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Errata Chapter 5.2

p 81. line 18. There is a small gap in the estimate. The left hand side [of line 18] must include
(since t /∈ D in general!) an additional term (∗);∑

ti∈D1=(s=t0<t1<···<tk−1)

d
(
xti , xti+1

)p
+ (∗) + ωx,pt, t+ h) > ωx,p (s, t+ h)− ε

where (∗) = d
(
xtk , xtk+1

)p
= d (xtk , xt)

p
+ d

(
xtk , xtk+1

)p − d (xtk , xt)
p. Hence,

ωx,p (s, t) + d
(
xtk , xtk+1

)p − d (xtk , xt)
p︸ ︷︷ ︸

→0 as h→0

+ ωx,p (t, t+ h) > ωx,p (s, t+ h)− ε

(since tk+1 ∈ [t, t+ h] → t as h → 0, and x is (uniformly) continuous on [0, T ]). The rest of the
argument is unchanged. (We also note that the proof that ω (t, t+) = 0 can be a bit simplified; e.g.
along the "outer continuity" argument in [2, page 12].)
p 91. line 1, include the word "with "after conclude

Errata Chapter 5.5

p 105. Definition 5.50. We need to modify the definition of |f |p-var to1

|f |p-var;[s,t]×[u,v] := sup
Π∈P([s,t]×[u,v])

(∑
A∈Π

|f (A)|p
)1/p

;

a partition Π of a rectangle R ⊂ [0, T ]
2 is a finite set of (closed) rectangles, essentially disjoint,

whose union is R; the family of all such partitions is denoted by P (R). We then maintain the

definition that Cp-var
(

[0, T ]
2
,Rd

)
denotes the space of continuous f with |f |p-var;[0,T ]2 < ∞ and

say that any such f has finite controlled p-variation. Indeed, lemma 5.52 (which is correct with

1Recall that f (A) is the rectangular increment of A = ((a, b) , (c, d)) ∈ ∆T ×∆T ,

f

(
a, b
c, d

)
:= f

(
b
d

)
+ f

(
a
c

)
− f

(
a
d

)
− f

(
b
c

)
,

and we regard A as (closed) rectangle A ⊂ [0, T ]2,

A :=

(
a, b
c, d

)
:= [a, b]× [c, d] .

If a = b or c = d we call A degenerate; recall also that two rectangles are called essentially disjoint if their
intersection is empty or degenerate.
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this modified definition, see below) asserts that ω (R) := |f |pp-var;R is a 2D control function such
that (obviously)

∀R ⊂ [0, T ]
2

: |f (R)|p ≤ ω (R) .

Any continuous f which satisfies the above estimate for some 2D control ω is said to have finite
p-variation controlled (equivalently: dominated) by ω; this is a quantitative way of saying that
f ∈ Cp-var

(
[0, T ]

2
,Rd

)
since super-addivity immediately gives

∀R ⊂ [0, T ]
2

: |f (R)|p ≤ ω (R) =⇒ |f |p-var;R ≤ ω (R) ;

cf. part (ii) of the corrected lemma 5.52 below. We remark that the difference between this definition
of controlled p-variation and our original one is that, in our original definition, the supremum is
restricted to grid-like partitions,{(

ti, ti+1

t′j , t
′
j+1

)
: 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
,

where D = (ti : 1 ≤ i ≤ m) ∈ D ([s, t]) and D′ =
(
t′j : 1 ≤ j ≤ n

)
∈ D ([u, v]); i.e we consider

continuous f such that2

Vp (f ; [s, t]× [u, v]) :=

 sup
(ti)∈D([s,t]),(t′j)∈D([u,v])

∑
i,j

∣∣∣∣f ( ti, ti+1

t′j , t
′
j+1

)∣∣∣∣p
 1

p

<∞.

Clearly, not every partition is grid-like (consider e.g. [0, 2]
2

= [0, 1]
2 ∪ [1, 2] × [0, 1] ∪ [0, 2] × [1, 2])

hence
∀R ⊂ [0, T ]

2
: Vp (f ;R) ≤ |f |p-var;R .

The trouble is that Vp (f ; ·)p is not super-additive in 2D sense3 , hence not a 2D control, whereas
|f |pp-var;· based on all partitions does yield a 2D control; hence our modified definition 5.50. Even

so, the class of such functions remains important and we say that any f with Vp
(
f ; [0, T ]

2
)
< ∞

has finite p-variation. It is worth noting that this distinction is not seen when p = 1 (the short
proof of this [2] is based on the idea that further refining of a partition to a grid-like partition can
only increase the 1-variation; this is false for p-variation, p > 1), nor in the 1D case of course, and
we are dealing with a phenomena specific to higher dimensional p-variation with p > 1. That said,
it is possible to show ([2] for full details) that

∀R ⊂ [0, T ]
2

: |f |(p+ε)-var;R ≤ c (p, ε)Vp (f ;R)

so that the two notions of p-variations (controlled vs. genuine) are "ε-close".
p 105. Definition 5.51 replace "which is super-additive in the sense that .... ω (R1)+ω (R2) ≤

ω (R)" by the more convenient "which is super-additive in the sense that

n∑
i=1

ω (Ri) ≤ ω (R) , whenever {Ri : 1 ≤ i ≤ n} is a partition of R

2The notation Vp (f) is consistent with the notation and terminology of [Towghi, 2002].
3We thank Bruce Driver for pointing this out by constructing an explicit counter-example.
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p 105. Lemma 5.52, part (i) is correct as stated with the new definition of |f |p-var ; in part
(ii) we need to insert the word "controlled" (the statement should read "f is of finite controlled
p-variation if and only if there exists a 2D control ω such that for all R : |f (R)|p ≤ ω (R) .") We
include the proof.
Proof. Let us start with the remark that the super-addivity of property of 2D controls, cf. our
slightly modified definition 5.51 above, immediately gives

∀R ⊂ [0, T ]
2

: |f (R)|p ≤ ω (R) =⇒ |f |p-var;R ≤ ω (R) .

This settles part (ii) and we focus on part (i). Define ω (R) := |f |pp-var;R where R is a rectangle of
the form [s, t]× [u, v] ⊂ [0, T ]

2. By assumption ω (R) ≤ ω
(

[0, T ]
2
)
<∞ and it is immediate from

the definition of |f |p-var;R that ω is zero on degenerate rectangles. We need to check super-addivity
and continuity.
Super-additivity: Assume {Ri : 1 ≤ i ≤ n} constitutes a partition of R. Assume also that Πi is

a partition of Ri for every 1 ≤ i ≤ n. Clearly, Π := ∪ni=1Πi is a partition of R and hence

n∑
i=1

∑
A∈Πi

|f (A)|p =
∑
A∈Π

|f (A)|p ≤ ω (R)

Now taking the supremum over each of the Πi gives the desired result.

At last, we note that for similar ideas as in the 1D case (cf. p.81) give continuity of ω is a map
from ∆T ×∆T → [0,∞); details can be found in [2].

p 106. Lemma 5.54 concerning the reduction of partitions based on D × D′ to partitions
based on D × D is also incorrect (because we use control argument for objects which are not
controls), and should be removed. The lemma is used in Proposition 15.5 (variational regularity of
fBM covariance), the (solution) to Exercise 15.6 and lemma 15.8. In each case the conclusion can
obtained with an alternative argument; details are discussed at those places.

Errata Chapter 15.1

p 403. Lines 9,10, 18. Replace |·|ρ-var by Vρ (·). The comments and recalls on ρ-variation in 2D
sense should also be extended such as to briefly mention controlled ρ-varation.

p 406. Proposition 15.5: replace "controlled by ωH (., .) = ...)" by "i.e. V1/(2H)

(
RH ; [0, 1]

2
)
<

∞". Replace
"
∣∣RH ∣∣ 1

2H -var;[s,t]
2 ≤ CH |t− s|2H so that ...."

by

V 1
2H

(
RH ; [s, t]

2
)
≤ CH |t− s|2H . (∗)

Add: "This implies in particular that for ρ > 1
2H , R

H is of finite (Hölder) controlled ρ-variation."
The original proof only considered D = D′. The arguments for general D,D′ are similar;

nonetheless we include full details:
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New proof: (By fractional scaling it would suffi ce to consider [s, t] = [0, 1] in (∗) but this does
not simplify the argument which follows.) Consider D = (ti) , D

′ =
(
t′j
)
∈ D [s, t]. Clearly,

31− 1
2H

∑
j

∣∣∣E [βHti,ti+1βHt′j ,t′j+1]∣∣∣ 1
2H ≤ 31− 1

2H

∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1
2H

1
2H -var;[s,t]

≤
∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1

2H

1
2H -var;[s,ti]

(1)

+
∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1

2H

1
2H -var;[ti,ti+1]

(2)

+
∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1

2H

1
2H -var;[ti+1,t]

, (3)

by super-additivity of (1D!) controls. The middle term (2) is estimated by∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1
2H

1
2H -var;[ti,ti+1]

= sup
(sk)∈D[ti,ti+1]

∑
k

∣∣∣E [βHti,ti+1βHsk,sk+1]∣∣∣ 1
2H

≤ cH |ti+1 − ti| ,

where we used that [sk, sk+1] ⊂ [ti, ti+1] implies
∣∣∣E [βHti,ti+1βHsk,sk+1]∣∣∣ ≤ cH |sk+1 − sk|2H . The

first term (1) and the last term (3) are estimated by exploiting the fact that disjoint increments of
fractional Brownian motion have negative correlation when H < 1/2 (resp. zero correlation in the

Brownian case, H = 1/2); that is, E
(
βHc,dβ

H
a,b

)
≤ 0 whenever a ≤ b ≤ c ≤ d. We can thus estimate

(1) as follows;∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1
2H

1
2H -var;[s,ti]

=
∣∣∣E [βHti,ti+1βHs,ti]∣∣∣ 1

2H

≤ 2
1
2H−1

(∣∣∣E [βHti,ti+1βHs,ti]∣∣∣ 1
2H

+ E

[∣∣∣βHti,ti+1∣∣∣2] 1
2H

)
.

The covariance of fractional Brownian motion gives immediately E
[∣∣∣βHti,ti+1∣∣∣2] 1

2H

= cH (ti+1 − ti).

On the other hand, [ti, ti+1] ⊂ [s, ti+1] implies
∣∣∣E [βHti,ti+1βHs,ti]∣∣∣ 1

2H ≤ cH |ti+1 − ti|; hence∣∣∣E [βHti,ti+1βH· ]∣∣∣ 1
2H

1
2H -var;[s,ti]

≤ cH |ti+1 − ti| .

As already remarked, the last term is estimated similarly. It only remains to sum up and to take
the supremum over all dissections D and D′.

p 407. Exercise 15.6. It should be assumed that H ∈ (0, 1/2] and the exercise should be
rephrased as: show that RX ,the covariance of X has finite 1/2H-variation. More precisely, show
that there exists a constant CH such that for all s < t in [0, 1] ,

V 1
2H

(
RX ; [s, t]

2
)
≤ CH |t− s|2H .
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Proof. Let βH be a fractional Brownian motion with Hurst parameter H. The argument that
leads to

E
(
|Xs,t|2

)
≤ cHE

(∣∣∣βHs,t∣∣∣2) ,
and, for s ≤ t ≤ u ≤ v,

|E (Xs,tXu,v)| ≤ cH
∣∣∣E (βHs,tβHu,v)∣∣∣ (4)

is unchanged. To prove that the covariance of X has finite 1
2H -variation, we follow the (above)

proof of proposition 15.5 and see that we need (replace [ti, ti+1] by some generic [u, v] ⊂ [s, t])

|E [Xu,vX·]|
1
2H
1
2H -var;[s,u]

≤ cH |v − u|

|E [Xu,vX·]|
1
2H
1
2H -var;[u,v]

≤ cH |v − u|

|E [Xu,vX·]|
1
2H
1
2H -var;[v,t]

≤ cH |v − u| .

The first and third inequality follow from (4) and the corresponding fBM estimates contained in
the (above) proof of proposition 15.5. So it only remains to establish the "middle" estimate, after
renaming [u, v] [s, t], we need, for any s < t in [0, 1]

|E [Xs,tX·]|
1
2H
1
2H -var;[s,t]

≤ cH |t− s| .

Let again [u, v] ⊂ [s, t]. The triangle inequality gives

|E (Xs,tXu,v)| ≤ |E (Xs,uXu,v)|+
∣∣∣E (|Xu,v|2

)∣∣∣+ |E (Xv,tXu,v)|

≤ cH

(∣∣∣E (βHs,uβHu,v)∣∣∣+ E

(∣∣∣βHu,v∣∣∣2)+
∣∣∣E (βHv,tβHu,v)∣∣∣) =: ∆

But using the structure of fractional Brownian motion (using H ≤ 1/2) we see that

∆ = cH

(
−E

(
βHs,uβ

H
u,v

)
+ E

(∣∣∣βHu,v∣∣∣2)− E (βHv,tβHu,v))
= cH

(
−E

(
βHs,tβ

H
u,v

)
+ 2E

(∣∣∣βHu,v∣∣∣2))
≤ cH

∣∣∣E (βHs,tβHu,v)∣∣∣+ 2cHE

(∣∣∣βHu,v∣∣∣2) .
Hence,for a suitable constant c̃ = c̃ (H) which may change from line to line,

|E (Xs,tXu,v)|
1
2H ≤ c̃H

∣∣∣E (βHs,tβHu,v)∣∣∣ 1
2H

+ c̃HE

(∣∣∣βHu,v∣∣∣2) 1
2H

= c̃H

∣∣∣E (βHs,tβHu,v)∣∣∣ 1
2H

+ c̃H |v − u|

and then

|E [Xs,tX·]|
1
2H
1
2H -var;[s,t]

≤ c̃H
∣∣∣E [βHs,tβH· ]∣∣∣ 1

2H

1
2H -var;[s,t]

+ c̃H |t− s| .
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Since
∣∣∣E [βHs,tβH· ]∣∣∣ 1

2H

1
2H -var;[s,t]

= c̃H |t− s|, this was seen in the (above) proof of proposition 15.5, the
exercise is now completed.
p 415. Lemma 15.8 The second claimed estimate ("

∣∣RA∣∣
2-var;[s,t]2 ≤ |R|2-var;[s,t]2") should be

rephrased as4

V2

(
RA; [s, t]

2
)
≤ V2

(
R; [s, t]

2
)
.

The given proof (we may take [s, t]
2

= [0, 1]
2 without loss of generality) of lemma 15.8 actually

only shows this estimate when supD,D′∈D[0,1] in the definition of V2 is replaced by the sup over all
D = D′ ∈ D [0, 1]. This gap is closed by the following (new) lemma which may be interesting in its
own right.

Lemma 1 Define R (s, t) := E (XsXt) for some stochastic process (Xt : t ∈ [0, 1]). Then

sup
D,D′∈D[0,1]

∑
i,j

∣∣∣∣R( ti, ti+1

t′j′,t
′
j+1

)∣∣∣∣2 = sup
D∈D[0,1]

∑
i,j

∣∣∣∣R( ti, ti+1

tj,tj+1

)∣∣∣∣2 ,
where we write D = (ti) and D′ =

(
t′j
)
.

Proof. We only need to show ” ≤ ”. Set Xi = Xti,ti+1 and Xj′ = Xt′
j′,t
′
j+1

so that

R

(
ti, ti+1

t′j′,t
′
j+1

)
= E (XiXj′) .

Consider an IID copy of X, say X̃, so that∣∣∣∣R( ti, ti+1

t′j,t
′
j+1

)∣∣∣∣2 = E (XiXj′)E
(
X̃iX̃j′

)
= E

(
XiXj′X̃iX̃j′

)
.

It follows that∑
i,j

∣∣∣∣R( ti, ti+1

t′j,t
′
j+1

)∣∣∣∣2 =
∑
i,j

E
[
XiXj′X̃iX̃j′

]

= E

(∑
i

XiX̃i

)∑
j

Xj′X̃j′



≤

√√√√√E

(∑
i

XiX̃i

)2

√√√√√√E


∑

j

Xj′X̃j′

2


4Recall V2
(
R; [s, t]2

)
= supD,D′∈D[s,t]

∑
i,j

∣∣∣∣R( ti, ti+1
t′
j′,t

′
j+1

)∣∣∣∣2 .
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where we used Cauchy-Schwarz. Since

E

(∑
i

XiX̃i

)2
 = E

∑
i,k

XiX̃iXkX̃k

 =
∑
i,k

E [XiXk]E
[
X̃iX̃k

]
=
∑
i,k

∣∣∣∣R( ti, ti+1

tk,tk+1

)∣∣∣∣2 ,
E


∑

j

Xj′X̃j′

2
 = · · · (as above) · · · =

∑
j,l

∣∣∣∣R( t′j′,t
′
j+1

t′l,t
′
l+1

)∣∣∣∣2
we see that ∑

i,j

∣∣∣∣R( ti, ti+1

t′j,t
′
j+1

)∣∣∣∣2
2

≤
∑
i,k

∣∣∣∣R( ti, ti+1

tk,tk+1

)∣∣∣∣2 ×∑
j,l

∣∣∣∣R( t′j′,t
′
j+1

t′l,t
′
l+1

)∣∣∣∣2 .
Since we managed to factorize the dependence on D = (ti) ∈ D [0, 1] and D′ =

(
t′j
)
∈ D [0, 1] on the

right-hand-side the conclusion follows immediately upon taking supD,D′ first on the right-hand-side,
then on the left-hand-side.

p 431-432. Exercise 15.36 is corrected as stated (in particular, under the assumption of
Theorem 15.33 concerning finite controlled ρ-variation of the covariance). However, if one wants
to apply this to fractional Brownian motion with H < 1/2, say, one has to work with ρ̃-variation,
ρ̃ := 1/ (2H) + ε, any ε > 0, rather than ρ := 1/ (2H). The conclusion in part (iii) of this exercise,
finite ψ2ρ̃,ρ̃-variation, then is not optimal: one wants (optimal) finite ψ2ρ,ρ = ψ 1

H ,
1
2H
-variation. In

fact, one does get this result upon realizing that by fractional scaling ω̃
(

[s, t]
2
) 1
ρ̃

= (const)×|t− s|
1
ρ .

In particular, (15.20) applied with ω̃ then yields

|d (Xs,Xt)|Lq ≤ C
√
qω̃
(

[s, t]
2
) 1
2ρ̃

= C
√
q |t− s|

1
2ρ ;

finite ψ2ρ,ρ-variation of sample paths is then a standard consequence of the results in section A.4. (In

a similar spirit one can show that the assumption of finite ρ-variation, rather than finite controlled
ρ-variation, leads to ψ2ρ,ρ-variation of the sample paths.)
p 438. Replace "

∣∣RA∣∣
2-var;[s,t]2 ≤ |R|2-var;[s,t]2" (15.28) by

V2

(
RA; [s, t]

2
)
≤ V2

(
R; [s, t]

2
)
. ((15.28))

p 440, remove the text from line 7 until the end of the proof, and replace it with the following
argument.

For u < v in [s, t], define Q1
u,v =

(
u, v
u, v

)
, Q2

u,v =

(
s, u
u, v

)
, Q3

u,v =

(
u, v
s, u

)
; rewrite the

previous equation as

fu,v = RXAc;i
(
Q1
u,v

)
+RXAc;i

(
Q2
u,v

)
+RXAc;i

(
Q3
u,v

)
.

It follows that, for ε > 0 and c1 = 32+ε−1,

31−(2+ε) |fu,v|2+ε ≤
∣∣RXAc;i (Q1

u,v

)∣∣2+ε
+
∣∣RXAc;i (Q2

u,v

)∣∣2+ε
+
∣∣RXAc;i (Q3

u,v

)∣∣2+ε

≤ |RXAc;i |
2+ε
(2+ε)-var;[u,v]2 + |RXAc;i |

2+ε
(2+ε)-var;[s,t]×[u,v] + |RXAc;i |

2+ε
(2+ε)-var;[u,v]×[s,t] .
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Since the last line is (1D) super-additive in [u, v] it follows that

|f |2+ε
(2+ε)-var;[s,t] ≤ 32+ε |RXAc;i |

2+ε
(2+ε)-var;[s,t]2

≤ c1V2

(
RXAc;i ; [s, t]

2
)

≤ c1V2

(
RXi ; [s, t]

2
)
use (5.28)

≤ c1 |RX |2-var;[s,t]2 .

By taking ε > 0 small enough, the proof is finished with the same argument, namely the Young-
Wiener estimate of Proposition 15.39.
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