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Abstract.

In a rectilinear dual of a planar graph vertices are represented by simple rectilinear poly-

gons, while edges are represented by side-contact between the corresponding polygons.

A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified

weight. The complexity of a cartogram is determined by the maximum number of cor-

ners (or sides) required for any polygon. In a series of papers the polygonal complexity

of such representations for maximal planar graphs has been reduced from the initial 40

to 34, then to 12 and very recently to the currently best known 10. Here we describe

a construction with 8-sided polygons, which is optimal in terms of polygonal complexity

as 8-sided polygons are sometimes necessary. Specifically, we show how to compute the

combinatorial structure and how to refine it into an area-universal rectangular layout in

linear time. The exact cartogram can be computed from the area-universal layout with

numerical iteration, or can be approximated with a hill-climbing heuristic.

We also describe an alternative construction of cartograms for Hamiltonian maxi-

mal planar graphs, which allows us to directly compute the cartograms in linear time.

Moreover, we prove that even for Hamiltonian graphs 8-sided rectilinear polygons are

necessary, by constructing a non-trivial lower bound example. The complexity of the

cartograms can be reduced to 6 if the Hamiltonian path has the extra property that

it is one-legged, as in outer-planar graphs. Thus, we have optimal representations (in

terms of both polygonal complexity and running time) for Hamiltonian maximal pla-

nar and maximal outer-planar graphs. Finally we address the problem of constructing
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small-complexity cartograms for 4-connected graphs (which are Hamiltonian). We first

disprove a conjecture, posed by two set of authors, that any 4-connected maximal planar

graph has a one-legged Hamiltonian cycle, thereby invalidating an attempt to achieve

a polygonal complexity 6 in cartograms for this graph class. We also prove that it is

NP-hard to decide whether a given 4-connected plane graph admits a cartogram with

respect to a given weight function.

1 Introduction

There is a large body of work about representing planar graphs as contact graphs, where vertices

are represented by geometrical objects with edges corresponding to two objects touching in some

specified fashion. Typical classes of objects might be curves, line segments, or polygons. An early

result is Koebe’s 1936 theorem [23] that all planar graphs can be represented by touching disks.

In this paper, we consider contact representations of planar graphs, with vertices represented by

simple interior-disjoint polygons and adjacencies represented by non-trivial contacts (shared bound-

ary) between the corresponding polygons. We are specifically interested in rectilinear weighted

version where the vertices are represented by simple (axis-aligned) rectilinear polygons. This type

of a representation is known as a rectilinear dual of the input graph.

In the weighted version, the input is a planar graph G = (V, E) along with a weight function

w : V (G)→ R+ that assigns a weight to each vertex of G. A rectilinear dual is called a cartogram

if the area of each region is equal to the pre-specified weight of the corresponding vertex. Such

representations have practical applications in cartography [31], geography [35], sociology [20], VLSI

layout, floor-planning [28] etc. Other applications are in visualization of relational data, where using

the adjacency of regions to represent edges in a graph can lead to a more compelling visualization

than just drawing a line segment between two points [9].

For both rectilinear duals (unweighted) and cartograms (weighted) it is often desirable, for aes-

thetic, practical and cognitive reasons, to limit the polygonal complexity of the representation,

measured by the number of sides (or by the number of corners). Similarly, it is also desirable to

minimize the unused area in the representation, also known as holes in floor-planning and VLSI lay-

outs. A given rectilinear dual is area-universal if it can realize a cartogram with any pre-specified set

of weights for the vertices of the graph without disturbing the underlying adjacencies or increasing

the polygonal complexity. With these considerations, we study the problem of constructing area-

universal rectilinear duals and show how to compute cartograms with worst-case optimal polygonal

complexity and without any holes.

1.1 Related Work

In our paper and in most of the papers cited here, “planar graph” refers to an inner-triangulated

planar graph with a simple outer-face; the former restriction is required if at most three rectilinear

polygons are allowed to meet in a point and the latter restriction is customary to achieve that the

union of all the polygons in the representation is a rectangle.

Rectilinear duals (unweighted) were first studied in graph theoretic context, and then with renewed

interest in the context of VLSI layouts and floor planning. It is known that 8 sides are sometimes

necessary and always sufficient [18, 27, 40]. The case when the rectilinear polygons are restricted

to rectangles has been of particular interest and there are several (independent) characterizations of

the class of planar graphs that allows such rectangular duals [24, 26, 37]. A summary of the history

and the state of the art in the rectangle contact graphs literature can be found in [9].
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In the above results on rectilinear and rectangular duals, the areas of the polygons are not con-

sidered; i.e., these results deal with the unweighted version of the problem. The weighted version

dates back to 1934 when Raisz described rectangular cartograms [31]. Algorithms by van Kreveld

and Speckmann [25] and Heilmann et al. [19] yield representations with touching rectangles but the

adjacencies may be disturbed and there may also be a small distortion of the weights. Recently,

Eppstein et al. [14] characterized the class of planar graphs with area-universal rectangular duals.

Given an area-universal rectangular dual and a weight function the construction of the actual car-

togram can be accomplished using a result by Wimer et al. [39], which in turn requires numerical

iteration.

The result of Eppstein et al. above is restricted to planar graphs that have rectangular duals.

Going back to the more general rectilinear duals, leads to a series of papers where the main goal

has been to reduce the polygonal complexity while respecting all areas and adjacencies. De Berg et

al. initially showed that 40 sides suffice [5]. This was later improved to 34 sides [22]. In a recent

paper [8] the polygonal complexity was reduced to 12 sides and even more recently to 10 sides [1].

But in practice for many maps the average region complexity is closer to 5 [6], so the natural

question is to improve this further.

Side contact representations of planar graphs have also been studied without the restriction to

rectilinear polygons. In the unweighted case 6-sided polygons are sometimes necessary and always

sufficient [13]. The constructive upper bound relies on convex 6-sided polygons. In the weighted

version, where the area of each polygon is prescribed, examples are known for which polygons with

7 sides are necessary [36]. This lower bound is matched by constructive upper bound of 7 sides if

holes are allowed [2]. In the same paper it is shown that even allowing arbitrarily high polygonal

complexity and holes of arbitrary size, there exist examples with prescribed areas which cannot be

represented with convex polygons. If holes are not allowed then the best previously known polygonal

complexity is 10, and it is achieved with rectilinear polygons [1]. Recently Nöllenburg et al. studied

a slightly different variant of contact representations, where edges are weighted instead of vertices

and a contact representation is sought where the edge weights are represented by the length of the

common boundary between the two corresponding polygons [30].

1.2 Our Results

Recall that the known lower bound on the polygonal complexity even for unweighted rectilinear duals

is 8 while the best known upper bound is 10. Here we present the first construction that matches

the lower bound. The main difference to all previous papers is that we do not create the cartogram

directly from the graph and the area function. Instead, we first create an 8-sided rectilinear dual

layout of the graph with a very simple construction. Then we argue that this layout is area-universal,

i.e., any are assignment can be realized by deforming the rectilinear dual layout. With this approach,

both the construction of the rectilinear dual layout and the argument that a cartogram exists are

much simpler than in previous papers that achieve complexity 10 or more. The exact cartogram

can be computed from the area-universal rectangular layout with numerical iteration, or can be

approximated with a hill-climbing heuristic.

For Hamiltonian maximal planar graphs we have an alternative construction which allows us to

directly compute cartograms with 8-sided rectilinear polygons in linear time. Moreover, we prove

that 8-sided rectilinear polygons are necessary by constructing a non-trivial lower bound example. If

the Hamiltonian path has the extra property that it is one-legged (to be defined later), then we can

reduce the polygonal complexity and realize cartograms with 6-sided polygons. This can be used

to obtain 6-sided cartograms of maximal outer-planar graphs. Thus we have optimal (in terms of
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Complexity Outer-planar 4-connected Hamiltonian General

Upper 6 (Section 5.1) 8 (implied) 8 (Lemma 4) 8 (Theorem 1)

Lower 6a [1] 6 (implied) 8 (Lemma 5) 8 [40]

Table 1: Overview of results on the complexity of faces for cartograms. A result marked “implied”

is easily derived from the other results. The result marked a holds only if the outer-face is

required to be a rectangle.

both polygonal complexity and running time) representations for Hamiltonian maximal planar and

maximal outer-planar graphs. Table 1 summarizes our contributions to upper and lower bounds on

the complexity of cartograms for various graph classes.

Finally we address the problem of constructing small-complexity cartograms for 4-connected

graphs (which is a subclass of Hamiltonian planar graphs). We first disprove a conjecture posed by

two set of authors that any 4-connected maximal planar graph has a one-legged Hamiltonian cycle,

thereby invalidating an attempt to achieve a polygonal complexity 6 in cartograms for this graph

class. We also prove that it is NP-hard to decide whether a given 4-connected plane graph with

triangular and quadrangular inner faces admits a cartogram with respect to a given weight function

on the vertices.

The rest of the paper is organized as follows. In Section 2, we review some basic terminology.

In Section 3, we show how to construct 8-sided area-universal rectilinear duals in linear time. In

Section 4 we describe the alternative 8-sided construction for Hamiltonian graphs and prove that

8-sides is also a lower bound. In Section 5 we show that 6 sides are necessary and sufficient for one-

legged Hamiltonian graphs and maximal outer-planar graphs. In Section 6 we address the problem of

constructing cartograms for 4-connected graphs with small complexity. In Section 7 we summarize

our contributions and consider several open problems. Parts of this paper appeared as preliminary

versions in [3, 4].

2 Preliminaries

A planar graph G = (V, E) is one that has a drawing without crossings in the plane. A plane graph

is a planar graph with a fixed planar embedding. It splits the plane into connected regions called

faces; the unbounded region is the outer-face and all other faces are interior faces. Thus a plane

graph is defined via a cyclic ordering of the edges around each vertex and a prespecified outerface.

A planar (plane) graph is maximal if no edge can be added to it without violating planarity. Thus

each face of a maximal plane graph is a triangle. A Hamiltonian cycle in a graph G is a simple cycle

containing all the vertices of G. A graph is Hamiltonian if it contains a Hamiltonian cycle.

A set P of closed simple interior-disjoint polygons with an isomorphism P : V → P is a polygonal

contact representation of a graph G = (V, E) if for any two vertices u, v ∈ V the boundaries of

P(u) and P(v) share a non-empty line-segment if and only if (u, v) ∈ E. (P(u) and P(v) may

share multiple line-segments). Such a representation is a rectilinear dual of the input graph if the

polygons are rectilinear. In the weighted version the input is the graph G, along with a weight

function w : V (G)→ R+ assigning a weight to each vertex. A rectilinear dual is a cartogram if the

area of each polygon is equal to the assigned weight of the corresponding vertex. The complexity

of a polygon is the number of sides in it. A common objective is to realize a given graph and a set

of weights, using polygons with minimal complexity.
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2.1 Canonical Orders & Schnyder Realizers

Next we briefly summarize the concepts of a “canonical order” of a planar graph [17] and that of a

“Schnyder realizer” [34]. Let G = (V, E) be a maximal plane graph with outer vertices u, v , w in

clockwise order. Then we can compute in linear time [12] a canonical order or shelling order of the

vertices v1 = u, v2 = v , v3, . . ., vn = w , which is defined as one that meets the following criteria

for every 4 ≤ i ≤ n.

• The subgraph Gi−1 ⊆ G induced by v1, v2, . . ., vi−1 is biconnected, and the boundary of its

outer-face is a cycle Ci−1 containing the edge (u, v).

• The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1 form an (at least

2-element) subinterval of the path Ci−1 − (u, v).

A Schnyder realizer of G is a partition of the interior edges of G into the sets S1, S2 and S3 of

directed edges so that for each interior vertex v , the following conditions hold:

• v has out-degree exactly one in each of S1, S2 and S3,

• the counterclockwise order of edges incident to v is: entering S1, leaving S2, entering S3,

leaving S1, entering S2, leaving S3.

Schnyder proved that any maximal plane graph has a Schnyder realizer and it can be computed in

O(n) time [34]. These two conditions imply that Si , for i = 1, 2, 3 defines a tree rooted at exactly

one exterior vertex and containing all the interior vertices where the edges are directed towards the

root. The following well-known lemma shows a profound connection between canonical orders and

Schnyder realizers.

Lemma 1 Let G be a maximal plane graph. Then the following conditions hold.

(a) A canonical order of the vertices of G defines a Schnyder realizer of G, where the outgoing

edges of a vertex v are to its first and last predecessor (where “first” is with respect to the

clockwise order around v), and to its highest-numbered successor.

(b) A Schnyder realizer with trees S1, S2, S3 defines a canonical order, which is a topological

order of the acyclic graph S−1
1 ∪ S−1

2 ∪ S3, where S−1
k is the tree Sk with the direction of all

its edges reversed.

3 Cartograms with 8-Sided Polygons

In this section we show that 8-sided polygons are always sufficient and sometimes necessary for

a cartogram of a maximal planar graph. Our algorithm for constructing 8-sided area-universal

rectilinear duals has three main phases. In the first phase we create a contact representation of the

graph G, where each vertex of G is represented by an upside-down T, i.e., a horizontal segment and

a vertical segment. Fig. 1(a)-(b) show a maximal planar graph and its contact representation using

T’s, where the three ends of each T are marked with arrows. In the second phase we make both

the horizontal and vertical segments of each T into thin polygons with λ thickness for some λ > 0.

We then have a contact representation of G with T -shaped polygons; see Fig. 1(c). In the third

phase we remove all the unused area in the representation by assigning each (rectangular) hole to

one of the polygons adjacent to it; see Fig. 1(d). We show that the resulting representation is an

area-universal rectilinear dual of G with polygonal complexity at most 8, as illustrated in Fig. 1(e).
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3.1 Contact Representation with T’s

Our contact representation with T’s is similar to the approach described by de Fraysseix, Ossona

de Mendez and Rosenstiehl [16].

Let G be a planar graph. As mentioned earlier, we assume that G is inner-triangulated with a

simple outer-face. If need be, we can add two vertices (which we later choose as v1 and v2) and

connect them to the outer-face to ensure that the graph is maximal. Now let v1, v2, v3, . . ., vn be

a canonical order of the vertices in G with corresponding Schnyder trees S1, S2 and S3 rooted at

v1, v2 and vn. Add to S1 the edges (v2, v1), (vn, v1) oriented towards v1 and add to S2 the edge

(vn, v2) oriented towards v2. In what follows, we sometimes identify vertex vi with its canonical

label i . We also denote by Φk(v) the parent of vertex v in tree Sk .

We assign to each vertex vi the T-shape Ti consisting horizontal and vertical segments hi and bi ,

respectively. Begin by placing T1 and T2 so that h1 is placed at y = 1, h2 is placed at y = 2, the

topmost points of both b1 and b2 have y -coordinate n+ 1 and the leftmost point of the h2 touches

b1. Next the algorithm iteratively constructs the contact representation by defining Tk so that hk
is placed at y = k and the topmost point of bk has y -coordinate Φ3(k) for 3 ≤ k < n. After the

k-th step of the algorithm we have a contact representation of Gk , and we maintain the invariant

that the order of the vertical segments with non-empty parts in the half-plane y > k corresponds

to the same circular order of the vertices along Ck − (v1, v2).
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Figure 1: Construction of a rectilinear dual of a maximal planar graph with 8-sided polygons.

Consider inserting Tk for vk . The neighbors vk1
, vk2

, . . ., vkd of vk in Gk−1 form a subinterval

of Ck−1 − (v1, v2) and hence the corresponding vertical segments are also in the same order in the

half-plane y > k − 1 of the representation of Gk−1. Since vk = Φ3(vki ) for 1 < i < d (Lemma 1),
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the topmost points of the corresponding vertical segments have y -coordinate k . On the other hand,

the canonical labels of Φ3(vk1
) and Φ3(vkd ) are greater than k ; hence the topmost points of the

corresponding vertical segments have y -coordinates greater than k . As vk1
and vkd are the parents

of vk in S1 and S2, the x-coordinates of bk1
and bkd define the x-coordinates of the two endpoints

of hk . Let these coordinates be xl and xr ; then hk is placed between the two points (xl , k), (xr , k)

and bk is placed between the two points (xm, k), (xm,Φ3(k)) with xl < xm < xr . Finally for k = n,

we place Tn so that hn touches b1 to the left, b2 to the right and the topmost point of bn has

y -coordinate n + 1.

We note that this representation can be computed in linear time in a way such that all coordinates

are integers. We do this by pre-computing a topological order π of S−1
1 ∪S2; then hk is the segment

[π(Φ1(k)), π(Φ2(k))]× k and bk is the segment π(k)× [k,Φ3(k)].

3.2 λ-Fattening of Ti ’s

Let Γ′ be the contact representation of G using T’s obtained above. In this phase of the algorithm,

we “fatten” T’s so that each vertex is represented by a T -shaped polygon. We replace each

horizontal segment hi by an axis-aligned rectangle Hi which has the same width as hi , and whose

top (bottom) side is λ/2 above (below) hi , for some 0 < λ, as illustrated in Fig. 2(a). Similarly,

we replace each vertical segment bi by an axis-aligned rectangle Bi which has the same height as

bi and whose left (right) side is λ/2 to the left (right) of bi . We call this process λ-fattening of Ti .

Note that this process creates intersections of Hi with Bi , BΦ1(i) and BΦ2(i) and intersection of Bi
with HΦ3(i). We remove these intersections by replacing Hi by Hi − BΦ1(i) − BΦ2(i) and replacing

Bi by Bi −Hi −HΦ3(i). The resulting layout is a contact representation Γ′′ of G where each vertex

vi of G is represented by the T -shaped polygon Hi ∪ Bi .

(a) (b)

λ

λ

x
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H
i

i
B

x
6

x
9

i
L

i
R

x
10

x
5

x
2x

1

x
3

x
8 x

7

λ

λ

Figure 2: (a) λ-fattening of T , and (b) subdividing a T -shaped polygon into four rectangles.

3.3 Removing unused area

In this step, we begin with the λ-fat T -shaped polygonal layout, Γ′′, from above and assign each

(rectangular) hole to a polygon adjacent to it. We start by placing an axis-aligned rectangle of

minimum size that encloses Γ′′. This creates five new bounded holes. Note that all these holes are

rectangles, and each of them is bounded at the bottom by Hi for some vertex vi . We assign each

hole to this vertex. This assigns at most two holes to each vertex vi : one hole Li to the left of Bi ,

and one hole Ri to the right of Bi . Now for each vertex vi , define Pi = Ti ∪ Li ∪ Ri . It is easy

to see that Pi is a rectilinear polygon with at most 8 sides since the left side of Li has the same
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x-coordinate as the left side of Hi and the right side of Ri has the same x-coordinate as the right

side of Hi . Thus we have a rectilinear dual, Γ, of G where each vertex vi is represented by Pi .

We preferred the above description for the computation of Γ since it gives the reader some

intuition for the construction. However, we note here that the coordinates of Pi could be computed

directly, without going through T-shapes and λ-fattening, using the values Φk(vi) for k = 1, 2, 3

and a topological order π of S−1
1 ∪ S2. To this end, we take a topological ordering of the acyclic

graph S−1
1 ∪ S2 and for each vertex vi 6= vn, we denote the index of vi in this topological ordering

by π(i). Using λ = 1 and translating up by 1
2 , the coordinates for Pi are then as shown in Figure 3

(after artificially defining Φ1(1),Φ2(2),Φ3(n) to be suitable values.)

Φ3(i)

i

π(i)+ 1
2

i

π(Φ1(i)) π(Φ2(i))

π(i)− 1
2

min{Φ−1
2 (i)}

min{Φ−1
1 (i)}

π(Φ2(i))

i i

min{Φ−1
1 (i)}

Φ3(i)

π(i)+ 1
2π(Φ1(i))

Φ3(i)

π(Φ1(i))

Figure 3: The direct construction for 8-gons. The left picture shows the generic case (where i has

incoming edges in both S1 and S2 and is represented by a T-shape.) The right picture

shows the case that i has no incoming edges in S2. Similarly it is also possible that the

left side of the 8-gon is degenerate when i has no incoming edges in S1; the 8-gon may

degenrate to a rectangle when i has no incoming edges in both S1 and S2.

Then the union of these n polygons define the rectilinear dual Γ of G which is contained inside

the rectangle [ 1
2 , n+ 1

2 ]× [1, n+ 1]. Thus we can compute the representation in linear time, and by

scaling the representation by 2, we can make all coordinates to be integers of size O(n).

3.4 Area-Universality

A rectilinear dual Γ is area-universal if any assignment of positive areas to its polygons can be

realized by a combinatorially equivalent layout. Eppstein et al. [14] studied this concept for the

case when all the polygons are rectangles and the outer-face boundary is also a rectangle (which

they call a rectangular layout). They gave a characterization of area-universal rectangular layouts

using the concept of “maximal line-segment”. A line-segment in a layout is the union of inner

edges forming a consecutive part of a straight-line. A line-segment not contained in any other

line-segment is maximal. A maximal line-segment s is called one-sided if it forms a full side of at

least one rectangular face, or in other words, if the perpendicular line segments that attach to its

interior are all on one side of s.

Lemma 2 [14] A rectangular layout is area-universal if and only if each maximal segment is one-

sided.

No such characterization is known when some faces are not rectangles. Still we can use the

characterization from Lemma 2 to show that the rectilinear dual obtained by the algorithm from

the previous section is area-universal, with the following Lemma.

Lemma 3 Let Γ be the rectilinear dual obtained by the above algorithm. Then Γ is area-universal.
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Proof. To show the area-universality of Γ, we divide all the polygons in Γ into a set of rectangles

such that the resulting rectangular layout Γ∗ is area-universal. Specifically, recall that each polygon

Pi consists of four rectangles Hi Bi , Li and Ri (as defined in the previous subsections), as illustrated

in Fig. 2(b). Any horizontal segment s not on the bounding box belongs to some Hi (either top or

bottom), and by expanding it to both sides, it ends at BΦ1(vi ) on the left and BΦ2(i) on the right.

So s is one-sided since it is a side of Hi . Any vertical segment s not on the bounding box belongs

to some Bi (either left or right), and by expanding it to both sides it ends at Hi on the bottom and

HΦ3(i) on the top. So s is one-sided since it is a side of Bi .

Now given an assignment of areas w : V → R+ to the vertices of G, we split w(vi) arbitrarily into

four parts and assign the four values to its four associated rectangles. Since Γ∗ is area-universal,

there exists a rectilinear dual of G that is combinatorially equivalent to Γ where these areas are

realized. Fig. 1(f) illustrates the rectangular layout obtained from the rectilinear dual in Fig. 1(e).

�
So for any area-assignment, the rectilinear dual that we found can be turned into a combinatorially

equivalent one that respects the area requirements. This proves our main result for maximal planar

graphs. Omitting v1 and v2 from the drawing still results in a cartogram where the union of all

polygons is a rectangle, so the result also holds for all inner-triangulated planar graphs with a simple

outer-face.

Recall that the lower bound on the complexity of polygons in any rectilinear dual (and hence

in any cartogram) is 8, as proven by Yeap and Sarrafzadeh [40]. The algorithm described in this

section, thus leads to our main theorem.

Theorem 1 Eight-sided polygons are always sufficient and sometimes necessary for a cartogram of

an inner triangulated planar graph with a simple outer-face.

3.5 Feature Size and Supporting Line Set

In addition to optimal polygonal complexity, we point out here a practical feature of the 8-sided area-

universal rectilinear layout constructed with our algorithm. Earlier constructions, e.g., [5, 8], often

rely on “thin connectors” to maintain adjacencies, whereas our construction does not. Moreover,

we have the freedom to choose how to divide the area assigned to any vertex vi among the four

rectangles associated with it. This flexibility makes it possible to achieve other desired properties.

In particular, we show in the followings that the minimum feature size (i.e., the smallest distance

between non-adjacent edges) can be made as large as 1/2
√
A ·minv∈V (G) w(v) (where A is the sum

of the weights), and that this is worst-case optimal.

Choose W and H such that W×H = A =
∑
v∈V (G) w(v). We are interested in cartograms within

a rectangle of width W and height H. Define wmin = minv∈V (G) w(v). Recall that each vertex vi is

represented by the union of at most four rectangles Hi ∪Bi ∪Ri ∪Li , with Hi and Bi non-empty. We

can distribute the weight assigned to vi arbitrarily among them. In particular, we can assign zero

areas to the rectangles Li and Ri and split the weight of vi into two equal parts, assigning them to

Hi and Bi , respectively. In this layout each original vertex is represented by rectangles Hi and Bi
whose union is some fattened T or L, and all the necessary contacts remain. Note that the notion

of area-universality for rectangular layouts are defined only for assignment of positive areas to the

rectangles. However here we explain how we can assign zero areas to Li and Ri for each vertex vi
in our layout. Consider the layout when we assign a small positive area ε > 0 instead of zero to Li
and Ri for each vertex vi . As we continously decrease the value of ε towards zero, the coordinates

of the points in the layout converges to a unique set of coordinates. These coordinates define a

degenerate layout where some pairs of segments merge with each other as the area for Li and Ri
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becomes zero for each vertex vi . However since each edge incident to vi is realized by a contact of

Hi or Bi , this degenerate layout maintains all necessary contacts to realize each edge. Hence we

can use this simplified layout to produce the cartogram.

The distribution of the weight of vi in equal parts to Hi and Bi allows to bound the feature

size. The height and width of each rectangle are bounded by H and W , respectively. Its weight is

at least wmin/2. Therefore, the height and width of each rectangle is at least wmin
2 max{W,H} . Thus

the minimum feature size is at least wmin
2 max{W,H} . This is worst-case optimal for our layout, as the

polygon with the smallest weight might need to reach from left to right and from top to bottom

in the representation. We may choose W = H =
√
A so that the minimum feature size is wmin

2
√
A

.

Furthermore the rectangular layout based on only Hi and Bi yields a cartogram with at most 2n

supporting lines, instead of the 3n supporting lines in the cartogram based on four rectangles per

vertex.

3.6 Computing the Cartogram

The proof of Lemma 2 implies an algorithm for computing the final cartogram. Splitting the T -

shaped polygons into four rectangles and distributing the weights yields an area-universal rectangular

dual. This combinatorial structure has to be turned into an actual cartogram, i.e., into a layout

respecting the given weights. Wimer et al. [39] gave a formulation of the problem combining

flows and quadratic equations. Eppstein et al. [14] indicated that a solution can be found with a

numerical iteration. Alternate methods also exist, based on non-linear programming [33], geometric

programming [29], and convex programming [11]. Heuristic hill-climbing schemes converge much

quicker and can be used in practice, at the expense of small errors [10, 21, 38].

3.7 Implementation and Experimental Results

We implemented the entire algorithm, along with a force-directed heuristic to compute the final

cartogram. We treat each region as a rectilinear “room” containing an amount of “air” equal to

the weight assigned to the corresponding vertex. We then simulate the natural phenomenon of air

pressure applied to the “walls”, which correspond to the line segment borders in our layout. At

each iteration, we consider the segment that feels the maximum pressure and let it move in the

appropriate direction.

For each vertex vi of G, the polygon Pi contains air with volume w(vi). If the area of Pi is Ai , then

the pressure applied to each of the walls surrounding Pi is given by P(vi) = w(vi )
Ai

. In Section 3.4, we

saw that the maximal segments of the layout are the two horizontal and the two vertical segment

associated with each polygon. For each polygon, the horizontal segment other than the base is

entirely inside the polygon, hence it feels no “pressure” on it. For each of the other three segments

s for the polygon Pi , the “inward force” it feels is given by F(s) =
∑
vj∈V (s)[P(vj)lj ]−P(vi)li . Here

V (s) is the set of vertices other that vi whose corresponding polygon touches the segment s and li
(resp. lj) denotes the length of s that is shared with Pi (resp. Pj). At each iteration, we consider

the segment that feels the maximum pressure and let it move in the appropriate direction. This

process is guaranteed to converge with the desired cartogram according to [21], but in practice we

stop when the cartographic errors fall below a certain threshold. Here, the cartographic error is

defined as in [25] to be maxv∈V (|A(v)−w(v)|/w(v)), where A(v) denotes the area of the polygon

representing v .

Some sample input-output pairs are shown in Fig. 4; more examples and movies showing the

gradual transformation can be found at www.cs.arizona.edu/˜mjalam/optocart.
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Figure 4: Input-output pairs: weights are assigned at random in the range [10, 100], and the carto-

graphic error in the output is less than 1%. The colors indicate air-pressure: a gray region

has almost the desired area; the lighter a region is, the more it needs to shrink; the darker

a regions is, the more it needs to grow.
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We ran a few simple experiments to test the heuristic for time and accuracy. In the first experiment

we generated 5 graphs on n vertices with each integer n in the range [10, 50] and assigned 5

random weight distributions with weights in the range [10, 100]. Next we ran the heuristic until

the “cartographic error” dropped below 1% and recorded the average time. All the averages were

below 50 milliseconds, which confirms that good solutions can be found very quickly in practice;

see Fig 5(a). In the second experiment we fixed the time allowed and tested the quality of the

cartograms obtained within the time limit. Specifically, we generated 5 graphs of n vertices with

each integer n in the range [10, 50] and assigned 5 random weight distributions with weights in

the range [10, 100]. We allowed the program to run for 1 millisecond and recorded the average

cartographic error. Even with this small time limit, the average cartographic error was under 2.5%;

see Fig. 5(b). All of the experiments were run on an Intel Core i3 machine with a 2.2GHz processor

and 4GB RAM.

(a) (b)

Figure 5: Experimental results for graphs with 10-50 vertices. Each sample point corresponds to

25 graphs. (a) Plotting the average time it takes to reach cartographic error of 1%, (b)

Plotting the average cartographic error achieved in 1 millisecond.

4 Cartograms for Hamiltonian Graphs

In this section we show that 8-sided polygons are always sufficient and sometimes necessary for a

cartogram of a Hamiltonian maximal planar graph. We first give a direct linear-time construction

with 8-sided regions (without relying on numerical iteration or heuristics as in the previous section.)

We then prove that this is optimal by showing that 8 sides are necessary, with a non-trivial lower

bound example.

4.1 Sufficiency of 8-sided Polygons

Let v1, . . . , vn be a Hamiltonian cycle of a maximal planar graph G. Consider a plane embedding of

G with the edge (v1, vn) on the triangular outer-face. The Hamiltonian cycle splits the plane graph

G into two outer-planar graphs which we call the left graph Gl and right graph Gr . Edges on the

Hamiltonian cycle belong to both graphs. The naming is with respect to a planar drawing Γ of G in

which the vertices v1, . . . , vn are placed in increasing order along a vertical line, and the edges are

drawn as y -monotone circular arcs with leftmost edge (v1, vn); see Fig. 6(a).

Lemma 4 Let G = (V, E) be a Hamiltonian maximal planar graph with a weight function w : V →
R+. A cartogram with 8-sided polygons can be computed in linear time.
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Proof. Let v1, . . . , vn be a Hamiltonian cycle and Γ be the drawing defined above with (v1, vn) on

the outer-face. Suppose R is a rectangle of width W and height H where W×H = A =
∑
v∈V w(v).

Each vertex vi will be represented as the union of three rectangles, the left leg, the body Bi , and

right leg of vi . We set the width of the legs to λi = w(vi)/(2H +W ); see Fig. 6(b).

(a) (b) (d)(c)
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Figure 6: (a) A Hamiltonian maximal planar graph G, (b) an 8-sided polygon for vertex i , (c)

illustration for the algorithm to construct a cartogram of G, (d) a cartogram of G with

8-sided polygons.

Our algorithm places vertices v1, . . . , vn in this order, and also reserves vertical strips for legs of

all vertices that have earlier neighbors. More precisely, let Lj be all vertices vk with an edge (vi , vk)

in Gl for which i ≤ j < k . Similarly define Rj with respect to edges in Gr . In the drawing Γ, Lj are

those vertices above vj for which the horizontal ray left from vj crosses an incident edge.

We place vertices v1, . . . , vj with the following invariant: The horizontal line through the top of

Bj intersects, from left to right: (a) a vertical strip of width λk for each vk ∈ Lj (which will be

used for the left leg of vk), in descending order, (b) a non-empty part of the top of Bj , and (c) a

vertical strip of width λk for each vk ∈ Rj (which will be used for the right leg of vk), in ascending

order. We start by placing B1 as a rectangle that spans the bottom of R. At the left and right end

of the top of B1, we reserve vertical strips of width λk for each vertex in L1 and R1, respectively.

To place Bi , i > 1, first locate the vertical strips reserved for vi in previous steps (since vi ∈ Li−1

and i ∈ Ri−1, there always are such strips, though they may have started only at the top of Bi−1).

Since vertical strips are in descending/ascending order, the strips for vi are the innermost ones. Let

Bi be a rectangle just above Bi−1 connecting these strips. Choose the height of Bi so large that

it, together with the left and right leg inside the strips, has area w(vi); we discuss the appropriate

height below.

Finally, at the top left of the polygon of vj we reserve a new vertical strip of width λk for each

vertex k in Li − Li−1. Similarly reserve strips for vertices in Ri −Ri−1. By planarity, the vertices

in Li −Li−1 must have smaller indices than vertices in Li−1, and so this can be done such that the

order required for the invariant is respected, see Fig. 6(c).

Clearly this algorithm takes linear time and constructs 8-gons of the correct area. To see that it

creates contacts for all edges, consider an edge (vi , vk) with i < k in Gl (edges in Gr are similar.)

By definition k ∈ Li . If vk ∈ Li − Li−1, then we reserved a vertical strip for vk when placing vi .

This vertical strip is used for the left leg of vk , which touches vi . Otherwise (vk 6∈ Li − Li−1) we

have vk ∈ Li−1. When vi−1 was placed, there was a vertical strip for vk . There was also a vertical

strip for vi ∈ Li−1. These two strips must be adjacent, because by planarity (and edge (vi , vk))
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there can be no vertex vj with i < j < k in Li−1. So these strips create a contact between the two

left legs of vi and vk .

We now discuss the choice of λi = w(vi)/(2H+W ). Each leg of vi has height ≤ H and width λi ,

hence area ≤ Hλi . Then Bi has area ≥ w(vi)−2Hλi and width ≤ W , hence height ≥ w(vi )−2Hλi
W =

λi . It follows that Bi has positive height. Also all vertical strips fit: after placing Bi , we have a

strip of width λk for each vertex vk ∈ (Li ∪ Ri), and these strips use width
∑
vk∈(Li∪Ri )

w(vk)
2H+W

≤
2
∑

vk∈V−{vi }
w(vk)

2H+W < 2A
2H −

2w(vi )
2H+W = W − 2λi . Hence Bi has width > 2λi and the polygon of vi has

minimum feature size λi . �
Fig. 6(d) illustrates a cartogram for graph in Fig. 6(a), obtained by the above algorithm. This

algorithm also gives a minimum feature size for the cartogram: min
vi∈V
{λi} =

wmin
2H+W

, where wmin =

min
v∈V
{w(vi)}. Choosing W =

√
2A, H =

√
A/2, yields the minimum feature size wmin

2
√

2
√
A

.

4.2 Necessity of 8-sided Polygons

While it was known that 8-sided polygons are necessary for general planar graphs [32], the graph

used for this was not Hamiltonian. Here we show that this necessity holds even for Hamiltonian

maximal planar graphs.

Lemma 5 Consider the Hamiltonian maximal planar graph G = (V, E) in Fig. 7(a). Define w(j) =

w(l) = D and w(v) = δ for v ∈ V \ {j, l}, where D � δ. Then any cartogram of G with respect

to w contains a polygon of at least 8 sides.

Proof. Assume for a contradiction that G admits a cartogram Γ with respect to w such that each

polygon {P (v)} in Γ representing the vertex v has complexity at most 6. Observe that if {u, v , x}
is a separating triangle in G, i.e., three mutually adjacent vertices whose removal disconnect the

graph, then the region Ruvw used for the graph inside the separating triangle contains at least one

reflex corner of the polygon P (u), P (v), or P (x). The 5-vertex set {a, c, e, g, i} in G is the union

of the five separating triangles {a, c, g}, {a, c, e}, {c, e, g}, {a, e, i}, and {e, g, i} with disjoint

interiors. Since all the polygons in Γ are either 4-sided or 6-sided, the union of the polygons for

these five vertices has at most five reflex corners and hence each of the five separating triangles

above contains the only reflex corner of the polygon for a, c , e, g, or i . In particular, the outer

boundary of Raei contains exactly one reflex corner from one of P (a), P (e) and P (i), hence it is a

rectangle, say 1234. By symmetry, assume that the reflex corner of P (i) is not used for Raei .

The 4-vertex set {a, i , k,m} is the disjoint union of three separating triangles {a, k,m}, {k, i ,m},
{i , a,m}, containing l , j and n, respectively, in the interior. The reflex corner of P (i) is not used

for Raei , so, it cannot be used for any of these triangles. Thus each of P (j), P (l), P (n) contains

exactly one reflex corner from P (a), P (k) and P (m). In particular, Raei = 1234 must contain the

reflex corner of P (a). We also conclude that P (j), P (l), P (n) are rectangles, since there are no

additional reflex corners to accommodate additional convex corners from P (j), P (l) and P (n).

Assume the naming in Fig. 7(b) is such that edge 12 belongs to P (i), edges 23 and 34 belong

to P (a) and edge 41 belongs to P (e). By the adjacencies, P (k) must occupy corners 1 and 4 and

P (n) must occupy corner 2, while corner 3 (which is the reflex corner of P (a)) could belong to n

or l .

Now consider the rectangles P (j) and P (l). If D is sufficiently big, then these two rectangles

each occupy almost half of rectangle 1234. Therefore, either their x-range or their y -range must

overlap. Assume their y -range overlaps, the other case is similar. Which polygon should occupy the

area horizontally between P (j) and P (l)? It cannot be k , because P (k) contains corners 1 and 2
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Figure 7: (a) A maximal planar Hamiltonian graph with a weight function that requires at least one

8-sided polygon in any cartogram. (b) Illustration for the proof of Lemma 5.

and hence would obtain 2 reflex angles from P (j) and P (l). So it must be P (m), since n is not

adjacent to j and l . But P (m) must also separate P (n) from both P (j) and P (l). Regardless of

whether n or l occupies corner 3, this is not possible without two reflex vertices for m. Thus some

polygon must have 8 sides. �
Lemma 4 and Lemma 5 yield the following theorem.

Theorem 2 Eight-sided polygons are always sufficient and sometimes necessary for a cartogram of

a Hamiltonian maximal planar graph.

5 Cartograms with 6-Sided Polygons

Here we study cartograms with rectilinear 6-gons. We first note that these are easily constructed

for outer-planar graphs. Then we generalize this technique to a class of maximal planar Hamiltonian

graphs.

5.1 Maximal Outer-planar Graphs

Our algorithm from Lemma 4 naturally gives drawings of maximal outer-planar graphs that use

6-sided polygons. Another linear-time algorithm for constructing a cartogram of a maximal outer-

planar graph with 6-sided rectilinear polygons is also described in [1], however, our construction

based on Lemma 4 is much simpler. Any maximal outer-planar graph G can be made into a

maximal Hamiltonian graph by duplicating G and gluing the copies together at the outer-face such

that Gl = G = Gr . (This graph has double edges, but the algorithm in Lemma 4 can handle double

edges as long as one copy is in the left and one in the right graph.) Create the drawing based on

Lemma 4 with all vertices having double the weight, and cut it in half with a vertical line. This gives

a drawing of G with 6-sided rectilinear polygons as desired.

5.2 One-Legged Hamiltonian Cycles

We now aim to find more maximal Hamiltonian graphs which have cartograms with 6-sided polygons.

In a Hamiltonian cycle v1, . . . , vn, call vertex vj two-legged if it has a neighbor vi l in Gl with i l < j−1

and also a neighbor vi r in Gr with ir < j − 1. Call a Hamiltonian cycle one-legged if none of its

vertices is two-legged. In the construction from Lemma 4, the polygon of vj obtains a reflex vertex
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on both sides only if it has a neighbor below vj−1 on both sides, or in other words, if it is two-legged.

Hence we have:

Lemma 6 Let G = (V, E) be a maximal planar graph with a one-legged Hamiltonian cycle and let

w : V → R+ be a weight function. Then a cartogram with 6-sided polygons can be computed in

linear time.

It is a natural question to characterize graphs with such Hamiltonian cycles. The following lemma

gives a nice relation between a one-legged Hamiltonian cycle, a canonical ordering and a Schnyder

realizer of a graph.

Lemma 7 Let v1, . . . , vn be a Hamiltonian cycle in a maximal plane graph G with (v1, vn) on the

outer triangle. Define wi := vn−i+1. Then these are equivalent:

(a) The Hamiltonian cycle is one-legged.

(b) For i = 2, . . . , n, edge (vi−1, vi) is an outer edge of the embedded graph Gi induced by

v1, v2, . . . , vi .

(c) vn−1 is an outer vertex and vertex vi has at least two neighbors with a larger index for i =

1, . . . , n − 2.

(d) w1, . . . , wn is a canonical ordering for G.

(e) G admits a Schnyder realizer (S1,S2,S3) in which w1, w2 and wn are the roots of S1, S2 and

S3, respectively and every inner vertex is a leaf in S1 or S2.

Proof. (a) ⇐⇒ (b): For i = 2, . . . , n we argue that a vertex vi is one-legged if and only if (b) holds

for i . Indeed, (vi−1, vi) is an inner edge in Gi if and only if there are outer edges (vi , vj) and (vi , vk)

with j, k < i − 1 in Gl and Gr , respectively. But then vi is two-legged by definition.

(b) ⇐⇒ (c): Since vn is an outer vertex and Gn = G, (b) holds for i = n if and only if vn−1 is an

outer vertex. For i = 2, . . . , n− 1 we argue that (b) holds for i if and only if (c) holds for i − 1. Let

v li , respectively v ri , denote the third vertex in the inner facial triangle containing the edge (vi−1, vi)

in Gl , respectively Gr . Now (vi−1, vi) is an inner edge in Gi if and only if both, v li and v ri , have a

smaller index than vi−1, which in turn holds if and only if the index of every neighbor of vi−1, other

than vi , is less than i − 1.

(c) =⇒ (d): By (c) {w1, w2, wn} = {vn, vn−1, v1} is the outer triangle of G. Moreover, G̃3,

induced by vn, vn−1, vn−2, is a triangle, hence its outer boundary is a simple cycle C3 with the edge

(w1, w2). Thus the first condition of canonical ordering is met for i = 4. Assuming (c) and the

first condition for i = 4, . . . , n− 1, we show that the second and first condition hold for i and i + 1,

respectively. Finally, the second condition holds for i = n since wn is an outer vertex.

Note that wi is in the exterior face of G̃i−1 since wn lies in the exterior face and the path wi , . . . , wn
is disjoint from vertices in G̃i−1 and the embedding is planar. By (c) wi has at least two neighbors in

G̃i−1. If the neighbors do not form a subinterval of the path Ci−1\(w1, w2), there is a non-triangular

inner face in G̃i , containing a vertex wj with j > i in its interior. Then the path wj , . . . , wn, which is

disjoint from G̃i , starts and ends in an interior and the exterior face of G̃i , respectively, contradicting

planarity. Thus the second condition of canonical ordering is satisfied for i . Moreover G̃i is inner-

triangulated, has a simple outer cycle Ci containing the edge (w1, w2). Thus, the first condition

holds for i + 1.

(d) =⇒ (c): Since w1, . . . , wn is a canonical ordering, (w1, w2) is an outer edge. In particular,

w2 = vn−1 is an outer vertex. Clearly v1 has at least two neighbors and every neighbor has a larger

index, i.e., (c) holds for i = 1. Moreover, by the second condition of a canonical ordering every
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vertex vi = wn−i+1, for i = 2, . . . , n − 2, has at least two neighbors in G̃n−i = G \ Gi , which is the

subgraph induced by vn, . . . , vi+1.

(d) =⇒ (e): Consider the Schnyder realizer (S1,S2,S3) of G defined by the canonical order

w1, . . . , wn according to Lemma 1. One can easily show by induction that for i = 3, . . . , n − 1 the

outer cycle Ci of G̃i consists of the edge (w1, w2), the wiw1-path P1 in S1, and the wiw2-path P2 in

S2. Due to the counterclockwise order of edges in a Schnyder realizer, no vertex on P1, respectively

P2, has an incoming inner edge in G̃i in S2, respectively S1. Thus considering only edges in G̃i every

outer vertex in G̃i , different from w1, w2, is a leaf in S1 or S2. When in the canonical ordering

vertex wi+1 is attached to G̃i , some vertices on Ci become inner vertices of G̃i+1. Every inner edge

in G̃i+1, which was not an edge in G̃i is in S3. Thus every inner vertex in G̃i is a leaf in either S1 or

S2.

(e) =⇒ (d): Consider a canonical ordering x1, x2, . . . , xn of G defined by the Schnyder realizer

(S1,S2,S3) according to Lemma 1. We must show that x1, . . . , xn gives a Hamiltonian cycle. We

know that {x1, x2, x3} is a triangle, hence C3 consists of the edge (x1, x2), the x3x1-path P1 in S1,

and the x3x2-path P2 in S2. We will show that for all i the outer-face of G̃i consists of the edge

(x1, x2), the xix1-path P1 in S1, and the xix2-path P2 in S2. For i = 3, . . . , n, xi+1 is attached to

G̃i . If xi is not a predecessor of xi+1, then (say) the xi+1x2 path in S2 meets the xix1 path in S1

at some vertex x`, ` 6= i , i + 1. This means that x` has an incoming edge in both S1 and S2 –

a contradiction. So xi is adjacent to xi+1, which can also be used to show that the shape of the

outer-face is as desired. �
Fig. 8 shows a one-legged Hamiltonian cycle, corresponding canonical ordering, and Schnyder

realizer in a graph.
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Figure 8: A graph with a one-legged Hamiltonian cycle and the corresponding Schnyder realizer.

Once we have a one-legged Hamiltonian cycle, we can build a 6-sided cartogram via Lemma 6

in linear time. Alternately we could obtain a Schnyder wood, where every vertex is a leaf in S1 or

S2, and hence obtain a 6-sided cartogram via the algorithm in Section 3. However, we prefer the

construction of Lemma 6 due to its linear runtime.

Not every Hamiltonian maximal planar graph admits a one-legged Hamiltonian cycle; for example,

the graph in Fig. 7 does not even admit a cartogram with 6-gons. However, we believe that some

non-trivial subclasses of Hamiltonian maximal planar graphs are also one-legged Hamiltonian.

6 Cartograms for 4-Connected Graphs

Since 4-connected planar graphs are a strict subset of Hamiltonian planar graphs, the following

conjecture, which we raised in a preliminary version of this paper [3] (also raised in a different

context a decade ago [15] by de Fraysseix and Ossona de Mendez), would be natural:

Conjecture 1 [3, 15] Every 4-connected maximal planar graph has a one-legged Hamiltonian cycle.
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We disprove this conjecture in Section 6.1. In Section 6.2, we adress the the issue of existence

of a cartogram with rectangles for a given 4-connected graph (not necessarily maximal) along with

a given weight function and show that this problem is NP-hard.

6.1 Hamiltonian canonical cycle

Recall that a one-legged Hamiltonian cycle is by Lemma 7 (after reversing the order of vertices

along the Hamiltonian cycle) the same as a Hamiltonian cycle that induces a canonical ordering.

We call such a cycle a Hamiltonian canonical cycle. More precisely, a Hamiltonian canonical cycle

in a maximal planar graph G is a canonical order v1, v2, . . ., vn of the vertices of G such that

v1v2 . . . vn is also a Hamiltonian cycle of G. We now disprove the above conjecture by constructing

a 4-connected maximal planar graph with no Hamiltonian canonical cycle.

Theorem 3 There exist 4-connected maximal planar graphs that do not have any Hamiltonian

canonical cycle in any embedding.

Proof. We construct a 4-connected planar graph G as follows. Let K be the graph in Fig. 9. Take

two copies of K and identify their vertices {a, b, c, d}. The resulting graph is 4-connected and

triangulated. In what follows, we will always consider the one copy of K that does not contain the

outer-face, and hence is embedded as in Fig 9.
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Figure 9: The graph K used in Theorem 3.

For any embedded subgraph H of G bounded by a separating 4-cycle CH, we call the subgraph

induced by the vertices of H − CH the interior of H. Assume for a contradiction that G has a

Hamiltonian canonical cycle C. We consider the Hamiltonian cycle to be visiting the vertices in

order. Since it is a Hamiltonian canonical cycle, from the third vertex on every vertex must have
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at least two neighbors that were visited earlier. Since the first two vertices form an edge on the

outer-face, we cannot reach the interior of K before the third vertex of C.

The first vertex of C that is in the interior of K must be one of {e, h, g, f }, because no other

vertices have two neighbors on the boundary of K, and only those can have been visited earlier.

Without loss of generality we may assume e is the first vertex visited in the interior of K, which

means that a and b were visited earlier. Next we must visit all vertices in the interior of K, for K

is bounded by a 4-cycle, and there are not enough unvisited vertices left on the boundary to leave

the interior of K and return to it again later. Say after visiting the interior of K, we exit the 4-cycle

{a, b, c, d} at vertex d (the case of ending at c is similar.)

Consider the subgraph L3 ∪ {o}, which is bounded by a 4-cycle {o, h, d, g}. The first vertex in

the interior of L3 ∪ {o} to be visited must necessarily be r , for d is visited after all other vertices

of L3, and no other vertex in the interior has two neighbors 6= d on the 4-cycle {o, h, d, g}. By

the above argument for separating 4-cycles, we must visit the entire interior of L3 ∪ {o} in one

contiguous subpath that uses only vertices in the interior or on the boundary of L3 ∪{o}. Let P be

the minimal such path. Then P begins at r and does not visit d .

Since the first vertex of P is r , we must have visited o and at least one of {g, h} before P . By

symmetry, assume that we visited h already (we may or may not have visited g.) In summary, we

know the following about P :

(i) P begins at r and at this time h and o were visited already.

(ii) P visits all vertices in the interior of L3, and it may or may not visit g.

(iii) P ends with d still unvisited.

(iv) Every vertex of P has at least two neighbors that were visited earlier by P .

By analysing the structure of L3, we will show that such a path P cannot exist, which gives the

desired contradiction. Consider the close-up of graph L3 in Figure 10.
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Figure 10: The graph L3 used for constructing K.
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We claim that without loss of generality the next vertex after r on P is A1. It can only be A1 or

B1, for no other vertex in the interior of L3 has two neighbors that were already visited. If it were

B1, then g was already visited. But in this case L3 is entirely symmetric with respect to who has

been visited already, and a symmetric argument will lead to a contradiction. So we may assume

that the next vertex after r on P is A1. Consider vertex A2, which has degree 4. Neighbor h was

visited already, and neighbor d will be visited much later. So the adjacent vertices of A2 in P must

be A1 and A3. Therefore the next two vertices on P after A1 are A2 and A3. This part of P is

marked with a solid black in Figure 10 and corresponds to the beginning of P .

Consider the separating 4-cycle {h, r, C, d}. When we reach A1, we have visited h and r already.

We will not visit d with P . So the last vertex of P that is on or inside {h, r, C, d} must be C.

Consider vertex A5, which has degree 4. Its neighbors r and A1 were already visited, so the adjacent

vertices of A5 in P must be A4 and C. Therefore the two vertices on P before C are A5 and A4.

This part of P is marked with a solid gray in Figure 10 and corresponds to the last part of P on or

inside {h, r, C, d}.
Consider vertex A6, which has degree 4. Neither C nor d can be its adjacent vertices on P

because the part of P near C is already fixed, and d comes much later. So A6 must be between

A3 and A4 on P . This part of P is marked with a dashed line in Figure 10. But now we have a

problem: A6 has only one neighbor A3 that was visited earlier by C; all the other neighbors of A3

are visited later. This contradicts that C is a Hamiltonian canonical cycle. �

6.2 Cartograms with Rectangles

Another question one could ask is: Given a plane weighted graph, how easy is it to test whether it

has a cartogram of a given complexity?

For rectilinear layouts, we can answer this question in polynomial time. Specifically, the question

whether a graph has a rectilinar dual with an upper bound on the number of corners can be phrased

as a maximum flow problem and hence be solved in linear time.

In contrast to this, we now show that testing whether a graph has a cartogram with an upper

bound on the number of corners is NP-hard. Note that the graph in our construction has some faces

that are quadrangular (rather than the preferred triangular), but it is 4-connected. We show that it

is NP-hard to test whether it has a rectangular cartogram, i.e., where all faces are rectangles. Let

us call the problem RectangleCartogram (RC).

We show that this problem is NP-hard by a reduction from the well-known NP-hard problem Parti-

tion defined as follows. Given a (multi-)set of positive integers S = {x1, . . ., xn} with
∑n
i=1 xn = 2A

for some integer A, we want to find a subset I of S such that
∑
xi∈I xi = A.

Given an instance of Partition, we construct an instance of RC. We first construct a 4-connected

graph G as follows. For each integer xi of S, we have a subgraph with eight vertices: Xi , pi , pi+1,

qi , qi+1, ai , bi , ci . We highlight such a subgraph for xi in Fig. 11. We also have four vertices L, T ,

R and B that forms the outerface. Call these four vertices boundary vertices of G. The constructed

graph G is then 4-connected with a quadrangular outerface and each of its internal faces is a triangle

or quadrangle.

We define the weight function as follows. For each vertex Xi , we define w(Xi) = xi . We

give a very small weight δ < 1/(5n + 2) to each vertex ai , bi , ci , pi , qi for 1 ≤ i ≤ n and

to each vertex L, R, T and B. We give a very large weight W (M) to the vertex M such that

The construction is quite similar to the one by Biedl and Genc for testing whether a given rectilinar drawing can be

used to satisfy area-constraints [7].
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Figure 11: The graph constructed from an instance of a Partition problem.

√
W (M) + 2A+ (5n + 2)δ −

√
W (M) < 1. Finally we give weights to the vertices t1 and t2 such

that w(t1) : w(t2) =
√
W (M) + 2A+ (5n + 2)δ −

√
W (M) :

√
W (M).

We now have the following lemma.

Lemma 8 There exists a subset I of S such that
∑
xi∈I xi = A if and only if there is a rectangular

cartogram Γ of G with respect to the weight function w where the rectangles for L, T , R and B

forms the outer-boundary of Γ.

Proof. Suppose first that there is a rectangular cartogram Γ of G with respect to w where the

rectangles for the four vertices L, T , R and B define a rectangular region F ′ which consists of the

rectangles for the remaining vertices. Without loss of generality, we assume that the rectangles L, T ,

R and B are to the left, top, right and bottom of F ′, respectively; see Fig 12. Since the face formed

by t1, t2, M and pn+1 is a rectangle, this face will correspond to a point of degree four in Γ incident

to rectangles for the four vertices. Thus the rectangles R(t1) and R(t2) for the vertices t1 and

t2, respectively, have the same height and together they span the top of the region F ′. Define the

rectangular region F = F ′−R(t1)−R(t2). Scale Γ in the x and y direction by a reciprocal factor such

that the area of Γ remains unchanged but F becomes a square. Then from the weight distribution

of t1 and t2, the rectangle R(M) for M is also a square. The left and bottom of this square define

two lines lv and lh, respectively. Now the rectangle for each vertex Xi lies either to the left of lv or

to the bottom of lh, but not both since
√
W (M) + 2A+ (5n + 2)δ −

√
W (M) < 1 ≤ √xi . Thus

each subgraph for xi has a drawing in one of two configurations; see Fig. 12(a) and (b), respectively.

Then the vertices corresponding to the rectangles Xi lying to the left of lv form the subset I of S.

The reason is as follows. Define the four rectangles R1, R2, R3, R4 that partitions F in this way:

R1 = R(M), R2, R3 are the rectangles to the left of lv ; R2 to the top and R3 to the bottom of lh
and R4 is the rectangle to the right of lv and to the bottom of lh. Then the area of R2 + R3 and

R4 +R3 are equal and neither can contain rectangles with total weights A+ 1 since the area of R4

is less than 1. However since the weights for each Xi is a positive integer, it must be the case that

the rectangles Xi lying in R2 + R3 has a total area of A.

Conversely if we are given a subset I of S such that
∑
xi∈I xi = A, then we construct a cartogram

of G as follows. We draw the rectangles for L, T , R, B, t1 and t2 such that they enclose a square

region F of size W (M)+2A+(5n+2)δ, and the rectangles L, T , R and B are to the left, top, right,
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Figure 12: Illustration of the proof of Lemma 8.

and bottom of the drawing, respectively. We also draw the square R(M) for M to the right-top

corner of F . From the weight distribution, the top-left corner of R(M) will be a point of degree

four. We then draw the subgraphs for xi in the way illustrated in Fig. 12(a) if xi ∈ I; otherwise we

draw this subgraph in the way illustrated in Fig. 12(b). Thus we obtain a cartogram of G, as in

Fig. 13. Here x1, x2 ∈ I, x3 /∈ I and so on. �

M

2X1

X3

X

Figure 13: Construction of a cartogram from a solution of Problem Partition.

We can thus reduce an instance S of Problem Partition to an instance (H,w) of Problem

RectangleCartogram as follows. We construct the graph H by taking two copies G1, G2 of G with

boundary vertices Li , Ti , Ri and Bi for i = 1, 2 and then identifying T1 with T2, B1 with B2 and

R1 with L2. This graph H is thus 4-connected planar graph with four vertices on the outerface

and each of its internal faces is either a triangle or a quandrangle. The weight function w is as
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described in the paragraph before Lemma 8 for each copy of G. Then if H has a cartogram with

weight function w , then this gives an embedding of H and we consider one of the two copies of G

that does not contain the outerface. Then by Lemma 8, we get a subset I of S with
∑
xi∈I xi = A.

Conversely, if we are given a subset I of S with
∑
xi∈I xi = A we can construct a cartogram for both

copies of G using the algorithm in Lemma 8 and then place these two copies beside each other to

find a cartogram for H (more precisely, we identify the rectangles R2 and L1 and reduce the height

of T = T1 ∪ T2 and B = B1 ∪B2 by half). Thus S has a solution if and only if G has a rectangular

cartogram with respect to w . This yields the following theorem.

Theorem 4 Problem RectangleCartogram is NP-hard.

7 Conclusion and Open Problems

We presented a cartogram construction for maximal planar graphs with optimal polygonal complex-

ity. For the precise realization of the actual cartogram this approach requires numerical iteration.

Even though the simple heuristic works well in practice, a natural open problem is whether every-

thing can be computed with an entirely combinatorial linear-time approach. We also presented an

entirely different linear-time construction for Hamiltonian maximal planar graphs and showed that

the resulting 8-sided cartograms are optimal. Finally, we showed that if the graph admits a one-

legged Hamiltonian cycle, only 6 sides are needed. Maximal outer-planar graphs contain one-legged

Hamiltonian cycles but not all 4-connected maximal planar graphs do. It remains to identify larger

classes of planar graphs which are one-legged Hamiltonian and thus have 6-sided cartograms.

All of the constructions in this paper yield area-universal rectilinear duals with optimal polygonal

complexity. While Eppstein et al. [14] characterized area-universal rectangular layouts, a similar

characterization for general area-universal rectilinear layouts is a natural open problem. Another open

problem related to to area-universal layout is whether given such area-universal rectangular layout

one can efficiently (or at least more efficiently than the non-linear programming [33], geometric

programming [29], and convex programming [11]) realize a given weight function.

Is it NP-hard to test whether a graph with a given area-assignment has a k-sided cartogram?

Here we show that for 4-connected graphs with triangular and quadrangular faces and for cartograms

containing only rectangles the problem is NP-hard. It would be interesting to investigate the com-

plexity of the problem when all the inner faces are triangles. On the other hand, if a rectilinear

layout of the graph is given, then it is again known to be NP-hard to test whether the layout can be

deformed into a cartogram, even if all faces have at most 8 sides [7]. Does the freedom to choose

the rectilinear layout help?

For some classes of graphs the unweighted and weighted versions of the problem have the same

polygonal complexity, as in the case of general planar graphs where we have shown that the tight

bound of 8 for weighted graphs matches the tight bound for unweighted graphs. On the other hand,

Hamiltonian maximal planar graphs have a tight bound of 6 in the unweighted case, while we have

shown that the tight bound is 8 in the weighted case. It would be interesting to study when the

weighted version of the problem increases the polygonal complexity.

In a similar vein, rectilinear representations are often desirable for practical and technical reasons

(e.g., for VLSI layout or floor-planning). Sometimes, insisting on rectilinear representation increases

the underlying polygonal complexity. For example, general (unweighted) planar graphs can be repre-

sented by 6-sided polygons (tight bound) while 8 are needed in the rectilinear case. For the weighted

version, we also now know that 8 sided are sufficient in the rectilinear case, but can we improve this

to 7 sides if we do not insist on rectilinear layouts?
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