Storage Area Network Optimization

A cooperation of Ancor Communications, Minneapolis, USA
and Freie Unwversitat Berlin, Germany.

Final Report

HeELMUT ALT
STEFAN FELSNER
LUDMILA SCHARF

Freie Universitat Berlin
Institut fur Informatik
Takustr. 9
14195 Berlin, Germany

felsner@inf.fu-berlin.de

November 8, 2000

Contents

1 Introduction 2
2 Problem 4
2.1 Model for the problem 4
2.2 Lower bounds and complexity of the problem 7
3 Solutions 9
3.1 Input generators 9
3.2 Heuristics 10
3.3 Software design and implementation 15
3.4 Integer program model 18
4 Results 19
4.1 Statistical evaluation 19
4.2 Computation time 23
5 New Problem Definition 24

1 Introduction

The Storage Area Network Optimization Project (SANO) is a cooperation
of Ancor Communications (now @QLogic) and Freie Universitdt Berlin.

The information explosion and the need for high-performance communi-
cations for server-to-storage and server-to-server networking have been the
focus of much attention during the 90s. Performance improvements in stor-
age, processors, and workstations, along with the move to distributed ar-
chitectures such as client/server, have spawned increasingly data-intensive
and high-speed networking applications. The interconnect between these
systems and their input/output devices demands a new level of performance
in reliability, speed, and distance. Fibre Channel, a highly-reliable, gigabit
interconnect technology allows concurrent communications among worksta-
tions, mainframes, servers, data storage systems, and other peripherals using
SCSI and TP protocols. It provides interconnect systems for multiple topolo-
gies that can scale to a total system bandwidth on the order of a terabit
per second. Fibre Channel delivers a new level of reliability and throughput.
Switches, hubs, storage systems, storage devices, and adapters are among the
products that are on the market today, providing the ability to implement a
total system solution.

A Storage Area Network (SAN) is a network behind the servers linking
one or more servers to one or more storage systems. Logic offers a broad
product line of SAN infrastructure (see[1l]). One of them is a SANbox —
switch based on fibre channel technology (see Figure 1).

QLogic offers SANboxes in 8-, 16-, 64-, and 128-port configuration. The
subject of this project were 64- and 128-type networks. The main task in
the Storage Area Network Optimization Project (SANO) was the design and
implementation of off-line path allocation algorithms for these multi-stage
fibre channel networks.

The path allocation problem arises because routes between ports of a
SANbox are static, i.e. can not be changed dynamic at real time. The limit
is due to the fiber channel specification. Due to the static allocation of routes
it can happen that a set of ports cause a lot of traffic on a specific connection
thus forcing buffering and delay, while other connections are are underloaded
and would be able to carry more traffic. It is though possible to change
routes within a SANbox, but the box has to be taken offline for that task.

The basic question adressed in the project was the following.

Subsystems

Tape Drives
& Libraries

Figure 1: possible usage of a SANbox

e Assuming a certain communication demand between ports of the box
design and evaluate algorithms for path allocation that make the need
for buffering unlikely.

The first phase of the project was used to realize a small pilot-project.
The aim of this was to get some feeling for the problem so that we can make
suggestions on how to proceed in the main phase of the project.

In the main phase routing algorithms for all in project considered network
types were implemented, and integer program models for optimal solutions
with Cplex were designed.

The implemented system consists of several parts which can be described
as follows:

1. The design of data-structures to model inputs and routings on two of
the network topologies supported by Ancor (Type 64 and Type 128).

2. The implementation of input models, i.e., assignment of a communication-
demand to each pair of ports.

3. The design and implementation of routing heuristics, i.e., assignment
of a communication-path to each pair of ports.

4. The implementation of an evaluation tool that allows to do some statis-
tics and compares the objective value of solutions produced by the

heuristics with a lower bound.

5. The design and implementation of an integer program model for finding
optimal solutions.

Close to the end of the project the problem became a focus shift. In
discussion with engeneers from Ancor it was realized that it is very unlikely
to have any good guess ore measurement of port-to-port communication de-
mands. At best it would be feasible to measure the load at each port dis-
regarding the corresponding sender/receiver port. In a third phase we tried
some ideas to attack the new problem. In particular we analyzed ways of
getting a guess of port-to-port communication from the data of the port
loads. And of improving a path assignment given the data of port loads and
some information about congestions. This last part of the project will only
be described quite superficial in section 5 of this report.

2 Problem

2.1 Model for the problem

We consider the Type 64 and Type 128 networks which have 64 or 128 ports
respectively.

For the type 64 network a problem instance (input) can be considered as
a 64 x 64 matrix R = (r; ;) where r; ; is the load imposed to the network by
the communication between ports ¢ and j, we will call r; ; the demand of pair
(7,7). An input-generating algorithm will usually produce demands between
zero and one, i.e., 0 <7;; < 1.

The network consists of three layers of routing-switches, see Figure 2.
Though the first and third layer are equal we still, by historical reasons,
denote the switches on these layers by M and D. Each of the eight outer-
switches My, D, has 2 x 8 ports, so it can be connected to 8 machines or
disks on the out side, and doubly connected to each of the 4 switches S;
from the intermediate-layer on the other side. A legal path for the demand
ri; can be described by specifying a pair of ports: on the outer switch and
on an intermediate-switch used by the path. We denote the path assigned
to the pair (7, 7) by algorithm A as P4(i,j). The load of an edge E under
assignment A and a given demand R is defined as

ME) = {ri;: Pali,j) uses E}.

4

L N
T T T

Figure 2: The Type 64 network.

The aim of our algorithms is to keep the load on all edges small. This
intention is reflected by defining the load of a path assignment A as

A(A) = max{A\(F) : E edge }.
Type 128 network is build analog, with 16 outer

switches and 8 intermediate switches, each of the 01 01
same type as above, so it has 128 outer ports (ports), M, M,
and single connections between outer and intermediate- Tc; e es

switches. In the case of single connections the path
for one demand can be described by an intermediate
switch, through which the demand is routed. €5 |eg er| €8
We illustrate the methods and algorithms we Dl‘ DQ‘
used for these complex networks on a small example }0_1\ }0_1\
network with four outer switches and two interme-
diate switches, each having 2 x 2 ports. Let call it
a Type 4-4 network (Figure 3). We will furtheron
explain important concepts and algorithms at the
Type 4-4 network.

Further simplifying the problem we assume that the only non-zero de-
mands are those from ports on the upper side to ports on the lower side,

[51]

Ss |

Figure 3: type 4-4 net-
work

5

i.e. there is only traffic from switches M; to switches D;, ¢,7 = 1,2. This
simplification is suggested by the idea that the workstations (machines) are
connected to one side of the network (ports of M-switches) and storage de-
vices (discs) are connected the other side (to ports of D-switches). The as-
sumption about the demands then corresponds to the assumption that there
is no workstation-to-workstation or disc-to-disc communication.

The input matrix R is thus reduced from 8 x 8 to 4 x 4. This small size
will allow us to be very concrete and allow to clearly trace what’s going on

behind the scenes.

A matrix instance R:

R M1:0 Mll]_ MQZO MQZ]_
D,:0] 0,95 0,04 0,07 0,9
Dy:1] 0,02 0,06 0,06 0,01
Dy:0] 0,03 0,06 0,056 0,02
Dy:1] 0,01 0,07 0,04 0,03

is a problem instance for the Type 4-4 network.

A possible path assignment is described by a matrix P:

P

M1:0 Mll]_ MQZO MQZ]_

D :
Dll
DQZ
DQZ

0o S
1 5
0| S
1] S

Si
Si
S
S

Sa
S
Si
Si

Sa
S
Si
Si

From P we read off that all traffic from M; to D, is routed through interme-
diate switch Sy, traffic from M; to D, is routed trough Ss, from Ms to D,
through Sy, and from M; to Dy through S;. This results in following edge

loads:
E

ME)

€1
€2
€3
€4
€5
€6
€7
€s

0,95+ 0,02+ 0,04 + 0,05 = 1.06
0,03+ 0,01 + 0,06 + 0,07 = 0.17
0,05+ 0,04 + 0,02 + 0,03 = 0.14
0,07 + 0,06 + 0,95 + 0,01 = 1.09
0,95+ 0,02 + 0,04 + 0,05 = 1.06
0,07 + 0,06 + 0,95 + 0,01 = 1.09
0,05+ 0,04 + 0,02 + 0,03 = 0.14
0,03+ 0,01 + 0,06 + 0,07 = 0.17

The load of the path assignment P is the maximum of these values, i.e., 1.09.

6

2.2 Lower bounds and complexity of the problem

For the simplest lower bound define p(R) = >_; ;7i;, i.e., as the sum of
all demands. Clearly this overall demand has to be brought through the
network. The load on a path contributes to the load of two edges. Since
there are 64 connecting edges we find that the maximum load of an edge
is at least 2 - p(R)/64 = p(R)/32. In other words A(A)p(R)/32 for every
assignment A. In general this bound could at best be attained if we give
up on the requirement that the demand for (i, ;) has to use just one path
and would instead allow this demand to spread over several intermediate
switches. The relaxation of the discrete nature of the demands can also be
used in better lower bounds.

For our Type 4-4 network and the input matrix R introduced in sec-
tion 2.1, we evaluate p(R) = 2.46. Since our network is directed there are
only four edges at the upper and four at the lower level the load can be
distributed over. The simple lower bound then becomes @ = 0.615.

To improve uppon this bound we consider the eight edges incident to each
outer-switch separately, let p(M,, R) = Z(i’j)ﬂ.eMs i+ Z(i’j)’jeMs 7ij. The
overall bound p*(R) is obtained as 1/8 of the maximum of the eight values
p(Ms, R), p(Dy, R) for s,u = 1,..,4. This lower bound is the one we actually
use when evaluating the quality of algorithms for the path assignment. Note
that this bound can be as low as 1/8 of the load of an optimal assignment.
This bad performance of the lower bound happens if for some s € [1..4] the
whole load p(Mj, R) is caused by the demand between just one pair of ports
and all other demands are 0.

In our example Type 4-4-network with input R we have to calculate:

p(Ms: R) — Z TMs:k,Di:j for s = 1, 2
i=1,2,j=0,1,k=0,1
p(Ds, R) = Z T'M;:§,Ds:k for s =1, 2.

i=1,2,j=0,1,k=0,1

The demand represented by any one of these values has to be routed over
one of two edges. Therfore the maximum of the four values, divided by two is
a lower bound. This lower bound can still be as bad as 1/2 of real optimum.

For our input matrix R the values are:

p max max /2
M, |1.23
M, |1.23
Dy 215 215 1.075
D, | 0.31

We have thus gotten a much better lower bound than before.

Further increase in the lower bound is possible by solving a packing prob-
lem for each outer-switch separately. More concretely the problem solved for
a switch M, is to assign each of the demands r; ;, where 7 is a port at switch
M, as a whole to one of the four edges incident to Mj.

If we solve this packing problem for switch D; we get following optimal
loads on edges e5, eg:

es | 0.95+0.07+ 0.04 +0.02 = 1.08
es | 0.95+ 0.06 +0.05 + 0.01 = 1.07

In this small network one can see, D; has the biggest demands, the three
other switches would lead to weaker bounds. Note that again we got a better
lower bound than with previous method. The difference of the lower bound
of 1.08 and the value 1.09 acheived by the concrete path assignment P has
become quite small.

The packing problem that has to be solved for the lower bound discussed
last is a hard problem. Concretely, the decission version of the optimization
problem is NP-complete when the number n of opposite ports (number of
j’s) is part of the input. A possible reduction is from PARTITION. As a
consequence we note that our routing problem is also NP-complete when
considered on an appropriately growing family of networks. Nevertheless,
the packing lower bound is not completely useless, since the problem that
has to be solved for each switch can be approximated up to a factor of 1.75
[Graham’s list scheduling].

Solving the packing problem for all switches does not solve the routing
problem as whole. This is because the optimal routes for each of two switches
in source-destination pair do not necessarily meet at the same intermediate
switch. This is indicated with Figure 77.

3 Solutions

3.1 Input generators

Unfortunately, we did not have a data set of real-world demands for the
routing problem. To test algorithms we thus had to generate some artificial
inputs. To have a good basis for a judgement of the strength and weaknesses
of the algorithms we decided to produce several different sets of inputs. In
particular we were interested in inputs that are hard to route, i.e., where the
load of the path assignments produced by the algorithms were large compared
to lower bound. We decided to perform tests with the following three input
generators:

UNIFORM DISTRIBUTION: Choose each r; ; uniformly at random from [0, 1].

1 WITH PROBABILITY p: Each r;; is set to 1 with probability p, with the
remaining probability 1 — p the demand r;; is 0.

LARGE WITH PROBABILITY p AND FACTOR f: The value for r;; is set in
two steps.

e 7, ; is chosen uniformly at random from [0, 1]

e with probability p blow up r; ; by a factor of f (i.e., r;; < f-r; ;) with
the remaining probability 1 — p leave r; ; unchanged.

We experimented with some other input strategies. They proved to be not
harder to route than 1 WITH PROBABILITY p or LARGE WITH PROBABILITY
p AND FACTOR f. Those two input strategies were selected to be “difficult”
compared to lower bound.

According to our observation it is fairly easy to produce a good (almost
optimal) path assignment if one of the following conditions is fulfilled.

1. demands do not vary strongly. (In this case a routing can distribute
the load evenly over the network — even a random assignment will be
very good in this case.)

2. a large fraction of the overall load is produced by a small number of
large demands. (In this case a good routing only has has to keep the
paths for few large demands as disjoint as possible.)

These considerations show that distributions considered in probability theory,
e.g., normal-distribution, will not lead to interestig input data. In these cases
the demands are very concentrated, i.e. most demands come from a small
interval.

3.2 Heuristics

We now describe the algorithmic ideas used to generate routings for a given
input set R representing demands.

RANDOM: Assign the intermediate switch for path P(7,j) uniformly at
random, i.e., without considering the demand r; ;.

Though the algorithmic idea of this heuristic is everythig but deep it
helps in evaluating inputs and other heuristics. More concretely, if a random
routing is likely to give good path assignments on some input class, then the
inputs can be considered easy.

A random path assignment for the Type 4-4 network:

P(Rand) | My :0 M;:1 My:0 My:1
Dl 10 Sl SQ SQ Sl
D1 01 51 Sl Sl Sl
DQ : 0 51 Sl SQ SQ
DQ 01 SQ Sl Sl Sl

Evaluated with our example demands we find A(Rand) = 2.04, the maximum
load being on edge es.

FIRST F1T (FF): This heuristic is guided by the a global parameter C, which
models the capacity of an edge. Suppose there is a switch S; such that after
routing P(i,j) through S; the load of both edges used by P(i,j) remains
below C'. In this case FF will use the least indexed intermediate-switch with
this property. If there is no such switch FF will assign P(i,j) such that the
maximal load after the assignment is minimal.

Since again we had no real basis for the specification of a value for C. We
decided to choose

C(R)= max {p(M,R),p(Dy,R)} s,k =1,2

i port of Mg
j port of Dy,

thus depending on the input matrix R or more precisely on the demands
between pairs of outer switches, we call such a set of demands a demand

group.

10

In our example network, there are 4 demand groups:
1. My - Dy = C; =1.075
2. My —- Dy = Cy =0.615
3. My - Dy = (5 =1.075
4. My — Dy = Cy = 0.615

Let us look at a run of the FirstFit heuristic. The algorithm would route
the demands M; : 0 — D; : 0 and M; : 0 — D : 1 over the switch S; with
load of 0.97 on edges e, e5 staying below the “capacity” C' = CY.

The next two demands M; : 0 — Dy : 0 and M; : 0 — Dy : 1 would be
routed over switch Sy, since edge e; to switch S; is overloaded according to
capacity C'. This leaves edges e; and eg with load 0.04.

The next four demands: M; : 1 — Dy : 0 through M; : 1 — D, : 1,
would be routed the same way, with first two leaving edges e, e5 with load
1.06 under capacity C', and the next two taking switch Sy due to capacity C,
thus causing load of 0.17 on edges e,, eg.

The traffic path from M, : 0 to both ports of Dy goes through Ss, because
each of two demands would overload the edge e5. After these steps edges ey, e
have load 0.13.

The next two paths from M; : 0 to ports of Dy go over switch S; because
the load 0.09 on involved edges e3, e; stays under capacity C'.

The next requirement M, : 1 — D : 0 causes overflow on both possible
paths: taking switch S; would result in load 2.01 on edge es, path over S,
would leave edges ey, eg with load 1.08. The algorithm chooses the second
path because it has lesser overflow.

The rest demands would be routed over S;, because each leaves edge loads
under capacities C' and C' respectively.

The maximal load of this path assignment is A(F'F) = 1.08.

BEST FIT (BF): This heuristic also uses the capacity C of an edge. BF gives
preference to a switch S; such that after routing P(i,j) through S; the load
of both edges used by P(i,j) remains below C' but the load of one of these
edges comes as close to C as possible. If all assignments violate the capacity
then BF will assign P(7, j) such that the maximal load after the assignment
is minimal.

11

For our Type 4-4 network this heuristic would produce the following path
assignment:

P(BF) | M;:0 M;:1 My:0 My:1
Dl 10 SQ SQ SQ Sl
Dl 01 SQ SQ Sl Sl
DQ : 0 51 Sl Sl SQ
DQ 01 51 Sl Sl SQ

with A(BF') = 1.13 on edge eg.

BeEST BALANCE (BB): BB assigns P(i,j) to the path which has the least
load on the heavier-loaded of the two edges of the path.

According to this heuristic the first demand M; : 0 — D; : 0 can be
assigned to any of two possible paths since they are equally loaded. The
implementation of the algorithm chooses the last of equally loaded paths, in
this case one over S,.

The next 9 demands have either e, or eg as parts of one of two possible
ways. All these demands are much smaller then the first one, thus the load
on an alternative path stays under this on path with edges e; or eg. So they
will all be routed over S;.

The alternatives for next two requirements Ms : 0 — Dy : 0 = 0.5 and
My :0— Dy :1=0.4 are:

e e3,e; with maximal current load 0.17, and
e ¢4, eg with no current load.

So they are both routed over the second path.

For the next demand M; : 1 — D; : 0 chooses the algorithm the path
e3, e5 with load 0.24 against the path ey, eg with current load 0.95. That
increases load on e5 to 1.19. The next traffic M; : 1 — D; : 1 has the same
alternatives and will be routed over now less loaded way ey, €.

The last two requirements take the least loaded path e4,es. The path
matrix is now:

P(BB) M1:0 Mlil MQZO MQZl
D1 : 0 SQ 51 51 51
D1 01 51 51 51 SQ
DQ : 0 51 51 SQ SQ
DQ 01 Sl Sl SQ SQ

12

with A(BB) = 1.19 on edge es.

SORTED BEST BALANCE (SOBB): The assignment of the route for P(i, j)
is guided by the same rule as in algorithm BB. The difference is that the
pairs (7, j) are considered in order of decreasing demand.

Sorting of demands avoids the effect we have seen in example above, that
the edges get first loaded with many small demands, and the large demands
come on top of those. So we got some heavy weighted paths, and some light
weighted with obvious optimization opportunities.

For our network the same algorithm as above with prior sorted demands
produces following paths:

P(SoBB) | M;:0 M;:1 My:0 My:1
Dl 10 SQ SQ SQ Sl
Dl 01 SQ Sl Sl Sl
DQ : 0 51 Sl SQ SQ
DQ 01 51 Sl SQ SQ

with A(SoBB) = 1.08 on edge eg.

For this example first fit and sorted best balance heuristics produce routes
with the same maximal load, which is in this case also the optimum. In most
cases though the best balance algorithm with prior sorted demands produces
better results.

k-OpTiMUM (k-OPT): The route for the input R is first assigned using
one of the heuristics above (e.g. random). Then one of the demand on the
heaviest edge will be rerouted over some other edge pair. After k reroutings
are performed, the new path assignment is evaluated and if it is better, the
old one is replaced. The algorithm terminates when all possible reroutings
were performed and no improvement was achieved.

The simplest k-Opt is 1-opt: one of the demands gets assigned a new path.
The new route is evaluated and if it got better the old one is substituted.

Let us take the random route assignment for our example network as
start position. Recall that the random heuristic left us with the edge loads
shown in the following table:

13

Edge | Load Demand

er 1.18 My :0—= Dy :0, My : 0 — Dy :1, M; : 0 — D, : 0,
Miy:1—=Di:1,My:1—=Dy:0,My:1—Dy:1

€9 0.05 My:0—=Dy:1, M;:1—D;:0

€3 1.09 MQ:O—)Dl:1,M2:0—)D2:1,M2:1—>D1:0,
M211—>D1:1,M211—)D211

ey 014 My:0—=D1:0, My :0— Dy:0, My:1— Dy:0

es 204 My :0—Dy:0, My :0— Dy :1, My : 1 — Dy :1,
My:0—=Dy:1, My:1—D;:0,My:1—D;:1

€6 0.11 M1!1—>D1:0,M210—)D1!0

er 0.23 M1ZO—)DQZO,MlZ]_—)DQZO,Mll]_—)Dgll
My :0—=>Dy:1, My:1—Dy:1

es 0.08 Mi:0—=Dy:1, My :0— Dy:0, My:1— Dy:0

Since our goal is to minimize the maximal load, we start to reroute de-
mands, whose paths go through the most loaded edge: e5. The order in
which the algorithm tries to rerout and improve is not specified. Suppose
the first attemt is to find an alternative route for demand M; : 0 — D; : 0.
The only choice for an alternative path is to use edges e,, e;. The new loads
of involved edges are:

€1 0.23
e; 1.09
ex 1.00
er 1.18

This is an improvement, therefore, the demand is fixed to the new path.
With the new path assignment the most loaded edge is e7, so wthe heuristic
will try to reroute one of the demands going through it. The procedure is
repeated until alternative path for all demands on the heaviest edge have
beeen considered and no improvement was achieved.

The random heuristic seems to be a good choice if no traffic data is known.
We used random as “standard” to compare with other heuristics. The idea
for the other heuristics are inspired by well studied bin-packing heuristics. In
the case of bin-packing the corresponding fist-fit and best-balance heuristics
are known to give reasonable approximations of the optimal solution. Sorted
best balance achieves better results than the other heuristics because larger
loads are routed first and smaller demands can later be used to balance the
load on the edges.

14

In contrast to the other heuristics k-OPT is guaranteed to produce a
locally optimal solution. We observed improvements in almost all cases. The
real drawback of this routine is in the running times which easily exeed 1 —
2 hours.

3.3 Software design and implementation

The software system consists of three major modules: network models, input
generators, and heuristics, and a module for evaluating diverse combinations
of inputs and heuristics — Eval as shown in figure 5.

A [R R
1 , 1
1 ! 1
| : : I
Inputp-=-=---ccoodo - Heuristic Quality
\ A

I]
[InpuGV || [inputP]

I [
[HeuristFF | | [HeuristBB |

[HeuristL,O] [HeuristBF | [HeuristBBS]|

[Inputo1] [InputF|

------- e

/\

Network64 | | Network128 |

') ")
[Way | [Route] |[Traffic |

Figure 5: UML-Diagram of the software system

Network models contain the information about the network structure,
traffic demands and current routes. They can also compute the lower bound
for the maximal load on edges, and write routing information to a file.

e Network is an abstract class, which contains the information and func-
tionality common for all network types.

e Network64 represents a SANbox with 64 ports.
e Network128 models a 128 type network.

Input generators generate demands for the networks following different
strategies.

15

e Input is an abstract class.
e InputGV generates uniformly distributed inputs.
e Input01 produces 1 as an input with a given probability p.

e InputP generates a large input (multiplied by given factor f) with
probability p.

e InputF reads input from file.
Heuristics calculate routes for a given network with it’s inputs.

e Heuristic is an abstract class, which contains functionality common
to all heuristics, such as communication with network.

e HeuristBF implements best fit heuristic.
e HeuristFF assigns routes according to first fit heuristic.
e HeuristBB uses best balance heuristic.

e HeuristBBS makes network to sort it’s inputs descending first, and
then acts like HeuristBB.

e HeuristRand makes random routing without taking any notion of present
condition of the network.

The others are helper classes:

e Way contains an information about one possible path,
e Traffic contains information about one demand,

e Route assigns a path (route) to one demand,

e Quality is used by Eval and is used to keep information such as lower
bound, maximal load, maximal loaded edge.

Neither heuristic modules nor input generators need to know the structure
of the network. On the one side it makes it easy to implement new heuristics
or input generators, on the other the network models can be replaced with
no change needed in heuristic or input generator implementation.

16

Usage

assignRoute takes network type, input type or input file, heuristic and an
optional output file as input parameters. It computes the path assignment
and writes it to output file, if specialized.

The syntax is following:
assignRoute network input heuristic [o outfile |
where

network is 64 or 128, for type 64 and 128 networks respectively;

input is one of

i file for reading input from file (InputF),

u for uniformly distributed input (InputGv),

pn forinput generator producing 1 with probability 1/n (Input01),
n n f factor for producing large by factor factor inputs with
probability 1/n (InputP);

heuristic is one of

ff for First Fit,

bf for Best Fit,

bb for Best Balance,

bs for Best Balance with sorted inputs,
rand for Random

k n for k-Opt with £ = n.

We also implemented some test programs to gain the statistic data:
stat n network inputs
where n is number of experiments, network as above and inputs is one or
more inputs as above. The program produces n inputs of each type, finds
path assignments with all but k£-Opt heur istics and gives back average lower
bound and greatest last values for each input-heuristic pair.

Another test program we implemented is optStat:
optStat n heuristic network inputs k k
with n, network, inputs as above, heuristic as in assignRoute except for k-
Opt, and k is the parameter for the k-Opt heuristic. This program computes
first path assignment with given heuristic and tries to optimize it with k-Opt.
The result is comparison between heuristic and k-Opt over n experiments.

17

3.4 Integer program model

The problem model as described in section 2.1 can be rewritten as an integer
program. The integer program consists of the following linear equations and
inequalities (e.g. for Type 128 network):

Let P ={1,...,128} be set of ports, (1)
S ={1,...,8} set of intermediate switches (2)
Vi,jeP, ses) e{0,1} (3)
VijjeP Y afl=1 (4)

se€S
V edges (i, 5) Z :cfsk)rlk + Z :c,(fzrkz <B (5)
keP keP
minimize B (6)

where B is the maximal load on the network and

(s) {1, if demand r; ; is routed over switch s
Tig =

0, else

The difference between integer program and a linear program is that in
integer program solution the x variables can only have integer values: 0 or
1, in a linear program solution they may also assume floating point values.
The equation (3) would be like

Vi.jeP, seS x) €l01]

meaning that portion of the demand r; ; is routed over switch s. This condi-
tion is a relaxation of that in equation (3).

The next equation (4) just says that exactly the demand r;; is routed
between ports 7, j over all switches s. For the integer program it means that
for one and only one s lbgfj) = 1.

Equation (5) sets the upper bound B for loads on all edges. It means
that the load sum on each edge should be less than B.

With object to minimize B (6) we express the wish to keep maximal
load minimal. The values of xz-variables for the found solution describe the
optimal routing.

For other network types parameter in (1) and (2) have to be changed.

18

Though integer programming is a NP-complete problem, it is also a very
important one. Many people have done a lot of research and work in that
area in order to make good and fast solvers. As result there are solvers for
integer programming available that are relative fast. The one we used is
CPLEX!.

The model was described in A Modeling Language For Mathematical
Programming (AMPL?), and the results in section 4 were obtained using
CPLEX solver.

4 Results

4.1 Statistical evaluation

The following tables show some computational results. Each row of the table
compares the performance of the five algorithms on inputs generated by the
input generator specified in the first column. The numbers characterize the
average performance over ten inputs of that type.

The entries of the table have been obtained as the ratio of the
load produced by the heuristic over the lower bound on the load.

We exemplify this with a concrete instance and show how the bold value
1.24528 in the table was generated. The input generating algorithm 1 with
probability 1/64 produced a sequence Ry, Rs, ..., Ryo of inputs. For each
R; the lower bound p*(R;) was calculated. The best-fit heuristic was run on
input R;, the load of this assignment is denoted A(BF(R;)). The average
performance was finally obtained as:

1 <~ A(BF(R;))
10 ; p*(R:)

LCPLEX is linear, mixed-integer and quadratic programming solver. The maintainer
is CPLEX division of ILOG [5].

2AMPL is a comprehensive and powerful algebraic modeling language for linear and
nonlinear optimization problems, in discrete or continuous variables, developed at Bell
Laboratories.

AMPL lets one use common notation to formulate optimization models and ex-
amine solutions, while the computer manages communication with an appropriate
solver.Successfully used in demanding model applications around the world, AMPL is
available on a variety of PC and UNIX platforms. More information about AMPL in [4].

19

Table 1: Type 64 network

| FF

BF |

BB

| SoBB | RAND

Uniformly distributed

| 1.06522 | 1.09076 | 1.00864 | 1.00004 | 1.21321

1 with probability

1/4 1.02834 | 1.07105 | 1.01191 | 1.01191 | 1.31417
1/16 1.05417 | 1.08931 | 1.04246 | 1.04246 | 1.67496
1/64 1.24528 | 1.24528 | 1.24528 | 1.24528 | 2.15094
1/512 || 2.28571 | 2.28571 | 2.28571 | 2.28571 | 4.57143
1/1024 || 3.33333 | 3.33333 | 3.33333 | 3.33333 | 5.33333
Factor 100 with probability

1/4 1.05975 | 1.09067 | 1.02673 | 1.00001 | 1.40567
1/16 1.10331 | 1.18113 | 1.08668 | 1.00001 | 1.67364
1/64 1.08718 | 1.39074 | 1.24096 | 1.00001 | 1.94209
1/512 || 1.22016 | 1.74462 | 1.61577 | 1.11816 | 2.31087
1/1024 || 1.20426 | 1.79604 | 1.55409 | 1.12589 | 2.02765
Factor 500 with probability

1/4 1.05517 | 1.07962 | 1.02690 | 1.00001 | 1.41476
1/16 1.09232 | 1.18616 | 1.09193 | 1.00001 | 1.73884
1/64 1.25942 | 1.49942 | 1.28602 | 1.02441 | 2.20444
1/512 || 2.37386 | 2.89089 | 2.54823 | 2.37386 | 3.88258
1/1024 || 2.81228 | 3.35943 | 3.06592 | 2.81064 | 3.89611
Factor 1000 with probability

1/4 1.05759 | 1.08367 | 1.02655 | 1.00001 | 1.41567
1/16 1.10007 | 1.19820 | 1.08802 | 1.00004 | 1.74687
1/64 1.25653 | 1.51018 | 1.30433 | 1.05419 | 2.24880
1/512 || 2.77952 | 3.24661 | 2.87444 | 2.77952 | 4.38120
1/1024 || 3.60928 | 4.07431 | 3.77362 | 3.60822 | 4.75084
Factor 4000 with probability

1/4 1.05582 | 1.08004 | 1.02628 | 1.00016 | 1.41654
1/16 1.10624 | 1.19695 | 1.09135 | 1.00339 | 1.75301
1/64 1.29337 | 1.51415 | 1.31629 | 1.08357 | 2.28438
1/512 || 3.18812 | 3.54008 | 3.21534 | 3.18812 | 4.88343
1/1024 || 4.60227 | 5.03404 | 4.65499 | 4.60193 | 5.81576

20

Table 2: Type 128 network

| | FF | BF | BB [SoBB | RAND
Uniformly distributed

| 1.05236 | 1.05868 | 1.00297 | 1.00001 | 1.17783
1 with probability
1/4 1.03779 | 1.05025 | 1.00662 | 1.00662 | 1.29801
1/32 | 1.11675 | 1.13706 | 1.07614 | 1.07614 | 1.82741
1/128 | 1.23077 | 1.23077 | 1.15837 | 1.15837 | 2.17195
1/512 | 1.55556 | 1.55556 | 1.33333 | 1.33333 | 3.33333
1/1024 || 1.63265 | 1.63265 | 1.63265 | 1.63265 | 3.91837
Factor 50 with probability
1/4 1.04403 | 1.05490 | 1.01146 | 1.00001 | 1.28594
1/32 | 1.07848 | 1.12688 | 1.06490 | 1.00001 | 1.55210
1/128 | 1.11492 | 1.21692 | 1.10337 | 1.00001 | 1.59536
1/512 | 1.15660 | 1.26020 | 1.14894 | 1.00001 | 1.52081
1/1024 | 1.20188 | 1.27930 | 1.16499 | 1.00001 | 1.45033
Factor 100 with probability
1/4 1.04310 | 1.05765 | 1.01181 | 1.00000 | 1.29532
1/32 | 1.08936 | 1.13835 | 1.07832 | 1.00001 | 1.64909
1/128 | 1.13152 | 1.28187 | 1.16078 | 1.00001 | 1.86923
1/512 | 1.15259 | 1.44978 | 1.27817 | 1.00001 | 1.86658
1/1024 || 1.17123 | 1.50721 | 1.34991 | 1.00001 | 1.79037
Factor 500 with probability
1/4 1.04122 | 1.05470 | 1.01190 | 1.00001 | 1.29933
1/32 | 1.08401 | 1.16855 | 1.08561 | 1.00001 | 1.75356
1/128 | 1.21807 | 1.48044 | 1.25240 | 1.00001 | 2.36941
1/512 | 1.37163 | 2.00984 | 1.60833 | 1.27582 | 2.92033
1/1024 || 1.70248 | 2.33018 | 2.03912 | 1.68174 | 3.09234
Factor 1000 with probability
1/4 1.04167 | 1.05821 | 1.01222 | 1.00000 | 1.30084
1/32 | 1.08393 | 1.16316 | 1.09296 | 1.00032 | 1.77014
1/128 | 1.31577 | 1.53745 | 1.27524 | 1.01042 | 2.46896
1/1024 || 2.12773 | 2.69518 | 2.34948 | 2.12773 | 3.64449

21

During the first phase of the project we where experimenting with a
special network. Basically the network is like Typre 64, the difference is that
instead of double it has single connections between switches. This network
was used to analyze several input strategies and routing heuristics. The
routing problem for this network is considerably smaller than the problem for
the Type 64 network. This makes a great difference in the computation time
for the integer program and for the £-Opt heuristic. Though we implemented
these algorithms for general networks we have evaluated them only for the
simplified Type 64 network. The reason for this restriction was that only with
this network the number of experiments needed for the statistical evaluation

could be performed in reasonable time .

Table 3: Simplified Type 64 network

| | FF | BF | BB [SoBB | RAND [OPT | 1-OPT
Uniformly distributed

| 1.05777 | 1.08337 | 1.00287 | 1.00002 | 1.10636 | 1.00000 | 1.00002
Factor 100 with probability
1/2 1.04720 | 1.05972 | 1.00475 | 1.00003 | 1.14636 | 1.00001 | 1.00002
1/16 | 1.03714 | 1.09033 | 1.03226 | 1.00010 | 1.33402 | 1.00001 | 1.00004
1/32 | 1.05344 | 1.13930 | 1.05187 | 1.00001 | 1.47163 | 1.00001 | 1.00001
1/128 | 1.04069 | 1.22027 | 1.14611 | 1.00001 | 1.77608 | 1.00001 | 1.00001
1/512 | 1.49359 | 1.98240 | 1.60244 | 1.42079 | 2.97277 | 1.18329 | 1.54706
1/1024 || 1.05035 | 1.27032 | 1.16791 | 1.00001 | 1.61586 | 1.00000 | 1.00002
Factor 1000 with probability
1/2 1.04667 | 1.05744 | 1.00477 | 1.00001 | 1.14731 | 1.00000 | 1.00000
1/16 | 1.03777 | 1.10549 | 1.03541 | 1.00000 | 1.37344 | 1.00000 | 1.00000
1/32 | 1.06219 | 1.16059 | 1.07659 | 1.00130 | 1.56908 | 1.00002 | 1.00816
1/128 | 1.16824 | 1.44765 | 1.22576 | 1.03473 | 2.25696 | 1.02085 | 1.10278
1/512 | 1.52917 | 1.94573 | 1.64528 | 1.45989 | 2.30137 | 1.22531 | 1.42384
1/1024 || 1.85392 | 2.36375 | 2.02100 | 1.82638 | 2.50154 | 1.70653 | 1.82162

The results differ from those obtained in first phase of the project (com-

pare Table 3 and Table 4). In the first phase of the project we were assuming
that all the demand would be between ports located at some machine switch
M, and ports located at some disk switch D,,. This assumption reduces the

22

size of the input matrix from 64 x 64 to 32 x 32. networks in the first stage
were assumed to be directed with only traffic between machine and disk
switches. Thus the input matrix had dimensions 32 x 32 instead of 64 x 64
which it has now. Thais means that 4 times more demands have to be routed
over the same set of available edges. Therefore with the larger input matrix
the edge loads can be balanced much better and the ratio to the lower bound
is smaller.

Table 4: Simplified Type 64 network with 32 x 32 input.

| | FF | BF | BB | SoBB | RAND

Uniformly distributed

| 1.00401 | 1.02783 | 1.00915 | 1.00015 | 1.22408
Factor 1000 with probability
1/2 1.00924 | 1.02752 | 1.01778 | 1.00005 | 1.28737
1/16 | 1.12357 | 1.13486 | 1.12443 | 1.01555 | 1.68599
1/32 | 1.23210 | 1.23216 | 1.23214 | 1.06034 | 1.93165
1/128 | 1.74524 | 1.76007 | 1.76051 | 1.69249 | 2.56612
1/512 | 2.54587 | 2.55284 | 2.59625 | 2.50725 | 3.05256
1/1024 || 2.93044 | 2.93992 | 2.99362 | 2.89226 | 3.17847

The data shown in the tables shows that it is reasonable to rank the
algorithms in the following order RAND < BF < FF < BB < SoBB < k-
Opt. It is also obvious that some inputs are more difficult than others. The
results also confirm our consideration from section 3.1 that the more (similar)
demands an input contains, the easier it is to find a good path assignment.

4.2 Computation time

The average computation time for all heuristics (excluding k-Opt) for Type
64 networks is 15 sec. The same heuristics compute path allocation for Type
128 network within average 1 min. 1-Opt needs about 2.8 min. for Type 64
network and 16 min. for Type 128 network.

The integer program computes the optimal route for Type 64 networks in
average in 1.59 hours. Whereby the computation time of an integer program
varies greatly: from 11.6 seconds to 28 hours. The average computation time
for Type 128 network is 39 hours.

23

Heuristics computation time was measured on a Celeron 433 MHz ma-
chine with 128 Mb RAM. The integer program was tested on an UltraSpark
2 with two 300 MHz processors with 768 Mb RAM.

5 New Problem Definition

In the third phase of the project we made some research on the new problem
definition: The matrix R as defined in section 2.1 is unknown. Instead we
assume to know

e the current path assignments P(i, j), Vi, j €outer ports,

e the total incoming and outgoing traffic F'(i),T (i) through outer port
i, Vi,

e if the intermediate switch S; needs to buffer, the buffering information,

Task is to find an improved path assignment which reduces the need for
buffering.

The research was concentrated on reconstruction of demand matrix R.
The idea was: since we already have good path allocation algorithms, we need
to get good approximation for input matrix R and find new path assignment
by applying formerly implemented algorithms.

The first observation one can make is that F(i),7(i) are the row and
column sums of the matrix R. The general problem of matrix reconstruction
from it’s row and column sums does not have unique solution. Though in our
case we have further conditions that restrict the set of acceptable solutions,
there still can be more than one solution.

The corresponding mathematical model is following:

Let

P(i,j) = (es,€,) is Path assignment over edges e,, e, for traffic from
port ¢ to port j,

n = number of outer ports (64 or 128),

~v = capacity of edges e, since all connections apply the same technology
the capacities should be equal,

p(e) = buffering on edge e,

24

r;; € R traffic demand from port 7 to port j,
Then

0<r; <min{F(), T()} (7)

Zri’j:T(j) Vi=1...n (9)

> rig =7+ p(e) Ve with p(e) > 0 (10)
e€P(ij)

Z ri; < Ve with p(e) =0 (11)
e€P(ij)

describe a linear program model for the problem. This time we use linear
and not integer programming because the values of demands do not have
to be integer values, and there are no other conditions that require integer
solution, as there were in initial problem.

Inequality (7) sets the natural bounds for each demand, saying that it can
not be negative or greater than sum of all demands going from it’s source
port or coming into it’s destination port.

Equations (8) and (9) express that F(i) is sum of demands with source
i and T'(j) is total of demands with destination j. Equation (10) states the
buffering information and inequality (11) sets the upper bound ~ for sum of
demands routed over connection e with no buffering.

Since there is more than one solution possible, we can not just say ’find R’.
However we could solve linear problems with model above and object: 'min-
imize 7; ;* for all values of « and j. That would provide us a matrix R with
minimal values for each r; ;. The matrix R it self is not necessarily a possible
solution.

Analog we could obtain matrix R by solving the maximization problem
for each r; ;. That would be 2 x n? linear problems. Though both matrices
R and R do not necessarily belong to possible solutions set, the give us a
bounding box for that set.

Another idea was to consider convex combinations of solutions. We coud
not proceed further from this point simply because the funding for the project
terminated.

25

Bibliography

[1] http://www.qglogic.com

2] http://www.spacey.net/ldavis/Design Connector FibreChannel.html
[3] http://www.fibrechannel.org/technology/

[4] http://www.ampl.com

[5] http://www.cplex.com

26

