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1 Introdu
tionThe Storage Area Network Optimization Proje
t (SANO) is a 
ooperationof An
or Communi
ations (now QLogi
) and Freie Universit�at Berlin.The information explosion and the need for high-performan
e 
ommuni-
ations for server-to-storage and server-to-server networking have been thefo
us of mu
h attention during the 90s. Performan
e improvements in stor-age, pro
essors, and workstations, along with the move to distributed ar-
hite
tures su
h as 
lient/server, have spawned in
reasingly data-intensiveand high-speed networking appli
ations. The inter
onne
t between thesesystems and their input/output devi
es demands a new level of performan
ein reliability, speed, and distan
e. Fibre Channel, a highly-reliable, gigabitinter
onne
t te
hnology allows 
on
urrent 
ommuni
ations among worksta-tions, mainframes, servers, data storage systems, and other peripherals usingSCSI and IP proto
ols. It provides inter
onne
t systems for multiple topolo-gies that 
an s
ale to a total system bandwidth on the order of a terabitper se
ond. Fibre Channel delivers a new level of reliability and throughput.Swit
hes, hubs, storage systems, storage devi
es, and adapters are among theprodu
ts that are on the market today, providing the ability to implement atotal system solution.A Storage Area Network (SAN) is a network behind the servers linkingone or more servers to one or more storage systems. QLogi
 o�ers a broadprodu
t line of SAN infrastru
ture (see[1℄). One of them is a SANbox {swit
h based on �bre 
hannel te
hnology (see Figure 1).QLogi
 o�ers SANboxes in 8-, 16-, 64-, and 128-port 
on�guration. Thesubje
t of this proje
t were 64- and 128-type networks. The main task inthe Storage Area Network Optimization Proje
t (SANO) was the design andimplementation of o�-line path allo
ation algorithms for these multi-stage�bre 
hannel networks.The path allo
ation problem arises be
ause routes between ports of aSANbox are stati
, i.e. 
an not be 
hanged dynami
 at real time. The limitis due to the �ber 
hannel spe
i�
ation. Due to the stati
 allo
ation of routesit 
an happen that a set of ports 
ause a lot of traÆ
 on a spe
i�
 
onne
tionthus for
ing bu�ering and delay, while other 
onne
tions are are underloadedand would be able to 
arry more traÆ
. It is though possible to 
hangeroutes within a SANbox, but the box has to be taken o�ine for that task.The basi
 question adressed in the proje
t was the following.2



Figure 1: possible usage of a SANbox� Assuming a 
ertain 
ommuni
ation demand between ports of the boxdesign and evaluate algorithms for path allo
ation that make the needfor bu�ering unlikely.The �rst phase of the proje
t was used to realize a small pilot-proje
t.The aim of this was to get some feeling for the problem so that we 
an makesuggestions on how to pro
eed in the main phase of the proje
t.In the main phase routing algorithms for all in proje
t 
onsidered networktypes were implemented, and integer program models for optimal solutionswith Cplex were designed.The implemented system 
onsists of several parts whi
h 
an be des
ribedas follows:1. The design of data-stru
tures to model inputs and routings on two ofthe network topologies supported by An
or (Type 64 and Type 128).2. The implementation of input models, i.e., assignment of a 
ommuni
ation-demand to ea
h pair of ports.3. The design and implementation of routing heuristi
s, i.e., assignmentof a 
ommuni
ation-path to ea
h pair of ports.4. The implementation of an evaluation tool that allows to do some statis-ti
s and 
ompares the obje
tive value of solutions produ
ed by the3



heuristi
s with a lower bound.5. The design and implementation of an integer program model for �ndingoptimal solutions.Close to the end of the proje
t the problem be
ame a fo
us shift. Indis
ussion with engeneers from An
or it was realized that it is very unlikelyto have any good guess ore measurement of port-to-port 
ommuni
ation de-mands. At best it would be feasible to measure the load at ea
h port dis-regarding the 
orresponding sender/re
eiver port. In a third phase we triedsome ideas to atta
k the new problem. In parti
ular we analyzed ways ofgetting a guess of port-to-port 
ommuni
ation from the data of the portloads. And of improving a path assignment given the data of port loads andsome information about 
ongestions. This last part of the proje
t will onlybe des
ribed quite super�
ial in se
tion 5 of this report.2 Problem2.1 Model for the problemWe 
onsider the Type 64 and Type 128 networks whi
h have 64 or 128 portsrespe
tively.For the type 64 network a problem instan
e (input) 
an be 
onsidered asa 64� 64 matrix R = (ri;j) where ri;j is the load imposed to the network bythe 
ommuni
ation between ports i and j, we will 
all ri;j the demand of pair(i; j). An input-generating algorithm will usually produ
e demands betweenzero and one, i.e., 0 � ri;j � 1.The network 
onsists of three layers of routing-swit
hes, see Figure 2.Though the �rst and third layer are equal we still, by histori
al reasons,denote the swit
hes on these layers by M and D. Ea
h of the eight outer-swit
hes Ms, Du has 2 � 8 ports, so it 
an be 
onne
ted to 8 ma
hines ordisks on the out side, and doubly 
onne
ted to ea
h of the 4 swit
hes Stfrom the intermediate-layer on the other side. A legal path for the demandri;j 
an be des
ribed by spe
ifying a pair of ports: on the outer swit
h andon an intermediate-swit
h used by the path. We denote the path assignedto the pair (i; j) by algorithm A as PA(i; j). The load of an edge E underassignment A and a given demand R is de�ned as�(E) =Xfri;j : PA(i; j) uses Eg:4
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Figure 3: type 4-4 net-work

swit
hes and 8 intermediate swit
hes, ea
h of thesame type as above, so it has 128 outer ports (ports),and single 
onne
tions between outer and intermediate-swit
hes. In the 
ase of single 
onne
tions the pathfor one demand 
an be des
ribed by an intermediateswit
h, through whi
h the demand is routed.We illustrate the methods and algorithms weused for these 
omplex networks on a small examplenetwork with four outer swit
hes and two interme-diate swit
hes, ea
h having 2 � 2 ports. Let 
all ita Type 4-4 network (Figure 3). We will furtheronexplain important 
on
epts and algorithms at theType 4-4 network.Further simplifying the problem we assume that the only non-zero de-mands are those from ports on the upper side to ports on the lower side,5



i.e. there is only traÆ
 from swit
hes Mi to swit
hes Dj, i; j = 1; 2. Thissimpli�
ation is suggested by the idea that the workstations (ma
hines) are
onne
ted to one side of the network (ports of M -swit
hes) and storage de-vi
es (dis
s) are 
onne
ted the other side (to ports of D-swit
hes). The as-sumption about the demands then 
orresponds to the assumption that thereis no workstation-to-workstation or dis
-to-dis
 
ommuni
ation.The input matrix R is thus redu
ed from 8� 8 to 4� 4. This small sizewill allow us to be very 
on
rete and allow to 
learly tra
e what's going onbehind the s
enes.A matrix instan
e R:R M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 0; 95 0; 04 0; 07 0; 95D1 : 1 0; 02 0; 05 0; 06 0; 01D2 : 0 0; 03 0; 06 0; 05 0; 02D2 : 1 0; 01 0; 07 0; 04 0; 03is a problem instan
e for the Type 4-4 network.A possible path assignment is des
ribed by a matrix P :P M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S1 S1 S2 S2D1 : 1 S1 S1 S2 S2D2 : 0 S2 S2 S1 S1D2 : 1 S2 S2 S1 S1From P we read o� that all traÆ
 from M1 to D1 is routed through interme-diate swit
h S1, traÆ
 from M1 to D2 is routed trough S2, from M2 to D1through S2, and from M2 to D2 through S1. This results in following edgeloads: E �(E)e1 0; 95 + 0; 02 + 0; 04 + 0; 05 = 1:06e2 0; 03 + 0; 01 + 0; 06 + 0; 07 = 0:17e3 0; 05 + 0; 04 + 0; 02 + 0; 03 = 0:14e4 0; 07 + 0; 06 + 0; 95 + 0; 01 = 1:09e5 0; 95 + 0; 02 + 0; 04 + 0; 05 = 1:06e6 0; 07 + 0; 06 + 0; 95 + 0; 01 = 1:09e7 0; 05 + 0; 04 + 0; 02 + 0; 03 = 0:14e8 0; 03 + 0; 01 + 0; 06 + 0; 07 = 0:17The load of the path assignment P is the maximum of these values, i.e., 1.09.6



2.2 Lower bounds and 
omplexity of the problemFor the simplest lower bound de�ne �(R) = P(i;j) ri;j, i.e., as the sum ofall demands. Clearly this overall demand has to be brought through thenetwork. The load on a path 
ontributes to the load of two edges. Sin
ethere are 64 
onne
ting edges we �nd that the maximum load of an edgeis at least 2 � �(R)=64 = �(R)=32. In other words �(A)�(R)=32 for everyassignment A. In general this bound 
ould at best be attained if we giveup on the requirement that the demand for (i; j) has to use just one pathand would instead allow this demand to spread over several intermediateswit
hes. The relaxation of the dis
rete nature of the demands 
an also beused in better lower bounds.For our Type 4-4 network and the input matrix R introdu
ed in se
-tion 2.1, we evaluate �(R) = 2:46. Sin
e our network is dire
ted there areonly four edges at the upper and four at the lower level the load 
an bedistributed over. The simple lower bound then be
omes �(R)4 = 0:615.To improve uppon this bound we 
onsider the eight edges in
ident to ea
houter-swit
h separately, let �(Ms; R) = P(i;j);i2Ms ri;j +P(i;j);j2Ms ri;j. Theoverall bound ��(R) is obtained as 1=8 of the maximum of the eight values�(Ms; R), �(Du; R) for s; u = 1; ::; 4. This lower bound is the one we a
tuallyuse when evaluating the quality of algorithms for the path assignment. Notethat this bound 
an be as low as 1=8 of the load of an optimal assignment.This bad performan
e of the lower bound happens if for some s 2 [1::4℄ thewhole load �(Ms; R) is 
aused by the demand between just one pair of portsand all other demands are 0.In our example Type 4-4-network with input R we have to 
al
ulate:�(Ms; R) = Xi=1;2;j=0;1;k=0;1 rMs:k;Di:j for s = 1; 2�(Ds; R) = Xi=1;2;j=0;1;k=0;1 rMi:j;Ds:k for s = 1; 2:The demand represented by any one of these values has to be routed overone of two edges. Therfore the maximum of the four values, divided by two isa lower bound. This lower bound 
an still be as bad as 1/2 of real optimum.
7



For our input matrix R the values are:� max max =2M1 1:23M2 1:23D1 2:15 2:15 1:075D2 0:31We have thus gotten a mu
h better lower bound than before.Further in
rease in the lower bound is possible by solving a pa
king prob-lem for ea
h outer-swit
h separately. More 
on
retely the problem solved fora swit
h Ms is to assign ea
h of the demands ri;j, where i is a port at swit
hMs, as a whole to one of the four edges in
ident to Ms.If we solve this pa
king problem for swit
h D1 we get following optimalloads on edges e5; e6:e5 0:95 + 0:07 + 0:04 + 0:02 = 1:08e6 0:95 + 0:06 + 0:05 + 0:01 = 1:07In this small network one 
an see, D1 has the biggest demands, the threeother swit
hes would lead to weaker bounds. Note that again we got a betterlower bound than with previous method. The di�eren
e of the lower boundof 1.08 and the value 1.09 a
heived by the 
on
rete path assignment P hasbe
ome quite small.The pa
king problem that has to be solved for the lower bound dis
ussedlast is a hard problem. Con
retely, the de
ission version of the optimizationproblem is NP-
omplete when the number n of opposite ports (number ofj's) is part of the input. A possible redu
tion is from Partition. As a
onsequen
e we note that our routing problem is also NP-
omplete when
onsidered on an appropriately growing family of networks. Nevertheless,the pa
king lower bound is not 
ompletely useless, sin
e the problem thathas to be solved for ea
h swit
h 
an be approximated up to a fa
tor of 1:75[Graham's list s
heduling℄.Solving the pa
king problem for all swit
hes does not solve the routingproblem as whole. This is be
ause the optimal routes for ea
h of two swit
hesin sour
e-destination pair do not ne
essarily meet at the same intermediateswit
h. This is indi
ated with Figure ??.8



3 Solutions3.1 Input generatorsUnfortunately, we did not have a data set of real-world demands for therouting problem. To test algorithms we thus had to generate some arti�
ialinputs. To have a good basis for a judgement of the strength and weaknessesof the algorithms we de
ided to produ
e several di�erent sets of inputs. Inparti
ular we were interested in inputs that are hard to route, i.e., where theload of the path assignments produ
ed by the algorithms were large 
omparedto lower bound. We de
ided to perform tests with the following three inputgenerators:Uniform distribution: Choose ea
h ri;j uniformly at random from [0; 1℄.1 with probability p: Ea
h ri;j is set to 1 with probability p, with theremaining probability 1� p the demand ri;j is 0.Large with probability p and fa
tor f : The value for ri;j is set intwo steps.� ri;j is 
hosen uniformly at random from [0; 1℄� with probability p blow up ri;j by a fa
tor of f (i.e., ri;j  f � ri;j) withthe remaining probability 1� p leave ri;j un
hanged.We experimented with some other input strategies. They proved to be notharder to route than 1 with probability p or large with probabilityp and fa
tor f . Those two input strategies were sele
ted to be \diÆ
ult"
ompared to lower bound.A

ording to our observation it is fairly easy to produ
e a good (almostoptimal) path assignment if one of the following 
onditions is ful�lled.1. demands do not vary strongly. (In this 
ase a routing 
an distributethe load evenly over the network { even a random assignment will bevery good in this 
ase.)2. a large fra
tion of the overall load is produ
ed by a small number oflarge demands. (In this 
ase a good routing only has has to keep thepaths for few large demands as disjoint as possible.)9



These 
onsiderations show that distributions 
onsidered in probability theory,e.g., normal-distribution, will not lead to interestig input data. In these 
asesthe demands are very 
on
entrated, i.e. most demands 
ome from a smallinterval.3.2 Heuristi
sWe now des
ribe the algorithmi
 ideas used to generate routings for a giveninput set R representing demands.Random: Assign the intermediate swit
h for path P (i; j) uniformly atrandom, i.e., without 
onsidering the demand ri;j.Though the algorithmi
 idea of this heuristi
 is everythig but deep ithelps in evaluating inputs and other heuristi
s. More 
on
retely, if a randomrouting is likely to give good path assignments on some input 
lass, then theinputs 
an be 
onsidered easy.A random path assignment for the Type 4-4 network:P (Rand) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S1 S2 S2 S1D1 : 1 S1 S1 S1 S1D2 : 0 S1 S1 S2 S2D2 : 1 S2 S1 S1 S1Evaluated with our example demands we �nd �(Rand) = 2:04, the maximumload being on edge e5.First Fit (FF): This heuristi
 is guided by the a global parameter C, whi
hmodels the 
apa
ity of an edge. Suppose there is a swit
h St su
h that afterrouting P (i; j) through St the load of both edges used by P (i; j) remainsbelow C. In this 
ase FF will use the least indexed intermediate-swit
h withthis property. If there is no su
h swit
h FF will assign P (i; j) su
h that themaximal load after the assignment is minimal.Sin
e again we had no real basis for the spe
i�
ation of a value for C. Wede
ided to 
hooseC(R) = maxi port of Msj port of Dkf�(Ms; R); �(Dk; R)g s; k = 1; 2thus depending on the input matrix R or more pre
isely on the demandsbetween pairs of outer swit
hes, we 
all su
h a set of demands a demandgroup. 10



In our example network, there are 4 demand groups:1. M1 ! D1 ) C1 = 1:0752. M1 ! D2 ) C2 = 0:6153. M2 ! D1 ) C3 = 1:0754. M2 ! D2 ) C4 = 0:615Let us look at a run of the FirstFit heuristi
. The algorithm would routethe demands M1 : 0 ! D1 : 0 and M1 : 0 ! D1 : 1 over the swit
h S1 withload of 0.97 on edges e1; e5 staying below the \
apa
ity" C = C1.The next two demands M1 : 0 ! D2 : 0 and M1 : 0 ! D2 : 1 would berouted over swit
h S2, sin
e edge e1 to swit
h S1 is overloaded a

ording to
apa
ity C. This leaves edges e2 and e8 with load 0.04.The next four demands: M1 : 1 ! D2 : 0 through M1 : 1 ! D2 : 1,would be routed the same way, with �rst two leaving edges e1; e5 with load1.06 under 
apa
ity C, and the next two taking swit
h S2 due to 
apa
ity C,thus 
ausing load of 0.17 on edges e2; e8.The traÆ
 path fromM2 : 0 to both ports of D1 goes through S2, be
auseea
h of two demands would overload the edge e5. After these steps edges e4; e6have load 0.13.The next two paths from M2 : 0 to ports of D2 go over swit
h S1 be
ausethe load 0.09 on involved edges e3; e7 stays under 
apa
ity C.The next requirement M2 : 1 ! D1 : 0 
auses over
ow on both possiblepaths: taking swit
h S1 would result in load 2.01 on edge e5, path over S2would leave edges e4; e6 with load 1.08. The algorithm 
hooses the se
ondpath be
ause it has lesser over
ow.The rest demands would be routed over S1, be
ause ea
h leaves edge loadsunder 
apa
ities C and C respe
tively.The maximal load of this path assignment is �(FF ) = 1:08.Best Fit (BF): This heuristi
 also uses the 
apa
ity C of an edge. BF givespreferen
e to a swit
h St su
h that after routing P (i; j) through St the loadof both edges used by P (i; j) remains below C but the load of one of theseedges 
omes as 
lose to C as possible. If all assignments violate the 
apa
itythen BF will assign P (i; j) su
h that the maximal load after the assignmentis minimal. 11



For our Type 4-4 network this heuristi
 would produ
e the following pathassignment: P (BF ) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S2 S2 S1D1 : 1 S2 S2 S1 S1D2 : 0 S1 S1 S1 S2D2 : 1 S1 S1 S1 S2with �(BF ) = 1:13 on edge e6.Best Balan
e (BB): BB assigns P (i; j) to the path whi
h has the leastload on the heavier-loaded of the two edges of the path.A

ording to this heuristi
 the �rst demand M1 : 0 ! D1 : 0 
an beassigned to any of two possible paths sin
e they are equally loaded. Theimplementation of the algorithm 
hooses the last of equally loaded paths, inthis 
ase one over S2.The next 9 demands have either e2 or e6 as parts of one of two possibleways. All these demands are mu
h smaller then the �rst one, thus the loadon an alternative path stays under this on path with edges e2 or e6. So theywill all be routed over S1.The alternatives for next two requirements M2 : 0 ! D2 : 0 = 0:5 andM2 : 0! D2 : 1 = 0:4 are:� e3; e7 with maximal 
urrent load 0.17, and� e4; e8 with no 
urrent load.So they are both routed over the se
ond path.For the next demand M1 : 1 ! D1 : 0 
hooses the algorithm the pathe3; e5 with load 0.24 against the path e4; e6 with 
urrent load 0.95. Thatin
reases load on e5 to 1.19. The next traÆ
 M1 : 1 ! D1 : 1 has the samealternatives and will be routed over now less loaded way e4; e6.The last two requirements take the least loaded path e4; e8. The pathmatrix is now: P (BB) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S1 S1 S1D1 : 1 S1 S1 S1 S2D2 : 0 S1 S1 S2 S2D2 : 1 S1 S1 S2 S212



with �(BB) = 1:19 on edge e5.Sorted Best Balan
e (SoBB): The assignment of the route for P (i; j)is guided by the same rule as in algorithm BB. The di�eren
e is that thepairs (i; j) are 
onsidered in order of de
reasing demand.Sorting of demands avoids the e�e
t we have seen in example above, thatthe edges get �rst loaded with many small demands, and the large demands
ome on top of those. So we got some heavy weighted paths, and some lightweighted with obvious optimization opportunities.For our network the same algorithm as above with prior sorted demandsprodu
es following paths:P (SoBB) M1 : 0 M1 : 1 M2 : 0 M2 : 1D1 : 0 S2 S2 S2 S1D1 : 1 S2 S1 S1 S1D2 : 0 S1 S1 S2 S2D2 : 1 S1 S1 S2 S2with �(SoBB) = 1:08 on edge e6.For this example �rst �t and sorted best balan
e heuristi
s produ
e routeswith the same maximal load, whi
h is in this 
ase also the optimum. In most
ases though the best balan
e algorithm with prior sorted demands produ
esbetter results.k-Optimum (k-Opt): The route for the input R is �rst assigned usingone of the heuristi
s above (e.g. random). Then one of the demand on theheaviest edge will be rerouted over some other edge pair. After k reroutingsare performed, the new path assignment is evaluated and if it is better, theold one is repla
ed. The algorithm terminates when all possible reroutingswere performed and no improvement was a
hieved.The simplest k-Opt is 1-opt: one of the demands gets assigned a new path.The new route is evaluated and if it got better the old one is substituted.Let us take the random route assignment for our example network asstart position. Re
all that the random heuristi
 left us with the edge loadsshown in the following table:
13



Edge Load Demande1 1.18 M1 : 0 ! D1 : 0, M1 : 0 ! D1 : 1, M1 : 0 ! D2 : 0,M1 : 1! D1 : 1, M1 : 1! D2 : 0, M1 : 1! D2 : 1e2 0.05 M1 : 0! D2 : 1, M1 : 1! D1 : 0e3 1.09 M2 : 0 ! D1 : 1, M2 : 0 ! D2 : 1, M2 : 1 ! D1 : 0,M2 : 1! D1 : 1, M2 : 1! D2 : 1e4 0.14 M2 : 0! D1 : 0, M2 : 0! D2 : 0, M2 : 1! D2 : 0e5 2.04 M1 : 0 ! D1 : 0, M1 : 0 ! D1 : 1, M1 : 1 ! D1 : 1,M2 : 0! D1 : 1, M2 : 1! D1 : 0, M2 : 1! D1 : 1e6 0.11 M1 : 1! D1 : 0, M2 : 0! D1 : 0e7 0.23 M1 : 0 ! D2 : 0, M1 : 1 ! D2 : 0, M1 : 1 ! D2 : 1M2 : 0! D2 : 1, M2 : 1! D2 : 1e8 0.08 M1 : 0! D2 : 1, M2 : 0! D2 : 0, M2 : 1! D2 : 0Sin
e our goal is to minimize the maximal load, we start to reroute de-mands, whose paths go through the most loaded edge: e5. The order inwhi
h the algorithm tries to rerout and improve is not spe
i�ed. Supposethe �rst attemt is to �nd an alternative route for demand M1 : 0 ! D1 : 0.The only 
hoi
e for an alternative path is to use edges e2; e7. The new loadsof involved edges are: e1 0:23e5 1:09e2 1:00e7 1:18This is an improvement, therefore, the demand is �xed to the new path.With the new path assignment the most loaded edge is e7, so wthe heuristi
will try to reroute one of the demands going through it. The pro
edure isrepeated until alternative path for all demands on the heaviest edge havebeeen 
onsidered and no improvement was a
hieved.The random heuristi
 seems to be a good 
hoi
e if no traÆ
 data is known.We used random as \standard" to 
ompare with other heuristi
s. The ideafor the other heuristi
s are inspired by well studied bin-pa
king heuristi
s. Inthe 
ase of bin-pa
king the 
orresponding �st-�t and best-balan
e heuristi
sare known to give reasonable approximations of the optimal solution. Sortedbest balan
e a
hieves better results than the other heuristi
s be
ause largerloads are routed �rst and smaller demands 
an later be used to balan
e theload on the edges. 14



In 
ontrast to the other heuristi
s k-Opt is guaranteed to produ
e alo
ally optimal solution. We observed improvements in almost all 
ases. Thereal drawba
k of this routine is in the running times whi
h easily exeed 1 {2 hours.3.3 Software design and implementationThe software system 
onsists of three major modules: network models, inputgenerators, and heuristi
s, and a module for evaluating diverse 
ombinationsof inputs and heuristi
s { Eval as shown in �gure 5.
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Figure 5: UML-Diagram of the software systemNetwork models 
ontain the information about the network stru
ture,traÆ
 demands and 
urrent routes. They 
an also 
ompute the lower boundfor the maximal load on edges, and write routing information to a �le.� Network is an abstra
t 
lass, whi
h 
ontains the information and fun
-tionality 
ommon for all network types.� Network64 represents a SANbox with 64 ports.� Network128 models a 128 type network.Input generators generate demands for the networks following di�erentstrategies. 15



� Input is an abstra
t 
lass.� InputGV generates uniformly distributed inputs.� Input01 produ
es 1 as an input with a given probability p.� InputP generates a large input (multiplied by given fa
tor f) withprobability p.� InputF reads input from �le.Heuristi
s 
al
ulate routes for a given network with it's inputs.� Heuristi
 is an abstra
t 
lass, whi
h 
ontains fun
tionality 
ommonto all heuristi
s, su
h as 
ommuni
ation with network.� HeuristBF implements best �t heuristi
.� HeuristFF assigns routes a

ording to �rst �t heuristi
.� HeuristBB uses best balan
e heuristi
.� HeuristBBS makes network to sort it's inputs des
ending �rst, andthen a
ts like HeuristBB.� HeuristRandmakes random routing without taking any notion of present
ondition of the network.The others are helper 
lasses:� Way 
ontains an information about one possible path,� Traffi
 
ontains information about one demand,� Route assigns a path (route) to one demand,� Quality is used by Eval and is used to keep information su
h as lowerbound, maximal load, maximal loaded edge.Neither heuristi
 modules nor input generators need to know the stru
tureof the network. On the one side it makes it easy to implement new heuristi
sor input generators, on the other the network models 
an be repla
ed withno 
hange needed in heuristi
 or input generator implementation.16



UsageassignRoute takes network type, input type or input �le, heuristi
 and anoptional output �le as input parameters. It 
omputes the path assignmentand writes it to output �le, if spe
ialized.The syntax is following:assignRoute network input heuristi
 [ o out�le ℄wherenetwork is 64 or 128, for type 64 and 128 networks respe
tively;input is one ofi �le for reading input from �le (InputF),u for uniformly distributed input (InputGV),p n for input generator produ
ing 1 with probability 1/n (Input01),n n f fa
tor for produ
ing large by fa
tor fa
tor inputs withprobability 1/n (InputP);heuristi
 is one offf for First Fit,bf for Best Fit,bb for Best Balan
e,bs for Best Balan
e with sorted inputs,rand for Randomk n for k-Opt with k = n.We also implemented some test programs to gain the statisti
 data:stat n network inputswhere n is number of experiments, network as above and inputs is one ormore inputs as above. The program produ
es n inputs of ea
h type, �ndspath assignments with all but k-Opt heur isti
s and gives ba
k average lowerbound and greatest last values for ea
h input-heuristi
 pair.Another test program we implemented is optStat:optStat n heuristi
 network inputs k kwith n, network, inputs as above, heuristi
 as in assignRoute ex
ept for k-Opt, and k is the parameter for the k-Opt heuristi
. This program 
omputes�rst path assignment with given heuristi
 and tries to optimize it with k-Opt.The result is 
omparison between heuristi
 and k-Opt over n experiments.17



3.4 Integer program modelThe problem model as des
ribed in se
tion 2.1 
an be rewritten as an integerprogram. The integer program 
onsists of the following linear equations andinequalities (e.g. for Type 128 network):Let P = f1; : : : ; 128g be set of ports, (1)S = f1; : : : ; 8g set of intermediate swit
hes (2)8i; j 2 P; s 2 S x(s)i;j 2 f0; 1g (3)8i; j 2 P Xs2S x(s)i;j = 1 (4)8 edges (i; s) Xk2P x(s)i;kri;k +Xk2P x(s)k;irk;i � B (5)minimize B (6)where B is the maximal load on the network andx(s)i;j = �1;0; if demand ri;j is routed over swit
h selseThe di�eren
e between integer program and a linear program is that ininteger program solution the x variables 
an only have integer values: 0 or1, in a linear program solution they may also assume 
oating point values.The equation (3) would be like8i; j 2 P; s 2 S x(s)i;j 2 [0; 1℄meaning that portion of the demand ri;j is routed over swit
h s. This 
ondi-tion is a relaxation of that in equation (3).The next equation (4) just says that exa
tly the demand ri;j is routedbetween ports i; j over all swit
hes s. For the integer program it means thatfor one and only one s x(s)i;j = 1.Equation (5) sets the upper bound B for loads on all edges. It meansthat the load sum on ea
h edge should be less than B.With obje
t to minimize B (6) we express the wish to keep maximalload minimal. The values of x-variables for the found solution des
ribe theoptimal routing.For other network types parameter in (1) and (2) have to be 
hanged.18



Though integer programming is a NP-
omplete problem, it is also a veryimportant one. Many people have done a lot of resear
h and work in thatarea in order to make good and fast solvers. As result there are solvers forinteger programming available that are relative fast. The one we used isCPLEX1.The model was des
ribed in A Modeling Language For Mathemati
alProgramming (AMPL2), and the results in se
tion 4 were obtained usingCPLEX solver.4 Results4.1 Statisti
al evaluationThe following tables show some 
omputational results. Ea
h row of the table
ompares the performan
e of the �ve algorithms on inputs generated by theinput generator spe
i�ed in the �rst 
olumn. The numbers 
hara
terize theaverage performan
e over ten inputs of that type.The entries of the table have been obtained as the ratio of theload produ
ed by the heuristi
 over the lower bound on the load.We exemplify this with a 
on
rete instan
e and show how the bold value1.24528 in the table was generated. The input generating algorithm 1 withprobability 1/64 produ
ed a sequen
e R1; R2; : : : ; R10 of inputs. For ea
hRi the lower bound ��(Ri) was 
al
ulated. The best-�t heuristi
 was run oninput Ri, the load of this assignment is denoted �(BF (Ri)). The averageperforman
e was �nally obtained as:110 10Xi=1 �(BF (Ri))��(Ri)1CPLEX is linear, mixed-integer and quadrati
 programming solver. The maintaineris CPLEX division of ILOG [5℄.2AMPL is a 
omprehensive and powerful algebrai
 modeling language for linear andnonlinear optimization problems, in dis
rete or 
ontinuous variables, developed at BellLaboratories.AMPL lets one use 
ommon notation to formulate optimization models and ex-amine solutions, while the 
omputer manages 
ommuni
ation with an appropriatesolver.Su

essfully used in demanding model appli
ations around the world, AMPL isavailable on a variety of PC and UNIX platforms. More information about AMPL in [4℄.19



Table 1: Type 64 networkFF BF BB SoBB RANDUniformly distributed1.06522 1.09076 1.00864 1.00004 1.213211 with probability1/4 1.02834 1.07105 1.01191 1.01191 1.314171/16 1.05417 1.08931 1.04246 1.04246 1.674961/64 1.24528 1.24528 1.24528 1.24528 2.150941/512 2.28571 2.28571 2.28571 2.28571 4.571431/1024 3.33333 3.33333 3.33333 3.33333 5.33333Fa
tor 100 with probability1/4 1.05975 1.09067 1.02673 1.00001 1.405671/16 1.10331 1.18113 1.08668 1.00001 1.673641/64 1.08718 1.39074 1.24096 1.00001 1.942091/512 1.22016 1.74462 1.61577 1.11816 2.310871/1024 1.20426 1.79604 1.55409 1.12589 2.02765Fa
tor 500 with probability1/4 1.05517 1.07962 1.02690 1.00001 1.414761/16 1.09232 1.18616 1.09193 1.00001 1.738841/64 1.25942 1.49942 1.28602 1.02441 2.204441/512 2.37386 2.89089 2.54823 2.37386 3.882581/1024 2.81228 3.35943 3.06592 2.81064 3.89611Fa
tor 1000 with probability1/4 1.05759 1.08367 1.02655 1.00001 1.415671/16 1.10007 1.19820 1.08802 1.00004 1.746871/64 1.25653 1.51018 1.30433 1.05419 2.248801/512 2.77952 3.24661 2.87444 2.77952 4.381201/1024 3.60928 4.07431 3.77362 3.60822 4.75084Fa
tor 4000 with probability1/4 1.05582 1.08004 1.02628 1.00016 1.416541/16 1.10624 1.19695 1.09135 1.00339 1.753011/64 1.29337 1.51415 1.31629 1.08357 2.284381/512 3.18812 3.54008 3.21534 3.18812 4.883431/1024 4.60227 5.03404 4.65499 4.60193 5.8157620



Table 2: Type 128 networkFF BF BB SoBB RANDUniformly distributed1.05236 1.05868 1.00297 1.00001 1.177831 with probability1/4 1.03779 1.05025 1.00662 1.00662 1.298011/32 1.11675 1.13706 1.07614 1.07614 1.827411/128 1.23077 1.23077 1.15837 1.15837 2.171951/512 1.55556 1.55556 1.33333 1.33333 3.333331/1024 1.63265 1.63265 1.63265 1.63265 3.91837Fa
tor 50 with probability1/4 1.04403 1.05490 1.01146 1.00001 1.285941/32 1.07848 1.12688 1.06490 1.00001 1.552101/128 1.11492 1.21692 1.10337 1.00001 1.595361/512 1.15660 1.26020 1.14894 1.00001 1.520811/1024 1.20188 1.27930 1.16499 1.00001 1.45033Fa
tor 100 with probability1/4 1.04310 1.05765 1.01181 1.00000 1.295321/32 1.08936 1.13835 1.07832 1.00001 1.649091/128 1.13152 1.28187 1.16078 1.00001 1.869231/512 1.15259 1.44978 1.27817 1.00001 1.866581/1024 1.17123 1.50721 1.34991 1.00001 1.79037Fa
tor 500 with probability1/4 1.04122 1.05470 1.01190 1.00001 1.299331/32 1.08401 1.16855 1.08561 1.00001 1.753561/128 1.21807 1.48044 1.25240 1.00001 2.369411/512 1.37163 2.00984 1.60833 1.27582 2.920331/1024 1.70248 2.33018 2.03912 1.68174 3.09234Fa
tor 1000 with probability1/4 1.04167 1.05821 1.01222 1.00000 1.300841/32 1.08393 1.16316 1.09296 1.00032 1.770141/128 1.31577 1.53745 1.27524 1.01042 2.468961/1024 2.12773 2.69518 2.34948 2.12773 3.6444921



During the �rst phase of the proje
t we where experimenting with aspe
ial network. Basi
ally the network is like Typre 64, the di�eren
e is thatinstead of double it has single 
onne
tions between swit
hes. This networkwas used to analyze several input strategies and routing heuristi
s. Therouting problem for this network is 
onsiderably smaller than the problem forthe Type 64 network. This makes a great di�eren
e in the 
omputation timefor the integer program and for the k-Opt heuristi
. Though we implementedthese algorithms for general networks we have evaluated them only for thesimpli�ed Type 64 network. The reason for this restri
tion was that only withthis network the number of experiments needed for the statisti
al evaluation
ould be performed in reasonable time .Table 3: Simpli�ed Type 64 networkFF BF BB SoBB RAND OPT 1-OPTUniformly distributed1.05777 1.08337 1.00287 1.00002 1.10636 1.00000 1.00002Fa
tor 100 with probability1/2 1.04720 1.05972 1.00475 1.00003 1.14636 1.00001 1.000021/16 1.03714 1.09033 1.03226 1.00010 1.33402 1.00001 1.000041/32 1.05344 1.13930 1.05187 1.00001 1.47163 1.00001 1.000011/128 1.04069 1.22027 1.14611 1.00001 1.77608 1.00001 1.000011/512 1.49359 1.98240 1.60244 1.42079 2.97277 1.18329 1.547061/1024 1.05035 1.27032 1.16791 1.00001 1.61586 1.00000 1.00002Fa
tor 1000 with probability1/2 1.04667 1.05744 1.00477 1.00001 1.14731 1.00000 1.000001/16 1.03777 1.10549 1.03541 1.00000 1.37344 1.00000 1.000001/32 1.06219 1.16059 1.07659 1.00130 1.56908 1.00002 1.008161/128 1.16824 1.44765 1.22576 1.03473 2.25696 1.02085 1.102781/512 1.52917 1.94573 1.64528 1.45989 2.30137 1.22531 1.423841/1024 1.85392 2.36375 2.02100 1.82638 2.50154 1.70653 1.82162The results di�er from those obtained in �rst phase of the proje
t (
om-pare Table 3 and Table 4). In the �rst phase of the proje
t we were assumingthat all the demand would be between ports lo
ated at some ma
hine swit
hMs and ports lo
ated at some disk swit
h Du. This assumption redu
es the22



size of the input matrix from 64� 64 to 32� 32. networks in the �rst stagewere assumed to be dire
ted with only traÆ
 between ma
hine and diskswit
hes. Thus the input matrix had dimensions 32� 32 instead of 64� 64whi
h it has now. Thais means that 4 times more demands have to be routedover the same set of available edges. Therefore with the larger input matrixthe edge loads 
an be balan
ed mu
h better and the ratio to the lower boundis smaller.Table 4: Simpli�ed Type 64 network with 32� 32 input.FF BF BB SoBB RANDUniformly distributed1.00401 1.02783 1.00915 1.00015 1.22408Fa
tor 1000 with probability1/2 1.00924 1.02752 1.01778 1.00005 1.287371/16 1.12357 1.13486 1.12443 1.01555 1.685991/32 1.23210 1.23216 1.23214 1.06034 1.931651/128 1.74524 1.76007 1.76051 1.69249 2.566121/512 2.54587 2.55284 2.59625 2.50725 3.052561/1024 2.93044 2.93992 2.99362 2.89226 3.17847The data shown in the tables shows that it is reasonable to rank thealgorithms in the following order RAND < BF < FF < BB < SoBB � k-Opt. It is also obvious that some inputs are more diÆ
ult than others. Theresults also 
on�rm our 
onsideration from se
tion 3.1 that the more (similar)demands an input 
ontains, the easier it is to �nd a good path assignment.4.2 Computation timeThe average 
omputation time for all heuristi
s (ex
luding k-Opt) for Type64 networks is 15 se
. The same heuristi
s 
ompute path allo
ation for Type128 network within average 1 min. 1-Opt needs about 2.8 min. for Type 64network and 16 min. for Type 128 network.The integer program 
omputes the optimal route for Type 64 networks inaverage in 1.59 hours. Whereby the 
omputation time of an integer programvaries greatly: from 11.6 se
onds to 28 hours. The average 
omputation timefor Type 128 network is 39 hours. 23



Heuristi
s 
omputation time was measured on a Celeron 433 MHz ma-
hine with 128 Mb RAM. The integer program was tested on an UltraSpark2 with two 300 MHz pro
essors with 768 Mb RAM.5 New Problem De�nitionIn the third phase of the proje
t we made some resear
h on the new problemde�nition: The matrix R as de�ned in se
tion 2.1 is unknown. Instead weassume to know� the 
urrent path assignments P (i; j); 8i; j 2outer ports,� the total in
oming and outgoing traÆ
 F (i); T (i) through outer porti; 8i,� if the intermediate swit
h Si needs to bu�er, the bu�ering information,Task is to �nd an improved path assignment whi
h redu
es the need forbu�ering.The resear
h was 
on
entrated on re
onstru
tion of demand matrix R.The idea was: sin
e we already have good path allo
ation algorithms, we needto get good approximation for input matrix R and �nd new path assignmentby applying formerly implemented algorithms.The �rst observation one 
an make is that F (i); T (i) are the row and
olumn sums of the matrix R. The general problem of matrix re
onstru
tionfrom it's row and 
olumn sums does not have unique solution. Though in our
ase we have further 
onditions that restri
t the set of a

eptable solutions,there still 
an be more than one solution.The 
orresponding mathemati
al model is following:LetP (i; j) = (ex; ey) is Path assignment over edges ex, ey for traÆ
 fromport i to port j,n = number of outer ports (64 or 128),
 = 
apa
ity of edges e, sin
e all 
onne
tions apply the same te
hnologythe 
apa
ities should be equal,�(e) = bu�ering on edge e, 24



ri;j 2 R traÆ
 demand from port i to port j,Then 0 � ri;j � minfF (i); T (j)g (7)nXj=1 ri;j = F (i) 8i = 1 : : : n (8)nXi=1 ri;j = T (j) 8j = 1 : : : n (9)Xe2P (i;j) ri;j = 
 + �(e) 8e with �(e) > 0 (10)Xe2P (i;j) ri;j � 
 8e with �(e) = 0 (11)des
ribe a linear program model for the problem. This time we use linearand not integer programming be
ause the values of demands do not haveto be integer values, and there are no other 
onditions that require integersolution, as there were in initial problem.Inequality (7) sets the natural bounds for ea
h demand, saying that it 
annot be negative or greater than sum of all demands going from it's sour
eport or 
oming into it's destination port.Equations (8) and (9) express that F (i) is sum of demands with sour
ei and T (j) is total of demands with destination j. Equation (10) states thebu�ering information and inequality (11) sets the upper bound 
 for sum ofdemands routed over 
onne
tion e with no bu�ering.Sin
e there is more than one solution possible, we 
an not just say '�nd R'.However we 
ould solve linear problems with model above and obje
t: 'min-imize ri;j' for all values of i and j. That would provide us a matrix R withminimal values for ea
h ri;j. The matrix R it self is not ne
essarily a possiblesolution.Analog we 
ould obtain matrix R by solving the maximization problemfor ea
h ri;j. That would be 2� n2 linear problems. Though both matri
esR and R do not ne
essarily belong to possible solutions set, the give us abounding box for that set.Another idea was to 
onsider 
onvex 
ombinations of solutions. We 
oudnot pro
eed further from this point simply be
ause the funding for the proje
tterminated. 25
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