supremum
over a countable set ()≥1 of elements of the unit ball of the dual space
∗, that is, for every  ∈ 

|| = sup
≥1

h i

and in particular, the norm is a measurable map on (B). There is an
abstract Wiener space factorization of the form

∗ −→ 2 ()
−→ 

Here  denotes the embedding of ∗ into 2 () and the linear, continuous
map  is constructed so that ∗ = , provided 2 () is identified with its

dual. By linearity, the construction of  is readily reduced to defining  ()

where  ∈ 2 () is non-negative, with total mass one, so that  ()  ()

yields a probability measure. The integrand  7→  being trivially continu-

ous, one has existence of the Bochner integral1

 () :=

Z
 ()  ()

1Following [145], one may prefer to construct the Bochner integral over any compact

. Taking a compact exhaustion () of  it is easy to see that  (
) is Cauchy

and we write  () for the limit.
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as the unique element  () ∈  so that for all  ∈ ∗

h  ()i∗ =
Z
h i∗  ()  () 

One defines ∗2 to be the closure of 
∗, or more precisely: the closure

of  (∗), in 2 (). The reproducing kernel Hilbert space H of  is then

defined as

H :=  (∗2) ⊂ 
¡
2 ()

¢ ⊂ 

The map  restricted to ∗2 is linear and bijective onto H and induces a

Hilbert structure

h iH :=
D
̃ ̃

E
2()

∀  ∈ H

where

 ∈ H 7→ ̃ ≡ ¡|∗2 ¢−1 () ∈ 2 ()

is also known as Paley-Wiener map2. To summarize, we have the picture

∗ −→  (∗) ⊂  (∗) =: ∗2 ⊂ 2 ()
−→ 

and |∗2 : ∗2 ←→ H ⊂ 

and the triplet (H  ) is known as abstract Wiener space. Under , the

map  7→ ̃ () is a Gaussian random variable with variance ||2H = h iH.
Note that  is also given by sup∈K || where K is the closed unit ball of

H. In particular, for every  ∈ H,

|| ≤  ||H 

Moreover, K is a compact subset of H. (To this end, use weak compactness
of ∗ to show that  is compact and conclude that ∗ is also compact.)

Definition D.1 The triplet (H  ) is called abstract Wiener space.

Theorem D.2 (Cameron-Martin) For any  ∈ H, the probabilty meausre
 (+ ·) is absolutely continuous with respect to  with density given by the

formula

 (+) = exp

Ã
− ||

2
H
2

!Z


exp
³
−̃
´


Proof. [95] or [38, Chapter 4].

2We also use the notation  () := ̃.
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Example D.3 Take  = 0 ([0 1] R) and  to be Wiener measure, i.e.

the distribution of a standard Brownina motion started at the origin. If 

is a finitely supported measure on [0 1], say  =
P

 with {} ⊂ R
and {} ⊂ [0 1] then clearly  = ∗ () is the element of  given by

 () =
X

min ( ) ;

it satisfies Z 1

0

̇2 =

Z
hi2  () = ||2H 

By a standard extension, we can then identify H with the Sobolev space


12
0 ([0 1] R). Observe that for  ∈ H, we have

̃ =
¡
∗|∗2

¢−1
() =

Z 1

0

̇

(While we equipped Wiener space 0 ([0 1]  ) with the uniform topology,

other choices are possible.)

D.2 Isoperimetry and concentration of measure

Gaussian measuers enjoy a remarkable isoperimetric property. Following

[95] we state it in the form due to C. Borell.

Theorem D.4 (Borell’s inequality) Let (H ) be an abstract Wiener
space and  ⊂  a measurable Borel set with  ()  0. Take  ∈ (−∞∞]
such that

 () =

Z 

−∞

1√
2

−
22d =: Φ () 

Then, if K denotes the unit ball in H and ∗ stands for the inner measure
3

associated to , then for every  ≥ 0

∗ (+ K) = ∗ {+  :  ∈   ∈ K} ≥ Φ (+ )  (D.1)

The following corollary is applicable in a Gaussian rough path context.

Corollary D.5 (Generalized Fernique estimate) Let (H ) be an
abstract Wiener space and  ⊂  a measurable Borel set with  ()  0.

Assume  :  → R∪ {−∞∞} is a measurable map and  ⊂  a -null-

set such that for all  ∈ 

| ()| ∞ (D.2)

3Measurability of the so-called Minkowski sum + K is a delicate topic. Use of the

inner measure bypasses this issue and is not restrictive in applications.
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and for some positive constant ,

∀ ∈ H: | ()| ≤  {|( (− ))|+  ||H}  (D.3)

Then Z
exp

³
 | ()|2

´
 () ∞ if  

1

222


Proof. We have for all  ∈  and all  ∈ K, where K denotes the unit

ball of H and   0

{ : | ()| ≤} ⊃ { :  (| (− )|+  ||H) ≤}
⊃ { :  (| (− )|+ ) ≤}
= {+  : | ()| ≤− } .

Since  ∈ K was arbitrary,
{ : | ()| ≤} ⊃ ∪∈K {+  : | ()| ≤− }

= { : | ()| ≤− }+ K
and we see that

 [| ()| ≤ ] = ∗ [| ()| ≤ ]

≥ ∗ ({ : | ()| ≤− }+ K)
We can take  = (1 + )  and obtain

 [| ()| ≤ (1 + ) ] ≥ ∗ ({ : | ()| ≤ }+ K)
Keeping  fixed, take  ≥ 0 where 0 is chosen large enough such that

 [{ : | ()| ≤ 0}]  0
Letting Φ denote the distribution function of a standard Gaussian, it follows

from Borell’s inequality that

 [| ()| ≤ (1 + ) ] ≥ Φ (+ )

for some   −∞. Equivalently,

 [| ()| ≥ ] ≤ Φ̄
µ
+



(1 + ) 

¶
with Φ̄ ≡ 1−Φ and using Φ̄ () . exp ¡−22¢ this we see that this impliesZ

exp
³
 | ()|2

´
 () ∞

provided

 
1

2

µ
1

(1 + ) 

¶2


Sending → 0 finishes the proof.
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Corollary D.6 (Large deviations) The family  (·) = 
¡
−1 (·)¢ sat-

isfies a LDP with good rate function

 () = inf

½
1

2
||2H ; ∈  ∩H

¾


Proof. (Sketch) Borell’s inequality quickly leads to the upper bound, Cameron—

Martin to the lower bound. See [95] for details.

D.3 2-expansions

Recall the picture

∗ ∗−→ ∗ (∗) ⊂ ∗ (∗) =: ∗2 ⊂ 2 ()
−→ 

and |∗2 : ∗2 ←→ H ⊂ .

Given  ∈ H, the map  7→ ̃ () is a Gaussian random variable (with

variance ||2H) under the measure . We can think of  7→  () =  as

-valued random variable with law . Then, for any ONB () ⊂ H we

have the 2-expansion

 () = lim
→∞

X
=1

̃ () a.s.

where the sum converges in  for -a.e.  and in all  ()-spaces,  ∞.
For any  ⊂N we define

 () =
X
∈

̃ ()

a.s.
= E

³
|

³
̃ :  ∈ 

´´
Note that for ||  ∞, this is a finite sum with values in H; if || = ∞
this sum converges in  for -almost every  and in every  (). All this

follows from  being the conditional expectation of  given {̃ :  ∈ }
and suitable (vector-valued) martingale convergence results, cf. [95] and

the references therein.

D.4 Wiener-Itô chaos

Let (H  ) be an abstract Wiener space. Let () be the sequence of Her-

mite polymomials defined via −
22 =

P
 () so that

³√
!

´
is an
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orthonormal basis of 2 (1) where 1 is the canoncial Gaussian measure on

R. For any multi-index  = (0 1    ) ∈ NN with || = 0+1+ · · · ∞
we set

 =
√
!Π ◦ 

(where ! = 0!1!    ). Then the family () constitutes an orthonormal

basis of 2 ().

Definition D.7 The (real-valued) homogenous Wiener chaos W() () of

degree  is defined as4

W() (R) =
©
 ∈ 2 () : hi = 0 for all  : || 6= 

ª
=  { : || = } with closure in 2 () 

Any element  ∈W() () can be written as5

 =
X

:||=
hi 

The (real-valued, non-homogenous) Wiener chaos of degree  is defined as

C() () = ⊕=0W() () 

Obviously, any  ∈ C() () can be written as
 =

X
:||≤

hi  = 2- lim
→∞

X
:||≤

=0

hi 

Since
P

:||≤=0 hi  is a polynomial of degree ≤  in the

variables 1      we see that C() () is precisely the 2-closure of all
polynomials in  of degree less or equal to .

Theorem D.8 (Wiener-Itô chaos integrability) (i) For  ∈W() ()

and 1     ∞ we have

||(P) ≤ ||(P) ≤
µ
 − 1
− 1

¶
2

||(P)  (D.4)

(ii) For  ∈ C() () and 1     ∞ we have6

||(P) ≤ ||(P) ≤
n
(+ 1) ( − 1)2max

³
1 (− 1)−

´o
||(P) 

(D.5)

4 If  denotes a real separable Banach space, we can define the  -valued homogenous

chaos W() (  ) as

 ∈ 2 (; ) : hi = 0 for all  : || 6= 




5This sums is convergent -a.s. and in 2 ()
6By a somewhat more involved argument, [35, Thm 3.2.5], the constant on the right-

hand-side of (D.5) can be taken of form 


−1
−1


2
but this will be of no advantage to

us.
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(iii) Let  ∈ C() () and 0     ∞. Then there exists  =  (  )

such that

||(P) ≤ ||(P) ≤  ||(P) 
Proof. The estimate in (i) for 1     ∞ is a well-known consequence

of the hyper-contractivity of the Ornstein-Uhlenbeck process on abstract

Wiener spaces.

Ad (ii). Take  ∈ {0     } and call  : C() () → W() () the 2-

projection on the  homogenous chaos. Then

|| ≤
(

(− 1)2 || if  ≥ 2
(− 1)−2 || if   2

which is easily seen from (D.4) when   2 and from a duality argument

for 1    2. In particuar,  : 
 →  is a bounded linear operator for

any 1   ∞. From  =
P

=0  we have || ≤
P

=0 || and
hence

|| ≤
X

=0

µ
 − 1
− 1

¶
2

||

≤ ||
X

=0

(
( − 1)2 if  ≥ 2

( − 1)2 (− 1)− if   2

≤ || (+ 1) ( − 1)2max
³
1 (− 1)−

´
,

as required.

(iii) For the extension to 0      ∞ it suffices to consider the case

0   ≤ 1  = 2 and  ∈ C() (). Using Cauchy-Schwartz,

E
³
||2

´
= E

³
||2 ||2−2

´
≤ (E (||))12 E

³
||4−

´12
≤ (E (||))12

n
(+ 1) (3− )

2
o(2−2)

E
³
||2

´1−4


we obtain ||2(P) ≤  ||(P) for some constant  =  ( ).

A practial corollary is that, for 0 ∈ C() (), we have
¯̄
0

¯̄
2(P)

≤
 ||2(P)

¯̄
0
¯̄
2(P)

for  =  (). (A direct proof of this can be found in [117,

Prop. 1.7.2] where it is used to established equivalence of all moments.) If

the previous theorem implies the qualitative statement

||(P) ∼ ||(P) for all    0 and  ∈ C() () , (D.6)

the following result can be viewed as extension to  = 0, where 0-convergence

is understood as convergence in -probability.
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Theorem D.9 (i) For any  ∈ [0∞) the (non-homogenous) Wiener chaos
C() () is the -closure of polynomials in  of degree less or equal to .

(ii) For any  ∈ (0∞) and any sequence of random-variable in C() (),
convergence in -probability is equivalent to -convergence.

Proof. It suffices to check that a Cauchy sequence in probability, say ,

also converges in  for   0. We argue by contradiction and assume it

does not converge in , for some   0. Then there exists   0, such

that for arbitrarily large  one has | −|  . Let  ∈ (0 1). It
follows that

P
∙ | −|
| −|

 

¸
≤ P [| −|  ]

which, by assumption, tends to zero as  → ∞. On the other hand,
using equivalence of |·|(P) and |·|(P) on C() (), for any   , the next

lemma applied with  = | −| implies that
inf


P [| −|   | −| ]  0

and so yields the desired contradiction.

Lemma D.10 (Paley—Zygmund inequality) Let 0      ∞ and

 ≥ 0 a random variable in  (P). Then, for any  ∈ (0 1),

P
h
   ||(P)

i
≥
Ã
(1− )

Ã
||(P)
||(P)

!! 
−



Proof. Set  =  ||(P). From E ≤ +E (;  ≥ ) ≤ +E () P [  ]
1−

it follows

P [  ]
−
 ≥

||(P) − 

||(P)
=

Ã
||(P)
||(P)

!

(1− ) 

D.5 Malliavin calculus

Following [92], [130, Section 4.1.3] or [166, Section 3.3] we have the following

notion of H-regularity for a Wiener functional  .
Definition D.11 Given an abstract Wiener space (H ), a random
variable (i.e. measurable map)  :  → R is a.s. continuouslyH-differentiable,
in symbols  ∈ 1H a.s., if for -almost every , the map

 ∈ H 7→  ( + ) (D.7)
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is continuously Fréchet differentiable. A vector-valued r.v.  =
¡
 1  

¢
:

 → R is a.s. continuously H-differentiable iff each   is a.s. continu-

ously H-differentiable.
Similarly, if (D.7) is a.s. -times Fréchet differentiable, we write  ∈ 

H
a.s. and say that  is -times a.s. continuously H-differentiable. When
 =∞ we say that  is a.s. H-smooth.
The notion of H-differentiability was introduced in [92] and plays a fun-

damental role in the study of transformation of measure on Wiener space.

Integrability properties of  and  aside, 1H-regularity is stronger than
Malliavin differentiability in the usual sense. Indeed, by [130, Thm 4.1.3]

(see also [92], [166, Section 3.3]) 1H implies D12-regularity where the de-
finition of D12 is based on the commonly used Shigekawa Sobolev space
D1. (Our notation here follows [130, Sec. 1.2, 1.3.4]). This remark will be
important to us since it justifies the use of Bouleau-Hirsch’s criterion (e.g.

[130, Section 2.1.2]) for establishing absolute continuity of  .

Proposition D.12 (Bouleau—Hirsch) Let (H ) be an abstract Wiener
space and  =

¡
 1  

¢
:  → R a measurable map. Assume  ∈ 1H

is weakly-nondegenerate by which we mean that the Malliavin covariance

matrix

 () :=
¡
  

®
H
¢
=1

∈ R×

is -almost surely non-degenerate. Then  , viewed as R-valued random
variable under , admits a density with respect to Lebesgue measure on R.

Proof. From [130, Section 4.1.3],  ∈ 1H implies that  ∈ D12 and the
usual Bouleau-Hirsch criterion [130, Section 4.1.3] applies.

D.6 Comments

Section D.1 follows closely Ledoux’ St. Flour notes [95]. Other references

with a similar point of view are [96] and [38, Chapter 4]. Sections D.2

and D.3 follow [95]. The generalized Fernique estimate is taken from [56].

The basic definitions of Section D.4 also follow [95, Sect. 5]. Integrability

of the Wiener-Itô chaos via hypercontractivity of the Ornstein-Uhlenbeck

semigroup is classical, see [95, Sect. 8] as well as most references on Malli-

avin calculus such as [129]. Theorem D.9 appears in [147], our proof is taken

from [35].

Section D.5. There are many good books on Malliavin calculus includ-

ing [129], [117] and [149]. The concepts of H-differentiability is due to [92],
see [129] and in particular [166, Section 3.3].
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Appendix E

Analysis on Local Dirichlet
spaces

E.1 Quadratic Forms

Consider a Hilbert space ( h· ·i) with a non-positive self-adjoint operators
L, defined on a dense linear subspace D (L). Spectral calculus1 allows to
define the self-adjoint operator

√−L, with domain D ¡√−L¢. A quadratic
form, defined on D := D () := D ¡√−L¢ is then given by

 ( ) =
D√
−L

√
−L

E
and this form is non-negative in the sense that  ( ) ≥ 0 for all  . (By
polarization, this induces a symmetric bilinear form , defined on D ×D,
so that  ( ) =

√−L√−L®.) It is well-known2 that this yields a
closed form in the sense that whenever () ⊂ D such that

 →  in  with →∞ and  ( −   − )→ 0 with →∞
then  ∈ D and  ( −   − ) → 0 with  → ∞. Conversely, every
such form arises in this way from a (non-positive) self-adjoint operator L.
In many application one has forms which are not closed but closable in the

sense that whenever () ⊂ D is such that

 → 0 in  with →∞ and  ( −   − )→ 0 with →∞
then  ( ) → 0 with  → ∞. In this case,  admits a (minimal)

extension to a closed form ; we shall not distinguish between  and

. Let us further recall that the domain D of a (symmetric, closed, non-

negative) is a Hilbert space under the inner product

h i = h i+ ( ) 

By spectral calculus, one defines P = L :  →  which yields a

(strongly continuous, contraction) semigroup (P :  ≥ 0) on  with infin-

itesimal generator given by L. For   0, P maps  into D and

hP i = h i−
Z 

0

 (P )  for   ∈ D;

1 See e.g. Yosida [171, Chap. XI].
2 See e.g. [34].
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as may be seen by integrating the equality

− = 1−
Z 

0

√
−

√
  ∈ [0∞)

against  h i, where { :  ∈ [0∞)} is the spectral resolution of the
(non-negative, self-adjoint) operator −L. The following lemma is based on
similar ideas.

Lemma E.1 (i) For all  ∈ D = D ¡√−L¢,
 (PP) ≤

µ
1

2
h i

¶
∧ ( ) . (E.1)

(ii) Assume  →  in  and assume that () is bounded in
³
D h· ·i

´
;

sup

h i ∞

Then  ∈ D and  →  weakly in
³
D h· ·i

´
.

Proof. (i) It suffices to integrate the elementary inequality

−2 ≤ 1

2
∧   ∈ [0∞)

against  h i where { :  ∈ [0∞)} is the spectral resolution of −L.
(ii) Step 1. Let us first assume that  ∈ D. For every  ∈ D (L) ⊂
D = D ¡√−L¢ we have

− ( ) = hLi→ hLi

and so, for all  ∈ D (L) 

h i → h i 

What we want is that this convergence holds for all  ∈ D. If we can
show density of D (L) in

³
D h· ·i

´
the extension to all  ∈ D is straight-

forward. But this density statement is also easy to see: for instance, given

 ∈ D one has  ∈ D (L) and →  in D since

 h−  − i =
Z
[0∞)


¡
− − 1¢2  h i→ 0

by bounded convergence, using
R
 h i =  ( ) ∞ since  ∈ D.

Step 2. Let us now consider an arbitrary  ∈ . We mollify using the

semigroup. For   0 we set  := P and similarly  := P. It is
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easy to see that  →  in  as  → ∞ and also that ( ) is uniformly

bounded in the sense that

 := sup
∈(01]

h   i ∞

Apply step 1 to see that  →  weakly in
³
D h· ·i

´
. In particular,

h i ≤ lim inf
→∞

h   i ≤

Hence sup∈(01] h iD ≤   ∞ and this entails that  ∈ D. Indeed,
by monotone convergenceZ

[0∞)
 h i = lim

↓0

Z
[0∞)

−2 h i

≤ lim
↓0
h i ∞

which shows that  ∈ D. We can now appeal to step 1 to conclude the

proof.

E.2 Symmetric Markovian semigroups and
Dirichlet forms

Let us now consider a quadratic (equivalently: symmetric bilinear) form

E (· ·) on the Hilbert space 2 () where  is assumed to be a locally

compact Polish space,  is a Radon measure on  of full support. The

classical example to have in mind is  = R, equipped with Lebesgue
measure, and E ( ) = R |∇ ()|2 , defined on D (E) =  12

¡
R
¢
, the

usual Sobolev space of 2-functions on R with weak derivatives in 2.

Following Fukushima et al. [67] we have the following abstract

Definition E.2 A non-negative definite symmetric bilinear form E, densely
defined on 2 (), is called a Dirichlet form if is is

(i) closed in the sense of quadratic forms; i.e. whenever () ⊂ D (E) is
such that

 →  in 2 with →∞ and E ( −   − )→ 0 with →∞

then  ∈ D (E) and E ( −   − )→ 0 with →∞;
(ii) Markovian in the sense that

 ∈ D (E)   = (0 ∨ ) ∧ 1 =⇒  ∈ D (E)  E ( ) ≤ E ( ) 

The pair (ED (E)) is called a Dirichlet space relative to 2 ().
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Everthing said in the previous section applies to Dirichlet forms: In par-

ticular, there exists a non-positive self-adjoint operators L on 2 () so
that

D (E) = D
³√
−L
´

E ( ) =
D√
−L

√
−L

E
2

and there is a (strongly continuous, contraction) semigroup (P :  ≥ 0) on
2 () with infinitesimal generator given by L, so that

hP i2 = h i2 −
Z 

0

E (P )  for   ∈ D (E) 

and lemma E.1 is also valid. The Markovian property of E is equivalent to
Markovianity of the associated 2-semigroup in the sense that

∀  0 :  ∈ 2 ()  0 ≤  ≤ 1 -a.e. =⇒ 0 ≤ P ≤ 1 -a.e.

The Dirichlet forms interesting to us enjoy further properties of the fol-

lowing kind.

Definition E.3 A Dirichlet form E is called regular if there exists a core,
that is, a subset C ⊂ D (E)∩ () which is dense in D (E) with respect to
E1 and dense in  () with respect to uniform norm. It is called strongly

local if E ( ) is zero whenever  ∈ D (E) is constant on a neighborhood
of the support of  ∈ D (E).

Strong locality of E has the interpretetation of no killing and no jumps
(e.g. within its Beurling-Deny decomposition [67, Sec 3.2]). Any such Dirich-

let form can be written as

E ( ) =
Z


Γ ( )

where Γ is the so called energy measure, a positive semidefinite, symmetric

bilinear form D (E) with values in the signed Radon measures on . It can
be defined by Z

Γ ( ) = E ( )− 1
2
E ¡2 ¢

for every  ∈ D (E) ∩ ∞ and  ∈ D (E) ∩ .

In all our applications, Γ ( ) will be absolutely continuous with respect

to  and we shall simply write

Γ ( ) = Γ ( ) 
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and call the map    7→ Γ ( ), D (E)×D (E)→ 1 (), the carré du

champ operator. The intrinsic metric of E is the defined as
 ( ) = sup { ()−  () :  ∈ D (E) and continuous, Γ ( )  ≤ 1 -a.e.} 
In general,  can be degenerate i.e.  ( ) = ∞ or  ( ) = 0 for some

 6= .

Definition E.4 A strongly local Dirichlet form E with domain D (E) is
called strongly regular if it is regular and its intrisic metric is a genuine

metric on  whose topology coincides with the original one.

Let us recall (cf. 5.19) that a geodesic (or geodesic path) joining two

points   ∈  is a continuous path  : [0 1] →  such that  (0) =

  (1) =  and

 ( ) = |− |  ( ) ∀0 ≤    ≤ 1
and that  is called a geodesic space if all points   can be joined by a

geodesic. Observe that  := 12 is a midpoint of   in the sense that

 ( ) =  ( ) =
1

2
 ( ) 

If all   ∈  have a midpoint we say that  has the midpoint prop-

erty. In fact, any complete metric space with the midpoint property is

geodesic: given   iterated use of the midpoint property yields 12 then

14 34 and so on which yields (a candiate for) a geodesic, defined on all

dyadic rationals. The extension of  =  to all  ∈ [0 1] is possible by the
completeness assumption; continuity of  is then easy to check.

Proposition E.5 Assume E is a strongly local, strongly regular Dirichlet
form on  so that ( ) is a complete metric space. Then ( ) is a

geodesic space.

Proof. We follow [161]. Fix arbitrary elements   ∈  and set  =

 ( ). It then suffices to show the midpoint property

∃ ∈  :  ( ) =  ( ) = 2

We argue by contradiction. Assuming that there is no midpoint  we have

̄2 () ∩ ̄2 () = ∅. By compactness, these sets have a positive dis-
tance, say 3  0, and it is also clear that


¡
̄2+ ()  ̄2+ ()

¢
 .

We now define the continuous function

0 =

⎧⎨⎩  ( ·)− (2 + ) on ̄2+ ()

(2 + )−  ( ·) on ̄2+ ()

0 else.
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and note that

Γ (0 0) = 1̄2+()Γ ( ( ·)   ( ·)) + 1̄2+()Γ ( ( ·)   ( ·))
≤ 

using that Γ ( ( ·)   ( ·)) ≤ 1 for all  Moreover, 0 () − 0 () =

+ 2  . But this is a contradiction to

 = sup { ()−  () :  ∈ D (E) and  continuous, Γ ( ) ≤ 1} 

E.3 Doubling, Poincaré and Quasi-isometry

We now make the standing assumption that E is a strongly local, strongly
regular Dirichlet form on . As we shall see, the following properties

(I),(II),(III) are have remarkably powerful implications.

Definition E.6 Let (ED (E)) be a Dirichlet space relative to 2 ().

Assume that E is strongly local and strongly regular Dirichlet form, with
intrinsic metric . We then say that E has (or satisfies) the
(I) completeness property if the metric space ( ) is a complete metric

(and hence by proposition E.5 a geodesic) space;

(II) doubling Property if there exists a doubling-constant  =  (E)
such that

∀ ≥ 0  ∈  :  ( ( 2)) ≤ 2 ( ( )) ;

(III) weak Poincaré Inequality if there exists  =  (E) such that
for all  ≥ 0 and  ∈  (E)Z

()

¯̄
 − ̄

¯̄2
 ≤  

2

Z
(2)

Γ ( ) 

where

̄ =  ( ( ))
−1
Z
()



Let us make two useful remarks. First, the doubling property (II) readily

implies

∀0    0 :  ( ( 0)) ≤ (20)  ( ) ; (E.2)

and, secondly, the right-hand-side in the weak Poincaré inequality can be

written as Z
()

¯̄
 − ̄

¯̄2
 = inf

∈R

Z
()

| − |2  (E.3)
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Definition E.7 Two (strongly local and strongly regular) Dirichlet form E
and Ẽ are quasi-isometric if D (E) = D

³
Ẽ
´
and there exists Λ ≥ 1 such

that for all  in the common domain,

1

Λ
E ( ) ≤ Ẽ ( ) ≤ ΛE ( ) 

If we write  ̃ for the respective intrinsic metrics associated to E and Ẽ,
it is clear that the metrics are Lipschitz equivalent in the sense that

1

Λ12
 ( ) ≤ ̃ ( ) ≤ Λ12 ( )

for all   ∈ .

Theorem E.8 Let E satisfy properties (I),(II),(III). Then, assuming E
and Ẽ are quasi-isometric, Ẽ also satisfies properties (I),(II),(III), with
new (doubling and Poincaré) constants depending on Λ.

Proof. Invariance of the completeness property is clear from Lipschitz

equivalence of  and ̃.

Secondly, we assume doubling for balls with respect to . Then, using

(E.2),


³
̃ ( 2)

´
≤ 

³

³
 2Λ12

´´
= 

³

³
 2ΛΛ12

´´
≤ (4Λ)



³

³
 Λ12

´´
≤ (4Λ)



³
̃ ( )

´
where ̃ ( ) =

n
 ∈  : ̃ ()  

o
. At last, let us write

̃ = 
³
̃ ( )

´−1 Z
̃()



for the average of  over ̃ ( ). Using (E.3) and the weak Poincaré in-

equality for E we see thatZ
̃()

¯̄̄
 − ̃

¯̄̄2
 ≤ inf

∈R

Z
(Λ12)

| − |2 

=

Z
(Λ12)

¯̄
 − ̄Λ12

¯̄2


≤  
2Λ

Z
(2Λ12)

Γ ( )

≤  
2Λ2

Z
̃(2Λ)

Γ̃ ( )
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where Γ̃ denotes the energy measure of Ẽ . By a covering argument, derived
from (I),(II), this implies the weak Poincaré property for Ẽ on 2 ().

A special case of quasi-isometry arises from scaling.

Proposition E.9 (Scaling) Let E be a Dirichlet form on 2 () with

doubling and Poincaré constansts  respectively. Then, for every   0,

the scaled Dirichlet form

E ≡ E.

satisfies (I),(II),(III) with the same doubling and Poincaré constants 

and with intrinsic metric given by

∀  ∈  :  ( ) =
1

12
 ( ) 

Proof. The relation  ≡ 12 is an obvious consequence of the definition.

We only need to check the haviour of doubling and Poincaré constants and

this quasi-isometry. Writing  for balls with respect to  we obviously

have,

 ( ) = 
³
 12

´
for any  ∈    0. Clearly then,

 ( ( 2)) ≤ 2
³

³
 12

´´
= 2 ( ( ))

and so  is also the doubling constant for E. Finally, note that

 :=  ( ( ))
−1
Z
()

 = ̄12

and so Z
()

| −  |2  =

Z
(12)

¯̄
 − ̄12

¯̄2


≤  
2

Z
(212)

Γ ( )

=  
2

Z
(2)

Γ ( )

where Γ = Γ is the energy measure of E. We see that  is the Poincaré

constant for E and the proof is finished.



Appendix E. Analysis on Local Dirichlet spaces 623

E.4 Parabolic equations and heat kernels

Recall the standing assumption that E is a strongly local, strongly regular
Dirichlet form on 2 (). There is an associated non-positive self-adjoint

operators L on 2 () and strongly continuous semigroup (P :  ≥ 0).
we now can consider weak solutions to the parabolic partial differential

equation

 = L;
that is, a function  :  7→  ( ·) ∈ D (E) so that

∀ ∈ D (E) : h ( ·)  i2 = h (0 ·)  i2 −
Z 

0

E ( ( ·)  ) 

What one has in mind is that actually  =  ( ) for ( ) ∈ [0∞) ×
, regarded as a one-parameter family ( ( ·) :  ≥ 0) depending only on
space. (Obviously, the semigroup operator P0 yields a solution to this
PDE with intial date  (0 ·) = 0.) The notion of solution can be localized.

Indeed, by restricting ourselves to times in some interval  ⊂ [0∞) and
test-function  compactly supported on some open set  ⊂ , we can speak

of (local) weak solutions to

 = L on 

where  = × is a (parabolic) cylinder. All of the following four theorems
are classical, proofs can be found in [159] and [160, p 304].

Theorem E.10 (DeGiorgio-Moser-Nash regularity) Assume E is a
strongly local, strongly regular Dirichlet form on 2 () which satisfies

(I),(II),(III). Then there exist constants  ∈ (0 1) and  (depending

only on  i.e. the doubling and Poincaré constanst of E) so that3

sup
()(00)∈1

| ( )−  (0 0)| ≤  sup
∈2

|| 
Ã
|− 0|12 +  ( 0)



!



whenever  is a nonnegative weak solution of the parabolic partial differen-

tial equation  = L on some cylinder 2 ≡
¡
− 42 ¢ ×  ( 2) for

some reals    0. Here 1 ≡
¡
− 2 − 22¢ ×  ( ) is a subcylinder

of 2.

Theorem E.11 (Parabolic Harnack inequality) Assume E is a strongly
local, strongly regular Dirichlet form on 2 () which satisfies (I),(II),(III).

3 Stricly speaking, the statement is that any nonnegative weak solution to  = L
on 2 has an  almost-identical version that enjoys this regularity.
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Then there exist a constant  which depends only on  (the doubling

and Poincaré constanst of E) such that

sup
()∈−

 ( ) ≤  inf
()∈+

 ( ) 

whenever  is a nonnegative weak solution of the parabolic partial differ-

ential equation  = L on some cylinder  =
¡
− 42 ¢× ( 2) for

some reals    0. Here, − =
¡
− 32 − 22¢ ×  ( ) and + =¡

− 2 
¢ ×  ( ) are lower and upper sub-cylinders of  separated by

some elapse of time.

Theorem E.12 (Heat kernel) Assume E is a strongly local, strongly reg-
ular Dirichlet form on 2 () which satisfies (I),(II),(III). Let L and
(P) denote the associated self-adjoint operator resp. Markovian semigroup.
Then

(i) there exists a continuous function, called the heat-kernel,

 : (0∞)× × → [0∞)

symmetric in the last two arguments, i.e  (  ) =  (  ), so that

∀  0 : P =
Z

 ( · )  ()  ()   ∈ 2;

(ii) for every fixed  ∈ , the map ( ) 7→  (  ) is a (global, weak)

solution to  = L on (0∞)×;

(iii) it satisfies the Chapman-Kolmogorov equations: for all    and

  ∈ 

 (  ) =

Z
 (  )  (−   ) 

The proof of the heat-kernel existence (cf. [160, p 304]) follows immedi-

ately from an estimate on the operator norm kPk1→∞ , which in turn fol-

lows from suitable Sobolev- inequalities. Let us note that ( ) 7→  (  )

is a weak solution to  = L and so, by Harnack’s inequality, we have

 (  ) ≤  inf
n
 (2  ) :  ∈ 

³
 12

´o


Integrating this estimate over the ball 
¡
 12

¢
, we obtain


³

³
 12

´´
 (  ) ≤ 

Z
(12)

 (2  )  ≤ 

which leads to an on-diagonal estimate for the heat-kernel. Let us know

state the full estimates.
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Theorem E.13 (Aronson heat-kernel estimates) Assume E is a strongly
local, strongly regular Dirichlet form on 2 () which satisfies (I),(II),(III)

and let  denotes its heatkernel. Then

(i) for every   0, there exist a constant  which depends only on

 (the doubling and Poincaré constanst of E) such that the following
upper bound holds,

 (  ) ≤ q

¡

¡
 12

¢¢

¡

¡
 12

¢¢ exp
Ã
− ( )

2

(4 + ) 

!
;

(ii) there exists  =  (E) such that the following lower bound holds,

 (  ) ≥ 1



1


¡

¡
 12

¢¢ expÃ− ( )
2



!
;

always for all    ∈ (0∞)× ×.

One should observe that the exponent in the upper heat kernel bound

does not involve any constant and implies

lim sup
→0

 log  (  ) ≤ − ( )
2

4

as is seen by sending  → 0 after taking log, multiplying by  and taking

the lim sup. (It is known, however, that one cannot take  = 0 in the actual

upper heat kernel bound). A famous result due to Varadhan [167], in the

setting of diffusions on Euclidean space with elliptic generator, states that

the lim sup above can be replace by a genuine limit and equality holds. An

extension to free nilpotent groups was given by [168], the extension to the

present abstract setting was obtained by Ramírez [136].

Theorem E.14 (Varadhan-Ramírez formula) Assume E is a strongly
local, strongly regular Dirichlet form on 2 () which satisfies (I),(II),(III)

and let  denotes its heatkernel. Then, for all   ∈ 

4 log  (  )→ − ( )2 as → 0

E.5 Symmetric diffusions

As is well-known a Dirichlet form (always assumed to be symmetric) in-

duces a symmetric Markov process although the construction, e.g. [67, Ch.

7], involves some subtleties. In present context it is easier to proceed di-

rectly, i.e. by using the heat-kernel associated to E as transition density of
a time-homogenous diffusion.
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Proposition E.15 (Associated Markov process) Assume E is a strongly lo-
cal, strongly regular Dirichlet form on 2 () which satisfies (I),(II),(III)

and let  denotes its heatkernel. For every  ∈ , there exists a Markov

process  = , defined on some probability space (ΩFP)  P = P, with
the property that, for any 0 ≤ 1  · · ·   ≤ 1 and any measurable subset
 of the -fold product of 

P [(1    ) ∈ ] =

Z


 (1  1)     ( − −1 −1 ) 1    

In fact, we may take P as Borel measure on Ω =  ([0∞) ) so that 
can be realized as the canoncial coordinate process,  () ≡ .

Proof. This is classical and we shall be brief. Thanks to the Chapman-

Kolmogorov equations

1 () :=

Z


 (1  1)     ( − −1 −1 ) 1    

defines a consistent set of finite-dimensional distributions. By Kolmogorov’s

extension theorem, there exists a unique probability measure on [0∞)

which has the correct finite-dimensional distributions and  : [0∞) →
  7→ , is a realization of  with 0 = . It is easy to see that

Kolmogorov’s criterion is satisfied (this follows a fortiori from the upper

heat kernel bounds, although softer arguments are possible) and so we can

switch to a version of  with a.s. continuous sample path. The law of this

process is indeed a Borel measure on  ([0∞) ) and the coordinate
process on that space has the same law.

Remark E.16 Let E be as in the previous proposition, with doubling and
Poincaré constant given by  respectively. If  is the symmetric dif-

fusion associated to E, started at some fixed point  ∈ , then the scaling

process

 (·) =  (·)
is the symmetric diffusion associated to the scaled Dirichlet form E. In
this context, recall from proposition E.9 that the associated intrinsic metric

was precisely

 ≡ 12

and that doubling/Poincaré holds for E with identical constants  .

Proposition E.17 (Localized lower heat kernel bounds) [159] Assume

E is a strongly local, strongly regular Dirichlet form on 2 () which sat-
isfies (I),(II),(III). Write  for the associated symmetric diffusion. For

0 ∈  and   0 define

(0) = inf { ≥ 0 : 
 ∈  (0 )} 
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Then the measure P
³

 ∈ · ; (0)  

´
admits a density with respect

to ; we call it (0) (  ) . Moreover, if   are two elements of

 (0 ) joined by a curve  which is at a -distance   0 of  (0 )

then there exists a constant  which depends only on  (the doubling

and Poincaré constanst of E) such that

(0) (  ) ≥
1



1


³

³
 12

´´ expÃ−  ( )
2



!
exp

µ
−

2

¶


where  = min
©
 2

ª
.

E.6 Stochastic analysis

Let us assume, throughout, that E is a strongly local, strongly regular
Dirichlet form on 2 () which satisfies (I),(II),(III) and write  for

the associated symmetric diffusion process. It should be no surprise that

the strong Gaussian tail estimates for the heat-kernel imply sample paths

regularity reminiscent of Brownian sample paths. Moreover, we will be

establish an abstract Schilder and support theorem.

E.6.1 Fernique estimates

Lemma E.18 For every   14 there exists  only depend on  and

 (the doubling and Poincaré constanst of E) so that

sup
∈

sup
0≤≤1

E
Ã
exp

Ã

 ()

2

− 

!!
≤ ∞

In other words,  satisfies the Gaussian integrability condtion A.19, uni-

formly over all possible starting points.

Proof. Since () is a (time-homogenous) Markov prosess, we clearly have

E
Ã
exp

Ã

 ()

2

− 

!!
≤ sup

∈
E
Ã
exp

Ã

 (−)

2

− 

!!


We now fix    in [0 1] and consider the scaled process ̃ (·) ≡  ((− ) ·).
Following remark E.16, the corresponding scaled (intrinsic) metric is ̃ ≡
 |− |12 and so

E
Ã
exp

Ã

 ()

2

− 

!!
≤ sup

∈
E
µ
exp

µ
̃
³
̃0 ̃1

´2¶¶
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Now, the heat-kernel estimates for ̃ holds with constants only depend-

ing on  (i.e. independent of the scaling) and so we obtain

E
µ
exp

µ
̃
³
̃0 ̃1

´2¶¶
≤ 1

Z


exp

µ
−
µ

1

4(1 + )
− 

¶
 ( )

2

¶


where   14,   0 small enough so that   1
4(1+)

and 1 = 1 ( ).

The last integral is of form

(∗) =
Z


 ( ( ))  ≤ 

Z ∞
0

 () −1 ∞

where  () = −2
2

 2 =
³

1
4(1+)

− 
´
and  denotes the doubling con-

stant. Too see this, let us first remark that the doubling property (II)

implies

∀ ≥ 1  ∈  :  ( ( )) ≤ (2)  ( ( 1)) ; (E.4)

as is seen by taking  as the smallest integer such that  ≤ 2 so that

 ( ( )) ≤ ¡22−1¢ 
¡

¡
 2

¢¢ ≤ (2)  ( ( 1)) 

We then haveZ


 ( ( ))  = lim
→∞

Z 

0

 (·)  ( ( ( ·))) as Riemann-Stieltjes integral

= −
Z ∞
0

 0 () ( ( ( )))  by integration-by-parts

≤ 3

Z ∞
0

 0 ()  using (E.4) and −  0 ≡ | 0|

≤ 3

Z ∞
0

−1 ()  by integration-by-parts.

Proposition E.19 For every  ∈ [0 12), there exists   0 only depend-
ing on  (the doubling and Poincaré constanst of E), so that

sup
∈

E
³
exp

³
 ||2-Höl;[01]

´´
∞

Proof. Immediate from appendix A.4.

E.6.2 Schilder’s theorem

We can now prove a sample path large deviation statement for the family

( (·) :   0). To this end, let us recall our notation

||2 12 ≡ sup
⊂D[0 ]

X
:∈

¯̄

¡
  +1

¢¯̄2
|+1 − |   ∈  ([0 1]  ) 
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and, writing  for the piecewise geodesic approximation based on some

 = (), ¯̄

¯̄2
12 =

X
:∈

¯̄

¡
  +1

¢¯̄2
|+1 − | 

as was seen in exercise 5.26. We then have

Theorem E.20 (Schilder’s Theorem) Assume E is a strongly local, strongly
regular Dirichlet form on 2 () which satisfies (I),(II),(III). Write 

for the symmetric diffusion associated to E, started at some fixed point
 ∈ , and set  () =  (). Then the family ( () :   0) satisfies a

large deviation principle. More precisely, if  = (
)∗ P denotes the law of

, viewed as Borel measure on the Polish space ( ([0 1]  )  ∞), then
( :   0) satisfies a large deviation principle on this space with good rate

function given by4

 () =
1

4
||2 12;[01] ∈ [0∞]  (E.5)

defined for any  ∈  ([0  ]  )  ∞.

Proof. (Upper bound5)Write  for a generic path in  ([0 1]  ) and let

 denote the piecewise geodesic approximation of  interpolated at points

in  = { :  = 0    }. For brevity, write H for  12
 ([0 1]  ) and

||2H := ||2 12 = sup
⊂[01]

X 
¡
  +1

¢2
|+1 − | 

Step 1: For  open and non-empty,  := inf
n
||2H :  ∈  ∩H

o
 ∞ and

so

 [
 ∈ ] =  [

 ∈  ∩H] ≤ 

h
||2H ≥ 

i


By Chebyshev’s inequality, it follows that  [
 ∈ ] is bounded by6

−

³
exp

³

||2H

´´
= − exp

Ã




X
=1


³
 −1


 


´2Á 1



!

= −E exp

Ã


X
=1


³
 −1


 


´2Á 



!
≤ −

 

4Recall that ||2
12;[01]

≡ sup⊂[01]
 


 +1

2
|+1−| .

5The argument follows closely the argument of Schilder’s theorem for Brownian mo-

tion, theorem 13.39.
6 denotes expectations with respect to .
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where we used the Markov property in the last estimate; is the constant

of lemma E.18, finite for any   14. It follows that

lim sup
→0

 log [
 ∈ ] ≤ −

and upon sending  ↑ 14 shows that

lim sup
→0

 log [
 ∈ ] ≤ −1

4
 () 

Step 2: We show that geodesic approximation to  are exponentially

good approximation to  in the sense that for every   0,

lim sup
→0

 log
£
∞;[01] (

 ) ≥ 
¤ ≤ −∞ as →∞

Indeed, fix  ∈ [0 12) and observe that ||-Höl;[01] has a Gaussian tail.
Using

sup


¯̄


¯̄
-Höl;[01]

≤ 3 ||-Höl;[01]

(thanks to proposition 5.22) and 
¡





¢ ≤  () + 
¡
 




¢
is readily follows that


£
∞;[01] (

 ) ≥ 
¤ ≤ P

£
∞;[01] (

 (·)  (·)) ≥ 
¤

= P

"
sup
∈[01]

 (
 ) ≥ 

12

#

≤ P

⎡⎣⎛⎝ sup
0≤≤1


³

()
 

()


´
|− |

⎞⎠ ≥ 

12


⎤⎦
The proof is then easily finished noting that for  ∈ (0 12), the corre-
spding -Hölder "norm" of (), with respect to m has a Gaussian tail

which only depends on the doubling and Poincare constant, both of which

are independent of .

Step 3: Exactly as in the Brownian motion case, theorem 13.39.

(Lower bound) It is enough to consider an open ball of fixed radius, say

2, centered at some  ∈ H. Write again  = { :  = 0    } and
set

̄ ( ) = { ∈  ([0 1]  ) : ∀ ∈  : | ()−  ()| ≤ }

Writing  ( 2) ⊂  ([0 1]  ) for the open ballof radius 2 in the uniform

distance, centered at , we can estimate

 [ ( 2)] ≥ 
£
̄ ( )

¤− 
£
̄ ( ) \ ( 2)¤ 
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The second term can be handled with the upper bound already proven.

Indeed, let assume that  is large enough so that

max
=1

||
0;[ −1  

 ]
 2

It then follows that for any  (·) ∈ ̄ ( ) \ ( 2) there exists some
time  ∈ £ −1


 


¤
so that


³
  −1



´
 
³
  



´
≥ 2

Since either
¯̄
− −1



¯̄
≥ 1

2
or
¯̄
− 



¯̄
≥ 1

2
we see that ||2 12 ≥ 2

2
.

Hence, using the upper bound with the closed set ̄ ( ) \ ( 2), we
see that

lim sup
→0

 log
£
̄ ( ) \ ( 2)¤ ≤ −1

4

2

2
→ −∞ as →∞

so that the other term, 
£
̄ ( )

¤
, gives the main contribution. Writing


£
̄ ( )

¤
=

Z
1

  

Z


Y
=1


³ 


 −1 

´
1    

we can normalize the measure on each ball  = ̄
¡

¡



¢
 
¢
, by dividing

through ||, so that by Jensen’s inequality log
£
̄ ( )

¤
is bounded

from below by

log

Ã
Y
=1

||
!
+

1

1 · · ·

Z
1

  

Z


Y
=1

log 
³ 


 −1 

´
1    

Then

lim
→0

 log [
 ( )] ≥ lim

→0

1

1 · · ·

Z
1

  

Z


Y
=1

 log 
³ 


 −1 

´
1    

≥ −
4

1

1 · · ·

Z
1

  

Z


X
=1

 (−1 )
2
1    

and by continuity of , we can now send  → 0 and see that

lim
→0

 log [
 ( )] ≥ −1

4

X
=1

 (−1 )
2
. 1



≥ −1
4
||2 12;[01] = −

1

4
 () 

The proof is then finished.
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E.6.3 Support theorem

Theorem E.21 (Support) Assume E is a strongly local, strongly regular
Dirichlet form on 2 () which satisfies (I),(II),(III). Write  for the

symmetric diffusion associated to E, started at some fixed point  ∈ .

Then there exists a constant  only dependent on  (the doubling and

Poincaré constanst of E)so that for any path  ∈  12
 ([0 1]  ) and any

 ∈ (0 1) we have

P
Ã
sup
∈[01]

 ( ) ≤ 

!
≥ exp

⎛⎜⎝−
³
1 + ||12;[01]

´2
2

⎞⎟⎠ 

In particular, if   = ∗P denotes the law of , viewed as Borel measure

on  ([0 1]  ), then

supp ( ) =  ([0 1]  ) 

Proof. As a preliminary remark, let us note that for any  ≥ 1 we have

inf
0

∈:()≤

 ( ( ))

 ( ( ))
≥ 1

(4)


 0

as is seen from (E.2) and

 ( ( )) ≤  ( (  +  ( )))

≤  ( ( ( + 1) ))

≤ (2 ( + 1))

 ( ( )) 

We now turn to the actual proof, given in three steps.

Step 1: From the very definition of the  12-regularity, ( ) 7→ ||2 12;[]

is super-additive (in fact: additive) and

 ( ) ≤ |− |12 || 12;[01]  (E.6)

By the Markov property, and defining 0 =  and  =  where  will

fixed later (in function of ),

P
Ã
∀ = 1      :  (  ) 

1


1
2

and sup
−1≤≤


¡
 −1

¢
 

!

=

Z
(1 −12)

· · ·
Z
( −12 )


(0 )

µ
1


 0 1

¶
· · ·

· · · 
(−1 )

µ
1


 −1 

¶
1 · · · 

= : 
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We join the points  and +1 by the curve , which is the concatenation

of three geodesic curves joining first  with  then  with +1and

finally +1 to +1 . Using  ( ) ≤ −12 for all , we see that

 ( +1) ≤ length () ≤ 2−12 + 
¡
  +1

¢
 (E.7)

and also that  remains in the ball


³
  

−12 + 
¡
  +1

¢´
⊂ 

³
  

−12 + −12 || 12;[01]

´
where the last inclusion is due to (E.6). Choose  as the smallest integer

such that  ≥ −12
³
2 + || 12;[01]

´
. The curve  then stays inside of

 ( ); more precisely

 ≡  (  (  )

)

≥ − −12
³
1 + || 12;[01]

´
≥ −12

In particular,  := min
¡
1

 2

¢
= 1


which also implies 2 ≥ 1. If 1

denotes the constant whose existence is guaranteed by the localized lower

heat kernel bound then


( )

µ
1


  +1

¶
≥ 1

1

1


³

³
 

12
´´−1(+1)2−1 1

2
 

≥ −91

1| {z }
=:exp(2)

1


¡

¡
 −12

¢¢ exp(−21 ||2 12;[+1]
)

using (E.7) =⇒  ( +1)
2 ≤ 8 + 2 ||2 12;[+1]

in the last line. With

this lower bound at hand, and the previous lemma, noting that


¡
+1  

¢ ≤ −12 + 
¡
  +1

¢
≤ −12

³
1 + || 12;[+1]

´
=:−12

it follows immediately from the definition of  that

 ≥
−1Y
=0

−2

¡

¡
+1  

−12¢¢

¡

¡
  

−12¢¢ 
−21||212;[+1]

≥
−1Y
=0

−2

4

³
1 + || 12;[+1]

´−

−21||212;[+1] 
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Of course, by making 1 larger we can absorb the polynomial factor (1 +

|| 12;[+1]
)− in exponential factor. Thus, for 3 large enough, also

chosen such that −24 ≥ −3 we have

 ≥ −3 exp

Ã
−23

−1X
=0

||2 12;[+1]

!
≥ −3 exp

³
−23 ||212;[01]

´
We chose  such that (− 1)−12  

³
2 + || 12;[01]

´
≥ −12. Hence

 ≥ −3 exp

⎛⎜⎝−3
³
2 + ||12;[01]

´2
2

⎞⎟⎠ exp³−23 ||212;[01]

´

= exp

⎛⎜⎝−4
³
2 + || 12;[01]

´2
2

⎞⎟⎠ exp³−24 ||2 12;[01]

´


Step 2: We first note that from  =  and our choice of ,


¡
−1  

¢ ≤ −12 ||12;[01] ≤ .

The probability of sup0≤≤1  ( )  2 equals

P
Ã

max
=1

sup
−1≤≤

 ( )  2

!

≥ P
Ã

max
=1

sup
−1≤≤


¡
 −1

¢
+ 

¡
−1  

¢
 2

!

≥ P
Ã
∀ = 1      : sup

−1≤≤

¡
 −1

¢
 

!
≥ 

which plainly estimted from below by  and the last probability is what we

estimate in step 1. This finishes the proof of the estimate in the statement

of the theorem.

Step 3: The quantitative estimate established in step 2 plainly implies

that  12 ⊂ supp(∗P) and hence  12 ⊂ supp (∗P), by passing to
the uniform closure. To see the converse, we use again the geodesic nature

of the state space and recall from lemma 5.21 that  →  uniformly on

[0 1] as ||→ 0. Since  () ∈ 12 for every  this easily implies that

supp (∗P) ⊂ 12.



Appendix E. Analysis on Local Dirichlet spaces 635

E.7 Comments to Appendix

The basic theory on quadratic forms appears in [34], for istance. We then

follow [67], [169] and especially [159]. Proposition E.5 is taken from [161].

We are unaware of any precise references to the material of section E.6.2
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Frequently used notation

Finite dimensional objects

R ... -dimensional Euclidean space with basis {1     }¡
R
¢⊗

... -tensors over R, see page 131


¡
R
¢
... step- truncated tensor algebra, see page 131

 ... projection from 
¡
R
¢→ ¡

R
¢⊗

 ... dilation map, see page 135


¡
R
¢
... step- free nilpotent group over page R, see page 144

g
¡
R
¢
... step- free nilpotent Lie algebra over page R, see page 141

t
¡
R
¢
, 1 + t

¡
R
¢
... see page 136

|·| ... Euclidean norm, on R or ¡R¢⊗ for some  ∈ {1     }
k·k ... Carnot—Caratheodory norm, on 

¡
R
¢
, see page 146

1      ... invariant vector fields 
¡
R
¢
, see page 150

u1     u ... invariant vector fields 

¡
R
¢
, see page 456

Paths and pathspaces

 = ( :  ∈ [0  ]) ... a generic path with values in some metric space
 ... a dissection () of [0  ]

|| ... mesh of , i.e. max |+1 −  |
D [0  ] ... the set of all dissection of [0  ]
 ... a piecewise linear or geodesic approximation, see pages 31,

 ([0  ]  ) ... continuous paths with values in a metric space, page 19

-Höl ([0  ]  ) ... Hölder continuous paths, with exponent , page 79

-var ([0  ]  ) ... continuous paths of finite -variation, page 79

 1 ([0  ]  ) ... paths with  1-Sobolev regularity, see page 42

  ([0  ]  ) ... fractional Sobolev (or Besov) paths, see page 89

 ( ) ... a control function, see page 21

 ([ ]  [ ]) ... a 2D control function, see page 107

̃ ̃ ... approximations to  =  ( ), pages 109, 112

Rough paths and rough path spaces

x = (x) ... a path with values in the group
¡


¡
R
¢
⊗¢

x = x
−1
 ⊗ x ... (group) increment of x

1-Höl
¡
[0  ]  []

¡
R
¢¢
 -var

¡
[0  ]  []

¡
R
¢¢
... see page 198

01-Höl
¡
[0  ]  []

¡
R
¢¢
 0-var

¡
[0  ]  []

¡
R
¢¢
... see page 198

k·k-var  k·k1-Höl ... see page 167
-var, 1-Höl ... homogenous distances, page 168

-var  1-Höl;[0 ] ... inhomogenous distances, page 172

()-var
³
[0  ] R ⊕R0

´
 k·k-12  -12 ... see page 200, 172
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Operations on rough path spaces

 (x) ... Lyons-lift, see page 188

 (x ) ... Young pairing, see page 206

 (x) ... translation operator, see page 211

Differential equations

 = (1     ) ... a collection of vectorfields

x ... (smooth, rough) driving signal

( ) (0 0;)  ( ) (0 0;x) ... ODE, RDE solution, see pages 55, 226

π( ) (0 0;x) ... full RDE solution, see page 243R
 () x ... rough integral, see page 255

Stochasic processes

 ... real-valued standard Brownian motion, see page 327

 ... R-valued standard Brownian motion, see page 327
 ◦ ... Itô, Stratonovich differential

B ... 2
¡
R
¢
-valued enhanced Brownian motion, see page 333

M
0loc

¡
R
¢
... class of R-valued cont. local martingale, see page 385

 ... R-valued continuous (semi-)martingale, see page 385
 ◦ ... Itô, Stratonovich differential

hi ... quadratic variation process, componentwise defined, see page 385
M ... 2

¡
R
¢
-valued enhanced (semi-)martingale, see page 386

 ... R-valued Gaussian process,
H ... Cameron—Martin (reproducing kernel Hilbert) space to 

 ... covariance of a Gaussian process, typically of finite -variation,  ≥ 1
 ... real-valued fractional Brownian motion, see page 404

 ... R-valued fractional Brownian motion, see page 430
B ... [1]

¡
R
¢
-valued enhanced fract. Brownian motion, page 430

X ... [2]
¡
R
¢
-valued enhanced Gaussian process, see page 428

 ... R-valued Markov process, generator 
¡


¢
, see page 453

XX ... 2
¡
R
¢
-valued Markov process, see page 460

 (  ) ... heat-kernel, see page 16.2

E ... Dirichlet form, see page 456
L ... generator (in divergence form), see page 459
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