
Storage Area Network OptimizationA ooperation of Anor Communiations, Minneapolis, USAand Freie Universit�at Berlin, Germany.Final ReportHelmut AltStefan FelsnerLudmila SharfFreie Universit�at BerlinInstitut f�ur InformatikTakustr. 914195 Berlin, Germanyfelsner�inf.fu-berlin.deNovember 8, 2000

Contents1 Introdution . 22 Problem . 42.1 Model for the problem 42.2 Lower bounds and omplexity of the problem 73 Solutions . 93.1 Input generators . 93.2 Heuristis . 103.3 Software design and implementation 153.4 Integer program model 184 Results . 194.1 Statistial evaluation 194.2 Computation time . 235 New Problem De�nition . 24

1

1 IntrodutionThe Storage Area Network Optimization Projet (SANO) is a ooperationof Anor Communiations (now QLogi) and Freie Universit�at Berlin.The information explosion and the need for high-performane ommuni-ations for server-to-storage and server-to-server networking have been thefous of muh attention during the 90s. Performane improvements in stor-age, proessors, and workstations, along with the move to distributed ar-hitetures suh as lient/server, have spawned inreasingly data-intensiveand high-speed networking appliations. The interonnet between thesesystems and their input/output devies demands a new level of performanein reliability, speed, and distane. Fibre Channel, a highly-reliable, gigabitinteronnet tehnology allows onurrent ommuniations among worksta-tions, mainframes, servers, data storage systems, and other peripherals usingSCSI and IP protools. It provides interonnet systems for multiple topolo-gies that an sale to a total system bandwidth on the order of a terabitper seond. Fibre Channel delivers a new level of reliability and throughput.Swithes, hubs, storage systems, storage devies, and adapters are among theproduts that are on the market today, providing the ability to implement atotal system solution.A Storage Area Network (SAN) is a network behind the servers linkingone or more servers to one or more storage systems. QLogi o�ers a broadprodut line of SAN infrastruture (see[1℄). One of them is a SANbox {swith based on �bre hannel tehnology (see Figure 1).QLogi o�ers SANboxes in 8-, 16-, 64-, and 128-port on�guration. Thesubjet of this projet were 64- and 128-type networks. The main task inthe Storage Area Network Optimization Projet (SANO) was the design andimplementation of o�-line path alloation algorithms for these multi-stage�bre hannel networks.The path alloation problem arises beause routes between ports of aSANbox are stati, i.e. an not be hanged dynami at real time. The limitis due to the �ber hannel spei�ation. Due to the stati alloation of routesit an happen that a set of ports ause a lot of traÆ on a spei� onnetionthus foring bu�ering and delay, while other onnetions are are underloadedand would be able to arry more traÆ. It is though possible to hangeroutes within a SANbox, but the box has to be taken o�ine for that task.The basi question adressed in the projet was the following.2

Figure 1: possible usage of a SANbox� Assuming a ertain ommuniation demand between ports of the boxdesign and evaluate algorithms for path alloation that make the needfor bu�ering unlikely.The �rst phase of the projet was used to realize a small pilot-projet.The aim of this was to get some feeling for the problem so that we an makesuggestions on how to proeed in the main phase of the projet.In the main phase routing algorithms for all in projet onsidered networktypes were implemented, and integer program models for optimal solutionswith Cplex were designed.The implemented system onsists of several parts whih an be desribedas follows:1. The design of data-strutures to model inputs and routings on two ofthe network topologies supported by Anor (Type 64 and Type 128).2. The implementation of input models, i.e., assignment of a ommuniation-demand to eah pair of ports.3. The design and implementation of routing heuristis, i.e., assignmentof a ommuniation-path to eah pair of ports.4. The implementation of an evaluation tool that allows to do some statis-tis and ompares the objetive value of solutions produed by the3

heuristis with a lower bound.5. The design and implementation of an integer program model for �ndingoptimal solutions.Close to the end of the projet the problem beame a fous shift. Indisussion with engeneers from Anor it was realized that it is very unlikelyto have any good guess ore measurement of port-to-port ommuniation de-mands. At best it would be feasible to measure the load at eah port dis-regarding the orresponding sender/reeiver port. In a third phase we triedsome ideas to attak the new problem. In partiular we analyzed ways ofgetting a guess of port-to-port ommuniation from the data of the portloads. And of improving a path assignment given the data of port loads andsome information about ongestions. This last part of the projet will onlybe desribed quite super�ial in setion 5 of this report.2 Problem2.1 Model for the problemWe onsider the Type 64 and Type 128 networks whih have 64 or 128 portsrespetively.For the type 64 network a problem instane (input) an be onsidered asa 64� 64 matrix R = (ri;j) where ri;j is the load imposed to the network bythe ommuniation between ports i and j, we will all ri;j the demand of pair(i; j). An input-generating algorithm will usually produe demands betweenzero and one, i.e., 0 � ri;j � 1.The network onsists of three layers of routing-swithes, see Figure 2.Though the �rst and third layer are equal we still, by historial reasons,denote the swithes on these layers by M and D. Eah of the eight outer-swithes Ms, Du has 2 � 8 ports, so it an be onneted to 8 mahines ordisks on the out side, and doubly onneted to eah of the 4 swithes Stfrom the intermediate-layer on the other side. A legal path for the demandri;j an be desribed by speifying a pair of ports: on the outer swith andon an intermediate-swith used by the path. We denote the path assignedto the pair (i; j) by algorithm A as PA(i; j). The load of an edge E underassignment A and a given demand R is de�ned as�(E) =Xfri;j : PA(i; j) uses Eg:4

Intermediate-Layer
M1 M2 M3 M4

S4S3S2S1
D1 D2 D3 D4

Outer-Layer

Outer-LayerFigure 2: The Type 64 network.The aim of our algorithms is to keep the load on all edges small. Thisintention is reeted by de�ning the load of a path assignment A as�(A) = maxf�(E) : E edge g:Type 128 network is build analog, with 16 outer M1011111 1 e1 e2
DD

DD
DD

D
M2011111 1 e4e3

zz
zz

zz
zS1 S2D10

 1 11

11
1

e5 e6 zzzzzzz D20

 1 11

11
1

e8e7DDDDDDD

Figure 3: type 4-4 net-work

swithes and 8 intermediate swithes, eah of thesame type as above, so it has 128 outer ports (ports),and single onnetions between outer and intermediate-swithes. In the ase of single onnetions the pathfor one demand an be desribed by an intermediateswith, through whih the demand is routed.We illustrate the methods and algorithms weused for these omplex networks on a small examplenetwork with four outer swithes and two interme-diate swithes, eah having 2 � 2 ports. Let all ita Type 4-4 network (Figure 3). We will furtheronexplain important onepts and algorithms at theType 4-4 network.Further simplifying the problem we assume that the only non-zero de-mands are those from ports on the upper side to ports on the lower side,5

i.e. there is only traÆ from swithes Mi to swithes Dj, i; j = 1; 2. Thissimpli�ation is suggested by the idea that the workstations (mahines) areonneted to one side of the network (ports of M -swithes) and storage de-vies (diss) are onneted the other side (to ports of D-swithes). The as-sumption about the demands then orresponds to the assumption that thereis no workstation-to-workstation or dis-to-dis ommuniation.The input matrix R is thus redued from 8� 8 to 4� 4. This small sizewill allow us to be very onrete and allow to learly trae what's going onbehind the senes.A matrix instane R:R M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 0; 95 0; 04 0; 07 0; 95D1 : 1 0; 02 0; 05 0; 06 0; 01D2 : 0 0; 03 0; 06 0; 05 0; 02D2 : 1 0; 01 0; 07 0; 04 0; 03is a problem instane for the Type 4-4 network.A possible path assignment is desribed by a matrix P :P M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S1 S1 S2 S2D1 : 1 S1 S1 S2 S2D2 : 0 S2 S2 S1 S1D2 : 1 S2 S2 S1 S1From P we read o� that all traÆ from M1 to D1 is routed through interme-diate swith S1, traÆ from M1 to D2 is routed trough S2, from M2 to D1through S2, and from M2 to D2 through S1. This results in following edgeloads: E �(E)e1 0; 95 + 0; 02 + 0; 04 + 0; 05 = 1:06e2 0; 03 + 0; 01 + 0; 06 + 0; 07 = 0:17e3 0; 05 + 0; 04 + 0; 02 + 0; 03 = 0:14e4 0; 07 + 0; 06 + 0; 95 + 0; 01 = 1:09e5 0; 95 + 0; 02 + 0; 04 + 0; 05 = 1:06e6 0; 07 + 0; 06 + 0; 95 + 0; 01 = 1:09e7 0; 05 + 0; 04 + 0; 02 + 0; 03 = 0:14e8 0; 03 + 0; 01 + 0; 06 + 0; 07 = 0:17The load of the path assignment P is the maximum of these values, i.e., 1.09.6

2.2 Lower bounds and omplexity of the problemFor the simplest lower bound de�ne �(R) = P(i;j) ri;j, i.e., as the sum ofall demands. Clearly this overall demand has to be brought through thenetwork. The load on a path ontributes to the load of two edges. Sinethere are 64 onneting edges we �nd that the maximum load of an edgeis at least 2 � �(R)=64 = �(R)=32. In other words �(A)�(R)=32 for everyassignment A. In general this bound ould at best be attained if we giveup on the requirement that the demand for (i; j) has to use just one pathand would instead allow this demand to spread over several intermediateswithes. The relaxation of the disrete nature of the demands an also beused in better lower bounds.For our Type 4-4 network and the input matrix R introdued in se-tion 2.1, we evaluate �(R) = 2:46. Sine our network is direted there areonly four edges at the upper and four at the lower level the load an bedistributed over. The simple lower bound then beomes �(R)4 = 0:615.To improve uppon this bound we onsider the eight edges inident to eahouter-swith separately, let �(Ms; R) = P(i;j);i2Ms ri;j +P(i;j);j2Ms ri;j. Theoverall bound ��(R) is obtained as 1=8 of the maximum of the eight values�(Ms; R), �(Du; R) for s; u = 1; ::; 4. This lower bound is the one we atuallyuse when evaluating the quality of algorithms for the path assignment. Notethat this bound an be as low as 1=8 of the load of an optimal assignment.This bad performane of the lower bound happens if for some s 2 [1::4℄ thewhole load �(Ms; R) is aused by the demand between just one pair of portsand all other demands are 0.In our example Type 4-4-network with input R we have to alulate:�(Ms; R) = Xi=1;2;j=0;1;k=0;1 rMs:k;Di:j for s = 1; 2�(Ds; R) = Xi=1;2;j=0;1;k=0;1 rMi:j;Ds:k for s = 1; 2:The demand represented by any one of these values has to be routed overone of two edges. Therfore the maximum of the four values, divided by two isa lower bound. This lower bound an still be as bad as 1/2 of real optimum.
7

For our input matrix R the values are:� max max =2M1 1:23M2 1:23D1 2:15 2:15 1:075D2 0:31We have thus gotten a muh better lower bound than before.Further inrease in the lower bound is possible by solving a paking prob-lem for eah outer-swith separately. More onretely the problem solved fora swith Ms is to assign eah of the demands ri;j, where i is a port at swithMs, as a whole to one of the four edges inident to Ms.If we solve this paking problem for swith D1 we get following optimalloads on edges e5; e6:e5 0:95 + 0:07 + 0:04 + 0:02 = 1:08e6 0:95 + 0:06 + 0:05 + 0:01 = 1:07In this small network one an see, D1 has the biggest demands, the threeother swithes would lead to weaker bounds. Note that again we got a betterlower bound than with previous method. The di�erene of the lower boundof 1.08 and the value 1.09 aheived by the onrete path assignment P hasbeome quite small.The paking problem that has to be solved for the lower bound disussedlast is a hard problem. Conretely, the deission version of the optimizationproblem is NP-omplete when the number n of opposite ports (number ofj's) is part of the input. A possible redution is from Partition. As aonsequene we note that our routing problem is also NP-omplete whenonsidered on an appropriately growing family of networks. Nevertheless,the paking lower bound is not ompletely useless, sine the problem thathas to be solved for eah swith an be approximated up to a fator of 1:75[Graham's list sheduling℄.Solving the paking problem for all swithes does not solve the routingproblem as whole. This is beause the optimal routes for eah of two swithesin soure-destination pair do not neessarily meet at the same intermediateswith. This is indiated with Figure ??.8

3 Solutions3.1 Input generatorsUnfortunately, we did not have a data set of real-world demands for therouting problem. To test algorithms we thus had to generate some arti�ialinputs. To have a good basis for a judgement of the strength and weaknessesof the algorithms we deided to produe several di�erent sets of inputs. Inpartiular we were interested in inputs that are hard to route, i.e., where theload of the path assignments produed by the algorithms were large omparedto lower bound. We deided to perform tests with the following three inputgenerators:Uniform distribution: Choose eah ri;j uniformly at random from [0; 1℄.1 with probability p: Eah ri;j is set to 1 with probability p, with theremaining probability 1� p the demand ri;j is 0.Large with probability p and fator f : The value for ri;j is set intwo steps.� ri;j is hosen uniformly at random from [0; 1℄� with probability p blow up ri;j by a fator of f (i.e., ri;j f � ri;j) withthe remaining probability 1� p leave ri;j unhanged.We experimented with some other input strategies. They proved to be notharder to route than 1 with probability p or large with probabilityp and fator f . Those two input strategies were seleted to be \diÆult"ompared to lower bound.Aording to our observation it is fairly easy to produe a good (almostoptimal) path assignment if one of the following onditions is ful�lled.1. demands do not vary strongly. (In this ase a routing an distributethe load evenly over the network { even a random assignment will bevery good in this ase.)2. a large fration of the overall load is produed by a small number oflarge demands. (In this ase a good routing only has has to keep thepaths for few large demands as disjoint as possible.)9

These onsiderations show that distributions onsidered in probability theory,e.g., normal-distribution, will not lead to interestig input data. In these asesthe demands are very onentrated, i.e. most demands ome from a smallinterval.3.2 HeuristisWe now desribe the algorithmi ideas used to generate routings for a giveninput set R representing demands.Random: Assign the intermediate swith for path P (i; j) uniformly atrandom, i.e., without onsidering the demand ri;j.Though the algorithmi idea of this heuristi is everythig but deep ithelps in evaluating inputs and other heuristis. More onretely, if a randomrouting is likely to give good path assignments on some input lass, then theinputs an be onsidered easy.A random path assignment for the Type 4-4 network:P (Rand) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S1 S2 S2 S1D1 : 1 S1 S1 S1 S1D2 : 0 S1 S1 S2 S2D2 : 1 S2 S1 S1 S1Evaluated with our example demands we �nd �(Rand) = 2:04, the maximumload being on edge e5.First Fit (FF): This heuristi is guided by the a global parameter C, whihmodels the apaity of an edge. Suppose there is a swith St suh that afterrouting P (i; j) through St the load of both edges used by P (i; j) remainsbelow C. In this ase FF will use the least indexed intermediate-swith withthis property. If there is no suh swith FF will assign P (i; j) suh that themaximal load after the assignment is minimal.Sine again we had no real basis for the spei�ation of a value for C. Wedeided to hooseC(R) = maxi port of Msj port of Dkf�(Ms; R); �(Dk; R)g s; k = 1; 2thus depending on the input matrix R or more preisely on the demandsbetween pairs of outer swithes, we all suh a set of demands a demandgroup. 10

In our example network, there are 4 demand groups:1. M1 ! D1) C1 = 1:0752. M1 ! D2) C2 = 0:6153. M2 ! D1) C3 = 1:0754. M2 ! D2) C4 = 0:615Let us look at a run of the FirstFit heuristi. The algorithm would routethe demands M1 : 0 ! D1 : 0 and M1 : 0 ! D1 : 1 over the swith S1 withload of 0.97 on edges e1; e5 staying below the \apaity" C = C1.The next two demands M1 : 0 ! D2 : 0 and M1 : 0 ! D2 : 1 would berouted over swith S2, sine edge e1 to swith S1 is overloaded aording toapaity C. This leaves edges e2 and e8 with load 0.04.The next four demands: M1 : 1 ! D2 : 0 through M1 : 1 ! D2 : 1,would be routed the same way, with �rst two leaving edges e1; e5 with load1.06 under apaity C, and the next two taking swith S2 due to apaity C,thus ausing load of 0.17 on edges e2; e8.The traÆ path fromM2 : 0 to both ports of D1 goes through S2, beauseeah of two demands would overload the edge e5. After these steps edges e4; e6have load 0.13.The next two paths from M2 : 0 to ports of D2 go over swith S1 beausethe load 0.09 on involved edges e3; e7 stays under apaity C.The next requirement M2 : 1 ! D1 : 0 auses overow on both possiblepaths: taking swith S1 would result in load 2.01 on edge e5, path over S2would leave edges e4; e6 with load 1.08. The algorithm hooses the seondpath beause it has lesser overow.The rest demands would be routed over S1, beause eah leaves edge loadsunder apaities C and C respetively.The maximal load of this path assignment is �(FF) = 1:08.Best Fit (BF): This heuristi also uses the apaity C of an edge. BF givespreferene to a swith St suh that after routing P (i; j) through St the loadof both edges used by P (i; j) remains below C but the load of one of theseedges omes as lose to C as possible. If all assignments violate the apaitythen BF will assign P (i; j) suh that the maximal load after the assignmentis minimal. 11

For our Type 4-4 network this heuristi would produe the following pathassignment: P (BF) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S2 S2 S1D1 : 1 S2 S2 S1 S1D2 : 0 S1 S1 S1 S2D2 : 1 S1 S1 S1 S2with �(BF) = 1:13 on edge e6.Best Balane (BB): BB assigns P (i; j) to the path whih has the leastload on the heavier-loaded of the two edges of the path.Aording to this heuristi the �rst demand M1 : 0 ! D1 : 0 an beassigned to any of two possible paths sine they are equally loaded. Theimplementation of the algorithm hooses the last of equally loaded paths, inthis ase one over S2.The next 9 demands have either e2 or e6 as parts of one of two possibleways. All these demands are muh smaller then the �rst one, thus the loadon an alternative path stays under this on path with edges e2 or e6. So theywill all be routed over S1.The alternatives for next two requirements M2 : 0 ! D2 : 0 = 0:5 andM2 : 0! D2 : 1 = 0:4 are:� e3; e7 with maximal urrent load 0.17, and� e4; e8 with no urrent load.So they are both routed over the seond path.For the next demand M1 : 1 ! D1 : 0 hooses the algorithm the pathe3; e5 with load 0.24 against the path e4; e6 with urrent load 0.95. Thatinreases load on e5 to 1.19. The next traÆ M1 : 1 ! D1 : 1 has the samealternatives and will be routed over now less loaded way e4; e6.The last two requirements take the least loaded path e4; e8. The pathmatrix is now: P (BB) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S1 S1 S1D1 : 1 S1 S1 S1 S2D2 : 0 S1 S1 S2 S2D2 : 1 S1 S1 S2 S212

with �(BB) = 1:19 on edge e5.Sorted Best Balane (SoBB): The assignment of the route for P (i; j)is guided by the same rule as in algorithm BB. The di�erene is that thepairs (i; j) are onsidered in order of dereasing demand.Sorting of demands avoids the e�et we have seen in example above, thatthe edges get �rst loaded with many small demands, and the large demandsome on top of those. So we got some heavy weighted paths, and some lightweighted with obvious optimization opportunities.For our network the same algorithm as above with prior sorted demandsprodues following paths:P (SoBB) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S2 S2 S1D1 : 1 S2 S1 S1 S1D2 : 0 S1 S1 S2 S2D2 : 1 S1 S1 S2 S2with �(SoBB) = 1:08 on edge e6.For this example �rst �t and sorted best balane heuristis produe routeswith the same maximal load, whih is in this ase also the optimum. In mostases though the best balane algorithm with prior sorted demands produesbetter results.k-Optimum (k-Opt): The route for the input R is �rst assigned usingone of the heuristis above (e.g. random). Then one of the demand on theheaviest edge will be rerouted over some other edge pair. After k reroutingsare performed, the new path assignment is evaluated and if it is better, theold one is replaed. The algorithm terminates when all possible reroutingswere performed and no improvement was ahieved.The simplest k-Opt is 1-opt: one of the demands gets assigned a new path.The new route is evaluated and if it got better the old one is substituted.Let us take the random route assignment for our example network asstart position. Reall that the random heuristi left us with the edge loadsshown in the following table:
13

Edge Load Demande1 1.18 M1 : 0 ! D1 : 0, M1 : 0 ! D1 : 1, M1 : 0 ! D2 : 0,M1 : 1! D1 : 1, M1 : 1! D2 : 0, M1 : 1! D2 : 1e2 0.05 M1 : 0! D2 : 1, M1 : 1! D1 : 0e3 1.09 M2 : 0 ! D1 : 1, M2 : 0 ! D2 : 1, M2 : 1 ! D1 : 0,M2 : 1! D1 : 1, M2 : 1! D2 : 1e4 0.14 M2 : 0! D1 : 0, M2 : 0! D2 : 0, M2 : 1! D2 : 0e5 2.04 M1 : 0 ! D1 : 0, M1 : 0 ! D1 : 1, M1 : 1 ! D1 : 1,M2 : 0! D1 : 1, M2 : 1! D1 : 0, M2 : 1! D1 : 1e6 0.11 M1 : 1! D1 : 0, M2 : 0! D1 : 0e7 0.23 M1 : 0 ! D2 : 0, M1 : 1 ! D2 : 0, M1 : 1 ! D2 : 1M2 : 0! D2 : 1, M2 : 1! D2 : 1e8 0.08 M1 : 0! D2 : 1, M2 : 0! D2 : 0, M2 : 1! D2 : 0Sine our goal is to minimize the maximal load, we start to reroute de-mands, whose paths go through the most loaded edge: e5. The order inwhih the algorithm tries to rerout and improve is not spei�ed. Supposethe �rst attemt is to �nd an alternative route for demand M1 : 0 ! D1 : 0.The only hoie for an alternative path is to use edges e2; e7. The new loadsof involved edges are: e1 0:23e5 1:09e2 1:00e7 1:18This is an improvement, therefore, the demand is �xed to the new path.With the new path assignment the most loaded edge is e7, so wthe heuristiwill try to reroute one of the demands going through it. The proedure isrepeated until alternative path for all demands on the heaviest edge havebeeen onsidered and no improvement was ahieved.The random heuristi seems to be a good hoie if no traÆ data is known.We used random as \standard" to ompare with other heuristis. The ideafor the other heuristis are inspired by well studied bin-paking heuristis. Inthe ase of bin-paking the orresponding �st-�t and best-balane heuristisare known to give reasonable approximations of the optimal solution. Sortedbest balane ahieves better results than the other heuristis beause largerloads are routed �rst and smaller demands an later be used to balane theload on the edges. 14

In ontrast to the other heuristis k-Opt is guaranteed to produe aloally optimal solution. We observed improvements in almost all ases. Thereal drawbak of this routine is in the running times whih easily exeed 1 {2 hours.3.3 Software design and implementationThe software system onsists of three major modules: network models, inputgenerators, and heuristis, and a module for evaluating diverse ombinationsof inputs and heuristis { Eval as shown in �gure 5.
Network

Network64 Network128

Input

InpuGV

Input01

InputP

InputF

Heuristic

HeuristFF

HeuristBF

HeuristBB

HeuristBBS

HeuristRand

HeuristLO

Way TrafficRoute

Eval

Quality

Figure 5: UML-Diagram of the software systemNetwork models ontain the information about the network struture,traÆ demands and urrent routes. They an also ompute the lower boundfor the maximal load on edges, and write routing information to a �le.� Network is an abstrat lass, whih ontains the information and fun-tionality ommon for all network types.� Network64 represents a SANbox with 64 ports.� Network128 models a 128 type network.Input generators generate demands for the networks following di�erentstrategies. 15

� Input is an abstrat lass.� InputGV generates uniformly distributed inputs.� Input01 produes 1 as an input with a given probability p.� InputP generates a large input (multiplied by given fator f) withprobability p.� InputF reads input from �le.Heuristis alulate routes for a given network with it's inputs.� Heuristi is an abstrat lass, whih ontains funtionality ommonto all heuristis, suh as ommuniation with network.� HeuristBF implements best �t heuristi.� HeuristFF assigns routes aording to �rst �t heuristi.� HeuristBB uses best balane heuristi.� HeuristBBS makes network to sort it's inputs desending �rst, andthen ats like HeuristBB.� HeuristRandmakes random routing without taking any notion of presentondition of the network.The others are helper lasses:� Way ontains an information about one possible path,� Traffi ontains information about one demand,� Route assigns a path (route) to one demand,� Quality is used by Eval and is used to keep information suh as lowerbound, maximal load, maximal loaded edge.Neither heuristi modules nor input generators need to know the strutureof the network. On the one side it makes it easy to implement new heuristisor input generators, on the other the network models an be replaed withno hange needed in heuristi or input generator implementation.16

UsageassignRoute takes network type, input type or input �le, heuristi and anoptional output �le as input parameters. It omputes the path assignmentand writes it to output �le, if speialized.The syntax is following:assignRoute network input heuristi [o out�le ℄wherenetwork is 64 or 128, for type 64 and 128 networks respetively;input is one ofi �le for reading input from �le (InputF),u for uniformly distributed input (InputGV),p n for input generator produing 1 with probability 1/n (Input01),n n f fator for produing large by fator fator inputs withprobability 1/n (InputP);heuristi is one offf for First Fit,bf for Best Fit,bb for Best Balane,bs for Best Balane with sorted inputs,rand for Randomk n for k-Opt with k = n.We also implemented some test programs to gain the statisti data:stat n network inputswhere n is number of experiments, network as above and inputs is one ormore inputs as above. The program produes n inputs of eah type, �ndspath assignments with all but k-Opt heur istis and gives bak average lowerbound and greatest last values for eah input-heuristi pair.Another test program we implemented is optStat:optStat n heuristi network inputs k kwith n, network, inputs as above, heuristi as in assignRoute exept for k-Opt, and k is the parameter for the k-Opt heuristi. This program omputes�rst path assignment with given heuristi and tries to optimize it with k-Opt.The result is omparison between heuristi and k-Opt over n experiments.17

3.4 Integer program modelThe problem model as desribed in setion 2.1 an be rewritten as an integerprogram. The integer program onsists of the following linear equations andinequalities (e.g. for Type 128 network):Let P = f1; : : : ; 128g be set of ports, (1)S = f1; : : : ; 8g set of intermediate swithes (2)8i; j 2 P; s 2 S x(s)i;j 2 f0; 1g (3)8i; j 2 P Xs2S x(s)i;j = 1 (4)8 edges (i; s) Xk2P x(s)i;kri;k +Xk2P x(s)k;irk;i � B (5)minimize B (6)where B is the maximal load on the network andx(s)i;j = �1;0; if demand ri;j is routed over swith selseThe di�erene between integer program and a linear program is that ininteger program solution the x variables an only have integer values: 0 or1, in a linear program solution they may also assume oating point values.The equation (3) would be like8i; j 2 P; s 2 S x(s)i;j 2 [0; 1℄meaning that portion of the demand ri;j is routed over swith s. This ondi-tion is a relaxation of that in equation (3).The next equation (4) just says that exatly the demand ri;j is routedbetween ports i; j over all swithes s. For the integer program it means thatfor one and only one s x(s)i;j = 1.Equation (5) sets the upper bound B for loads on all edges. It meansthat the load sum on eah edge should be less than B.With objet to minimize B (6) we express the wish to keep maximalload minimal. The values of x-variables for the found solution desribe theoptimal routing.For other network types parameter in (1) and (2) have to be hanged.18

Though integer programming is a NP-omplete problem, it is also a veryimportant one. Many people have done a lot of researh and work in thatarea in order to make good and fast solvers. As result there are solvers forinteger programming available that are relative fast. The one we used isCPLEX1.The model was desribed in A Modeling Language For MathematialProgramming (AMPL2), and the results in setion 4 were obtained usingCPLEX solver.4 Results4.1 Statistial evaluationThe following tables show some omputational results. Eah row of the tableompares the performane of the �ve algorithms on inputs generated by theinput generator spei�ed in the �rst olumn. The numbers haraterize theaverage performane over ten inputs of that type.The entries of the table have been obtained as the ratio of theload produed by the heuristi over the lower bound on the load.We exemplify this with a onrete instane and show how the bold value1.24528 in the table was generated. The input generating algorithm 1 withprobability 1/64 produed a sequene R1; R2; : : : ; R10 of inputs. For eahRi the lower bound ��(Ri) was alulated. The best-�t heuristi was run oninput Ri, the load of this assignment is denoted �(BF (Ri)). The averageperformane was �nally obtained as:110 10Xi=1 �(BF (Ri))��(Ri)1CPLEX is linear, mixed-integer and quadrati programming solver. The maintaineris CPLEX division of ILOG [5℄.2AMPL is a omprehensive and powerful algebrai modeling language for linear andnonlinear optimization problems, in disrete or ontinuous variables, developed at BellLaboratories.AMPL lets one use ommon notation to formulate optimization models and ex-amine solutions, while the omputer manages ommuniation with an appropriatesolver.Suessfully used in demanding model appliations around the world, AMPL isavailable on a variety of PC and UNIX platforms. More information about AMPL in [4℄.19

Table 1: Type 64 networkFF BF BB SoBB RANDUniformly distributed1.06522 1.09076 1.00864 1.00004 1.213211 with probability1/4 1.02834 1.07105 1.01191 1.01191 1.314171/16 1.05417 1.08931 1.04246 1.04246 1.674961/64 1.24528 1.24528 1.24528 1.24528 2.150941/512 2.28571 2.28571 2.28571 2.28571 4.571431/1024 3.33333 3.33333 3.33333 3.33333 5.33333Fator 100 with probability1/4 1.05975 1.09067 1.02673 1.00001 1.405671/16 1.10331 1.18113 1.08668 1.00001 1.673641/64 1.08718 1.39074 1.24096 1.00001 1.942091/512 1.22016 1.74462 1.61577 1.11816 2.310871/1024 1.20426 1.79604 1.55409 1.12589 2.02765Fator 500 with probability1/4 1.05517 1.07962 1.02690 1.00001 1.414761/16 1.09232 1.18616 1.09193 1.00001 1.738841/64 1.25942 1.49942 1.28602 1.02441 2.204441/512 2.37386 2.89089 2.54823 2.37386 3.882581/1024 2.81228 3.35943 3.06592 2.81064 3.89611Fator 1000 with probability1/4 1.05759 1.08367 1.02655 1.00001 1.415671/16 1.10007 1.19820 1.08802 1.00004 1.746871/64 1.25653 1.51018 1.30433 1.05419 2.248801/512 2.77952 3.24661 2.87444 2.77952 4.381201/1024 3.60928 4.07431 3.77362 3.60822 4.75084Fator 4000 with probability1/4 1.05582 1.08004 1.02628 1.00016 1.416541/16 1.10624 1.19695 1.09135 1.00339 1.753011/64 1.29337 1.51415 1.31629 1.08357 2.284381/512 3.18812 3.54008 3.21534 3.18812 4.883431/1024 4.60227 5.03404 4.65499 4.60193 5.8157620

Table 2: Type 128 networkFF BF BB SoBB RANDUniformly distributed1.05236 1.05868 1.00297 1.00001 1.177831 with probability1/4 1.03779 1.05025 1.00662 1.00662 1.298011/32 1.11675 1.13706 1.07614 1.07614 1.827411/128 1.23077 1.23077 1.15837 1.15837 2.171951/512 1.55556 1.55556 1.33333 1.33333 3.333331/1024 1.63265 1.63265 1.63265 1.63265 3.91837Fator 50 with probability1/4 1.04403 1.05490 1.01146 1.00001 1.285941/32 1.07848 1.12688 1.06490 1.00001 1.552101/128 1.11492 1.21692 1.10337 1.00001 1.595361/512 1.15660 1.26020 1.14894 1.00001 1.520811/1024 1.20188 1.27930 1.16499 1.00001 1.45033Fator 100 with probability1/4 1.04310 1.05765 1.01181 1.00000 1.295321/32 1.08936 1.13835 1.07832 1.00001 1.649091/128 1.13152 1.28187 1.16078 1.00001 1.869231/512 1.15259 1.44978 1.27817 1.00001 1.866581/1024 1.17123 1.50721 1.34991 1.00001 1.79037Fator 500 with probability1/4 1.04122 1.05470 1.01190 1.00001 1.299331/32 1.08401 1.16855 1.08561 1.00001 1.753561/128 1.21807 1.48044 1.25240 1.00001 2.369411/512 1.37163 2.00984 1.60833 1.27582 2.920331/1024 1.70248 2.33018 2.03912 1.68174 3.09234Fator 1000 with probability1/4 1.04167 1.05821 1.01222 1.00000 1.300841/32 1.08393 1.16316 1.09296 1.00032 1.770141/128 1.31577 1.53745 1.27524 1.01042 2.468961/1024 2.12773 2.69518 2.34948 2.12773 3.6444921

During the �rst phase of the projet we where experimenting with aspeial network. Basially the network is like Typre 64, the di�erene is thatinstead of double it has single onnetions between swithes. This networkwas used to analyze several input strategies and routing heuristis. Therouting problem for this network is onsiderably smaller than the problem forthe Type 64 network. This makes a great di�erene in the omputation timefor the integer program and for the k-Opt heuristi. Though we implementedthese algorithms for general networks we have evaluated them only for thesimpli�ed Type 64 network. The reason for this restrition was that only withthis network the number of experiments needed for the statistial evaluationould be performed in reasonable time .Table 3: Simpli�ed Type 64 networkFF BF BB SoBB RAND OPT 1-OPTUniformly distributed1.05777 1.08337 1.00287 1.00002 1.10636 1.00000 1.00002Fator 100 with probability1/2 1.04720 1.05972 1.00475 1.00003 1.14636 1.00001 1.000021/16 1.03714 1.09033 1.03226 1.00010 1.33402 1.00001 1.000041/32 1.05344 1.13930 1.05187 1.00001 1.47163 1.00001 1.000011/128 1.04069 1.22027 1.14611 1.00001 1.77608 1.00001 1.000011/512 1.49359 1.98240 1.60244 1.42079 2.97277 1.18329 1.547061/1024 1.05035 1.27032 1.16791 1.00001 1.61586 1.00000 1.00002Fator 1000 with probability1/2 1.04667 1.05744 1.00477 1.00001 1.14731 1.00000 1.000001/16 1.03777 1.10549 1.03541 1.00000 1.37344 1.00000 1.000001/32 1.06219 1.16059 1.07659 1.00130 1.56908 1.00002 1.008161/128 1.16824 1.44765 1.22576 1.03473 2.25696 1.02085 1.102781/512 1.52917 1.94573 1.64528 1.45989 2.30137 1.22531 1.423841/1024 1.85392 2.36375 2.02100 1.82638 2.50154 1.70653 1.82162The results di�er from those obtained in �rst phase of the projet (om-pare Table 3 and Table 4). In the �rst phase of the projet we were assumingthat all the demand would be between ports loated at some mahine swithMs and ports loated at some disk swith Du. This assumption redues the22

size of the input matrix from 64� 64 to 32� 32. networks in the �rst stagewere assumed to be direted with only traÆ between mahine and diskswithes. Thus the input matrix had dimensions 32� 32 instead of 64� 64whih it has now. Thais means that 4 times more demands have to be routedover the same set of available edges. Therefore with the larger input matrixthe edge loads an be balaned muh better and the ratio to the lower boundis smaller.Table 4: Simpli�ed Type 64 network with 32� 32 input.FF BF BB SoBB RANDUniformly distributed1.00401 1.02783 1.00915 1.00015 1.22408Fator 1000 with probability1/2 1.00924 1.02752 1.01778 1.00005 1.287371/16 1.12357 1.13486 1.12443 1.01555 1.685991/32 1.23210 1.23216 1.23214 1.06034 1.931651/128 1.74524 1.76007 1.76051 1.69249 2.566121/512 2.54587 2.55284 2.59625 2.50725 3.052561/1024 2.93044 2.93992 2.99362 2.89226 3.17847The data shown in the tables shows that it is reasonable to rank thealgorithms in the following order RAND < BF < FF < BB < SoBB � k-Opt. It is also obvious that some inputs are more diÆult than others. Theresults also on�rm our onsideration from setion 3.1 that the more (similar)demands an input ontains, the easier it is to �nd a good path assignment.4.2 Computation timeThe average omputation time for all heuristis (exluding k-Opt) for Type64 networks is 15 se. The same heuristis ompute path alloation for Type128 network within average 1 min. 1-Opt needs about 2.8 min. for Type 64network and 16 min. for Type 128 network.The integer program omputes the optimal route for Type 64 networks inaverage in 1.59 hours. Whereby the omputation time of an integer programvaries greatly: from 11.6 seonds to 28 hours. The average omputation timefor Type 128 network is 39 hours. 23

Heuristis omputation time was measured on a Celeron 433 MHz ma-hine with 128 Mb RAM. The integer program was tested on an UltraSpark2 with two 300 MHz proessors with 768 Mb RAM.5 New Problem De�nitionIn the third phase of the projet we made some researh on the new problemde�nition: The matrix R as de�ned in setion 2.1 is unknown. Instead weassume to know� the urrent path assignments P (i; j); 8i; j 2outer ports,� the total inoming and outgoing traÆ F (i); T (i) through outer porti; 8i,� if the intermediate swith Si needs to bu�er, the bu�ering information,Task is to �nd an improved path assignment whih redues the need forbu�ering.The researh was onentrated on reonstrution of demand matrix R.The idea was: sine we already have good path alloation algorithms, we needto get good approximation for input matrix R and �nd new path assignmentby applying formerly implemented algorithms.The �rst observation one an make is that F (i); T (i) are the row andolumn sums of the matrix R. The general problem of matrix reonstrutionfrom it's row and olumn sums does not have unique solution. Though in ourase we have further onditions that restrit the set of aeptable solutions,there still an be more than one solution.The orresponding mathematial model is following:LetP (i; j) = (ex; ey) is Path assignment over edges ex, ey for traÆ fromport i to port j,n = number of outer ports (64 or 128), = apaity of edges e, sine all onnetions apply the same tehnologythe apaities should be equal,�(e) = bu�ering on edge e, 24

ri;j 2 R traÆ demand from port i to port j,Then 0 � ri;j � minfF (i); T (j)g (7)nXj=1 ri;j = F (i) 8i = 1 : : : n (8)nXi=1 ri;j = T (j) 8j = 1 : : : n (9)Xe2P (i;j) ri;j = + �(e) 8e with �(e) > 0 (10)Xe2P (i;j) ri;j � 8e with �(e) = 0 (11)desribe a linear program model for the problem. This time we use linearand not integer programming beause the values of demands do not haveto be integer values, and there are no other onditions that require integersolution, as there were in initial problem.Inequality (7) sets the natural bounds for eah demand, saying that it annot be negative or greater than sum of all demands going from it's soureport or oming into it's destination port.Equations (8) and (9) express that F (i) is sum of demands with sourei and T (j) is total of demands with destination j. Equation (10) states thebu�ering information and inequality (11) sets the upper bound for sum ofdemands routed over onnetion e with no bu�ering.Sine there is more than one solution possible, we an not just say '�nd R'.However we ould solve linear problems with model above and objet: 'min-imize ri;j' for all values of i and j. That would provide us a matrix R withminimal values for eah ri;j. The matrix R it self is not neessarily a possiblesolution.Analog we ould obtain matrix R by solving the maximization problemfor eah ri;j. That would be 2� n2 linear problems. Though both matriesR and R do not neessarily belong to possible solutions set, the give us abounding box for that set.Another idea was to onsider onvex ombinations of solutions. We oudnot proeed further from this point simply beause the funding for the projetterminated. 25

Bibliography[1℄ http://www.qlogi.om[2℄ http://www.spaey.net/ldavis/Design Connetor FibreChannel.html[3℄ http://www.�brehannel.org/tehnology/[4℄ http://www.ampl.om[5℄ http://www.plex.om

26

