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Abstract. Arrangements of lines and pseudolines are important and appealing objects

for research in discrete and computational geometry. We show that there are at most

20.657 n2
simple arrangements of n pseudolines in the plane. This improves on previous

work by Knuth who proved an upper bound of 3(n2) ∼= 20.792 n2
in 1992 and the first author

who obtained 20.697 n2
in 1997. The argument uses surprisingly little geometry. The main

ingredient is a lemma that was already central to the argument given by Knuth.

1 Introduction

Arrangements of pseudolines are the topic of a chapter in the Handbook on Discrete and

Computational Geometry [8]. The monograph [4] is another general reference. In most

texts arrangements of pseudolines are defined with the real projective plane as ambient

space. In contrast, we consider arrangements in the Euclidean plane.

A pseudoline in the Euclidean plane is a curve extending to infinity on both sides. An pseudoline

arrangement of pseudolines is a family of pseudolines with the property that each pair of arrangement

of pseudolinespseudolines has a unique point of intersection where the two pseudolines cross. An arrange-

ment is simple if no three pseudolines have a common point of intersection. Arrangements simple

with a distinguished unbounded cell called the north-cell are known as marked arrange-

ments. Note that if in an arrangement a north-cell cn has been selected, then there is a marked

arrangementsunique unbounded cell separated from cn by all pseudolines this cell is called the south-cell.

Pseudolines in a marked arrangement have a natural orientation such the the north-cell is

to left and the south-cell to the right of the oriented pseudoline.
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of the Czech Republic.
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Two arrangements are isomorphic, i.e., considered the same, if they can be mapped

onto each other by a homeomorphism of the plane. In the case of marked arrangements it

is required that an isomorphism respects the distinguished cell and preserves the induced

orientations.

In this paper we are interested in the number Bn of marked simple arrangements of n

pseudolines. It is known, e.g. from [3], that Bn ∈ 2Θ(n2). Our interest is in the multiplica-

tive constant b hidden in the Θ(n2), i.e, such that Bn ∈ 2bn
2+o(n2). Knuth [9] considers

the counting problem for several related classes of arrangements, e.g. arrangements with-

out marking, projective arrangements or more abstractly reorientation classes of uniform

oriented matroids of rank three. Their numbers only differ by lower order factors, more

precisely, their number is also of the form 2bn
2+o(n2) with the same constant b.

We are going to study the growth of bn = log2(Bn). An easy lower bound construction

is given in [11, sec. 6.2]; it yields bn >
1
9n

2. Knuth [9, page 37] shows bn >
1
6n

2 − O(n).

In Section 4 we use enumeration results for rhombic tilings to prove bn > 0.188 n2.

The upper bound Bn ≤ 3(n2), i.e., bn ≤ 0.7924 n2, was shown by Knuth [9, page 39].

At the end of this monograph, Knuth [9, page 96] comments that an improved bound

of bn ≤ 0.7194 n2 can be obtained from the the sharpest version of the zone theorem.

Felsner [3] obtained the bound bn ≤ 0.6974 n2. In Section 2 we review the idea in Knuth’s

proof and add a new simple idea to get bn ≤ 0.6609 n2. In Section 3 we refine the analysis

and prove the bound bn ≤ 0.6571 n2.

There are several nice representations and encodings of simple arrangements of pseu-

dolines. We close the introduction by explaining three of them. First however we fix a

labeling of the pseudolines. Given a marked arrangement A of n pseudolines we label the

pseudolines with 1, . . . , n such that an oriented curve from the south-cell to the north-cell

that has all crossings of pseudolines on the right intersects the pseudolines in increasing

order, see Figure 1 (left).

Local sequences. Associate with pseudoline i the permutation αi of {1, .., n} \ i report-

ing the order from left to right in which the other pseudolines cross line i . The family

(α1, α2, . . . , αn) is called the family of local sequences of the arrangement. local

sequences

Wiring diagrams. Goodman [7] introduced a class of drawings of arrangements called

wiring diagrams to get well-arranged pictures of arrangements. The idea is to specify a set

of n horizontal lines (wires) and confine the pseudolines to these wires except for positions

where they cross each other. In the case of a simple arrangement crossings always involve

two pseudolines from adjacent wires. Figure 1 shows an example.

Zonotopal tilings. A simple zonotopal tiling T is a tiling of a regular 2n-gon with vertices simple

zonotopal

tiling

x0, x1, . . . , x2n−1 in clockwise order starting with the highest vertex x0. The tiles of T are

rhombi R(i , j), 1 ≤ i < j ≤ n, such that R(i , j) has one side which is a translated copy

of the segment [xi−1, xi ] and one side which is a translated copy of the segment [xj−1, xj ].

The tiles are not allowed to be rotated.
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Figure 1: An arrangement A with a cell marked by a star and a wiring diagram of A. The

local sequences of this arrangement are: α1 = 3, 5, 4, 6, 2, α2 = 3, 4, 5, 6, 1,

α3 = 2, 1, 6, 5, 4, α4 = 2, 5, 1, 6, 3, α5 = 2, 4, 1, 6, 3, α6 = 2, 1, 4, 5, 3.

Simple zonotopal tilings can be viewed as normalized drawings of the duals of marked

simple arrangements. Figure 2 shows an example. For additional information on zonotopal

tilings and their relation to arrangements see [4] and [2].

Proofs of equivalence of the three representations are detailed in [4]. The basic tool for

the proof of equivalence is to sweep a representations, resp. the arrangement, from left to

right to transform one representation into another.

Figure 2: Arrangement A with its dual and the corresponding zonotopal tiling.

2 The upper bound

The upper bound for the number of simple Euclidean arrangements given in [3] was based

on ‘horizontal encodings’ of arrangements. The first step was to replace the numbers in

the local sequences αi by single bits, a 1 for numbers j with j < i and a 0 for j > i .

The proof of Knuth [9] takes a ‘vertical’ approach. Let A be an arrangement of n + 1

pseudolines and consider pseudoline n + 1 drawn into the wiring diagram of the arrangement

A′ induced by the first n pseudolines of A. The course of pseudoline n + 1 describes a

cutpath descending from the north-cell to the south-cell of A. Looking at the zonotopal cutpath
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tiling representation of A′ as a graph a cutpath corresponds to a vertically decreasing path

from the highest vertex x0 to the lowest xn. Figure 3 shows an example.

5
4
3

1
2

Figure 3: The cutpath corresponding to pseudoline 6 in the arrangement of pseudolines

1,2,3,4, and 5.

The number of arrangements A such that A \ {n + 1} equals A′ is exactly the number

of different cutpaths of A′. Define γn as the maximal number of cutpaths an arrangement

of n pseudolines can have. It then follows that

Bn+1 ≤ γn · Bn. (1)

Knuth proves that γn ≤ 3n and he also notes that the ‘bubblesort arrangement’ (see

Figure 4) of size n has approximately n 2n−2 cutpaths. Knuth also conjectures that the

bubblesort arrangement is the maximizing example. The bubblesort arrangement is a par-

ticular Euclidean arrangement corresponding to the projective cyclic arrangement, cf. [12].

Figure 4: Wiring diagrams of the bubblesort arrangements of 6 and 7 lines.

In social choice theory a set T of permutations of [n] is called an acyclic set if for all acyclic set

i , j, k ∈ [n] at most two of i jk , jki , ki j appear as a restriction of a permutation in T to

{i , j, k}. The interest in acyclic sets comes from the fact that they avoid Condorcet cycles.

That is, if voters are constrained to preference lists from an acyclic set T , then the majority

digraph on the alternatives is acyclic. It has been shown in [6] that the set of cutpaths of an

arrangement A is an acyclic set. Fishburn [5] introduced the alternating scheme as a large

acyclic set. It turned out that the permutations in the alternating scheme correspond to the

cutpaths of the bubblesort arrangement (Figure 4). Galambos and Reiner [6] gave a precise

formula for the size of the alternating scheme and conjecture that this is the largest size

of an acyclic set that can be obtained as the set of cuthpaths of an arrangement, i.e., in a

different context they came up with the same conjecture as Knuth. Onďrej B́ılka, a student

of the second author, found a construction of arrangements with 2.076n cutpaths [1]. This

disproves the conjecture.

4



In the remainder of this section we present the main lemma of Knuth and show how to

use it to bound the number γn of cutpaths of an arrangement.

Consider a cutpath p descending through the wiring diagram of A. Having reached a

cell c , the path has to continue by crossing the wire w bounding c from below. The cells

that can be reached from c by crossing w are ordered from left to right as c1, c2, .., cd . Let

their number d be the degree of c . When d ≥ 2 we let c1 be the left successor of c , and cd degree

be the right successor of c . The other cells c2, . . . , cd−1 are called middle successors of c . middle

When d = 1 we let c1 be the unique successor of c .

When the cutpath p of A traverses a cell c such that there is a middle successor cell c ′

of c separated from c by pseudoline j we say that p sees a middle of color j at c . If sees a middle

of color j at cp descends from c to c ′ we say that p has crossed pseudoline j as a middle. Figure 5

has crossed

pseudoline j

as a middle

illustrates the terminology. The middles of p denotes the set of all pseudolines crossed by

p as a middle. Similarly, the uniques of p denotes the set of all pseudolines crossed by p

when leaving cells of degree 1.

5
4
3

1
2

The north-cell has degree 3, the path takes a middle of color 2.

The path sees a middle of color 4 and takes a right.

A cell of degree 2, the path takes a left.

The path takes a left.

A cell of degree 1, the path takes the unique.

Figure 5: A cutpath through a wiring diagram.

Lemma 1 (Knuth) For every pseudoline j and every cutpath p it holds: p sees a middle of

color j at most once.

pseudoline j

w

w ′
c ′

cutpath p

c

Figure 6: Illustrating the proof of Lemma 1

Proof. Suppose a cutpath p sees a middle of color j at different cells c and c ′. Assuming

that p visits c before c ′ we have a situation as sketched in Figure 6. Let t be the number of

wires strictly between w and w ′. Between the visits of the borders of c and c ′, pseudoline j

has to change at least (t+1)+2 times from a wire to another, i.e., pseudoline j has at least
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t + 3 crossings in this range. Every pair of pseudolines has only one crossing. Therefore,

every pseudoline crossing j between c and c ′ also has to be traversed by the cutpath p on

its way from c to c ′. The cutpath p only intersects t + 1 wires on its way from c to c ′, a

contradiction.

We use the lemma to encode cutpaths of an arrangement A. With a cutpath p we

associate two combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that pseudoline j is crossed by p as a middle.

• A binary vector βp = (bp(0), bp(1), . . . , bp(n − 1)) such that bp(i) = 1 only if p

proceeds to the left successor of the cell c enclosed between wire i and wire i + 1.

The cutpath p from Figure 5 has Mp = {2}, βp(1) = 0 and βp(2) = βp(3) = 1, the values

of βp(0) = βp(4) = 0 are irrelevant since p is taking a middle in the first step and a unique

in the last.

Claim I. The mapping p → (Mp, βp) is injective from cutpaths of A to pairs consisting of

a subset M of [n] and a binary vector of length n.

Proof. Given (Mp, βp) the cutpath can uniquely be reconstructed: Assume an initial piece

of p up to some cell c has been constructed. If there is only one successor c ′ of c , i.e., if

the degree of c is one, then p has to continue to c ′. If there is a j ∈ Mp such that c has a

middle of color j , then p has to cross pseudoline j when leaving c (here we use Lemma 1).

Otherwise c has to continue to the left or the right successor of c and a lookup at the

corresponding position of βp reveals which is to be taken.

From the claim it immediately follows that γn ≤ 2n 2n = 4n. To improve the bound we

use two simple observations:

• Every j taken as a middle forces that some entry of βp is irrelevant, i.e., not needed

for the encoding of the cutpath.

• The lookups of entries of βp are done in increasing order of indices.

It follows that we can take βp to be a binary string of length n − |Mp| and agree that

lookups are always taken at the first unused position of β. This improved encoding yields:

γn ≤
n∑
k=0

(
n

k

)
2n−k = 2n (1 +

1

2
)n = 3n. (2)

This is the upper bound of Knuth, only the arithmetic in our derivation is simpler.

Note that our estimate for the length of βp does not yet take into account that some

cells may have degree one. Define ΓA(k, r) as the set of cutpaths in A that leave k cells

trough a middles and visit r bounded cells of degree one. From the above considerations

we immediately have

|Γ(k, r)| ≤
(
n

k

)
2n−k−r (3)

With the next lemma we show how to make use of this.
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Lemma 2 |Γ(k, r)| ≤ min
{(n
k

)
,

(
n

r

)}
2n−k−r .

Proof. Paths in ΓA(k, r) can also be encoded as cutpaths in the arrangement Â obtained

from A via a 180◦ rotation of the plane. A cutpath p of A takes a middle to change from

c to c ′ exactly if the rotated cutpath p̂ of Â is reaching cell c as the unique successor

of c ′, see Figure 7. In other words cells that are left through a middle by p and bounded

cells that are left through a unique by p̂ are in bijection as well as middles of p̂ and bounded

uniques of p. This yields ΓA(k, r) = ΓÂ(r, k) and the lemma follows from formula (3).

c

p̂p

c ′

c

c ′

Figure 7: Illustrating the symmetry between middles and uniques used in Lemma 2

Using the lemma we get

γn ≤
∑
k,r

|ΓA(k, r)| ≤
∑
k,r

min
{(n
k

)
,

(
n

r

)}
2n−k−r

≤ 2n
n∑
k=0

(
n

k

)
2−k

∑
r≥k

2−r + 2n
n∑
r=0

(
n

r

)
2−r

∑
k≥r

2−k

= 2 · 2n
n∑
k=0

(
n

k

)
2−k

∑
r≥k

2−r = 2n+1
n∑
k=0

(
n

k

)
2−2k

∑
j≥0

2−j

= 2n+2
(

1 +
1

4

)n
= 4

(5

2

)n
. (4)

Combining this with (1) we get:

Theorem 1 The number Bn of arrangements of n pseudolines is at most 4n−1
(

5
2

)(n2), hence
for n large enough bn ≤ 0.6609 n2.

3 The upper bound, refined

In this section we show that a careful analysis of the distribution of middles along cutpaths

yields an improved bound on the size of Γ(k, r).

With an arrangement A associate the directed dual graph G∗A. An example of the

underlying undirected dual is shown in Figure 2. The vertices of G∗A are the cells of A
and the orientation is from north to south. This means that if {x, y} is an edge dual

to pseudoline p such that x and the north-cell zn are in the same halfplane of p and

consequently y and the south-cell zs are in the other halfplane of p, then the edge is
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oriented as (x, y). Cutpaths of A are in bijection to directed zn to zs paths in G∗A;

henceforth we will use the same name cutpath for these paths in G∗A. Edges of G∗A are

classified as left, right, middle or unique and they are colored with the label i of their dual

pseudoline.

Fix a bitstring β and consider the set Λβ of all cutpaths that can be constructed by using

lookup in β for the left-right decisions. The paths in Λβ(A) naturally define a (directed)

rooted tree Tβ: A node c of the tree corresponds to all cutpaths from Λβ that share a

given initial subpath. All edges in Tβ are oriented away from the root. Corresponding to

the tree node c there is a vertex vc in G∗A. If vc only has one successor, then tree node c

has a unique successor. If vc has more successors, then there is a single sided successor of sided

c representing the cell that is reached with a lookup in β and there is a middle successor

of c for every middle edge leaving vc . Leaves of Tβ are in bijection to the cutpaths in Λβ.

G∗A T0,1,...

Figure 8: The graph G∗A and the tree Tβ with β = 0, 1, . . ., i.e., right, left, . . .. Red edges

are dashed and green edges are pointed.

Consider the subtree Tβ(r, k) of Tβ consisting of cutpaths in Γβ(k, r) = Λβ ∩ Γ(k, r),

i.e., cutpaths using k middle and r unique edges. Let T ∗β (r, k) be obtained from Tβ(r, k)

by contracting all unique edges. The contractions does not change the number of leaves.

Color the sided edge of tree nodes blue and all middle edges red. Note that T ∗β (r, k) has

the following properties:

(a) Every non-leaf node has exactly one blue out-edge.

(b) Every path from the root to a leaf has length h = n − r .

(c) Every path from the root to a leaf uses exactly k red edges.

(d) The nodes along any path from the root to a leaf have altogether at most n red

out-edges (Lemma 1).

Definition 1 For n ≥ h ≥ k , let T (n, h, k) be the maximum number of leaves of a rooted

tree with red and blue edges and properties (a)–(d).

To determine this quantity we first study a different maximization problem. A k-

transversal of a partition Π = (B1, . . . , Bh) of [n] is a k-element subset A of [n] such

that |A ∩ Bi | ≤ 1 for each i ∈ {1, . . . , h}.
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Definition 2 For n ≥ h ≥ k , let P (n, h, k) be the maximum number of k-transversals a

partition Π = {B1, . . . , Bh} of [n] with h blocks can have.

Lemma 3 If n = d · h + r with 0 ≤ r < h, then

P (n, h, k) =

r∑
`=0

(
r

`

)
(d + 1)`

(
h − r
k − `

)
dk−`.

Proof. Let Π∗ be a partition of [n] into r blocks of size d + 1 and h − r blocks of size d .

It is an easy exercise to show that the number of k-transversals of Π∗ is equal to the right

hand side of the equation in the lemma.

Now consider a partition Π of [n] into h blocks and suppose it is not equivalent to Π∗.

Then there are blocks B and B′ in Π whose size differs by at least two. Let |B| = s and

|B′| = s + t with t ≥ 2. Now let Π̂ be obtained by moving one element from B′ to B

so that Π̂ has blocks B̂ and B̂′ with |B̂| = s + 1 and |B̂′| = s + t − 1. Note that the

k-transversals of Π and Π̂ whose intersection with B∪B′ is at most one are the same. Now

let M be the number of (k − 2)-transversals of Π \ {B,B′}. The number of k-transversals

whose intersection with B ∪B′ is two is s (s + t)M for Π and (s + 1) (s + t − 1)M for Π̂.

Since (s + 1) (s + t − 1) > s (s + t) it follows that Π̂ has more k-transversals than Π.

Lemma 4 For all k ≤ h ≤ n,

P (n, h, k) ≤
(
h

k

)(n
h

)k
.

Proof. Let Π be a partition of [n] into h blocks whose number of k-transversals is exactly

P (n, h, k). From Π we obtain a partition Π+ of [hn] into h blocks by substituting single

elements by sets of h elements, e.g., i → (i − 1)h + 1, . . . , ih.

The number of k-transverals of of Π+ is hk P (n, h, k). With Lemma 3 we get the result:

hk P (n, h, k) ≤ P (hn, h, k) =
(
h
k

)
nk .

Lemma 5 T (n, h, k) ≤ P (n, h, k).

Proof. The proof is by induction on h. Since k ≤ h we get a start by verifying P (n, 1, 0) =

T (n, 1, 0) = 1.

For the inductive step consider a tree realizing T (n, h + 1, k). The root of the tree has

some degree s+ 1. It follows from the defining properties (a)–(d) that the subtree reached

from the root through the blue edge contains at most T (n − s, h, k) leaves and each of

the s subtrees reached from the root through a red edge contains at most T (n−s, h, k−1)

leaves. Therefore,

T (n, h + 1, k) ≤ max
0≤s≤n−k+1

(
T (n − s, h, k) + s T (n − s, h, k − 1)

)
. (5)

Now let s be the value where the maximum is attained. By induction

T (n − s, h, k) + s T (n − s, h, k − 1) ≤ P (n − s, h, k) + s P (n − s, h, k − 1). (6)

Consider partitions Π1 and Π2 maximizing P (n−s, h, k) and P (n−s, h, k−1). A byproduct

of the proof of Lemma 3 is that for k ≥ 2 the structure of the maximizing partitions is
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independent of k . For k = 0, 1 all partitions with h blocks are maximizing. Hence, we can

assume that Π1 = Π2. Let Π be the partition obtained by adding a new block B with |B| = s

to Π1 and note that the right hand side of (6) is exactly the number of k-transversals of Π.

Since Π is a partition of an n-element set into h + 1 blocks we conclude:

P (n − s, h, k) + s P (n − s, h, k − 1) ≤ P (n, h + 1, k). (7)

This completes the proof.

We mention without proof that the inequality in Lemma 5 actually holds with equality.

To bound the total number γn of cutpaths in an arrangement A, we use the ideas

developed in this section in a series of inequalities:

γn ≤
∑
k,r

|ΓA(k, r)| =
∑
k,r

∑
β

|Λβ ∩ ΓA(k, r)|

=
∑
k,r

∑
β

# leaves of Tβ(k, r) ≤
∑
k,r

∑
β

T (n, n − r, k)

=
∑
k,r

T (n, n − r, k) 2n−r−k ≤
∑
k,r

P (n, n − r, k) 2n−r−k . (8)

Recall from Lemma 2 that the freedom of encoding cutpaths forward or backward yields

a symmetry in the parameters k and r . Using this and the observation that h > h′ implies

P (n, h, k) > P (n, h′, k) we get:

γn ≤
∑
k,r

min
{
P (n, n − r, k), P (n, n − k, r)

}
2n−r−k

≤
∑
k≤r

2 P (n, n − r, k) 2n−r−k ≤
∑
k

2 P (n, n − k, k) 2n−2k
∑
j≥0

2−j

= 4
∑
k

(
n − k
k

) ( n

n − k

)k
2n−2k . (9)

The last equality follows from Lemma 4.

Now we are interested in the summand of (9) whose contribution is asymptotically

dominant. Using Stirling’s approximation and parametrizing k = an, the summands can be

estimated as

(
(1− a)n

an

) ( n

(1− a)n

)an
2(1−2a)n ≈

[
2
( 1− a

1− 2a

)(1−2a)( 1

4a

)a]n
. (10)

At this point we started Maple and found that presumably the maximum of (10) is at-

tained at a ≈ 0.186691 and has the value of at least 2.486976, so that γn ≤ 4n2.486976n.

This yields our main theorem:

Theorem 2 Let Bn be the number of arrangements of n pseudolines and let bn = log2Bn.

For n large enough, bn ≤ 0.6571 n2.
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4 A lower bound

Given three numbers i , j and k we consider the set of i+ j+k pseudolines 1, 2, . . . , i+ j+k

partitioned into the following three parts: {1, . . . , i}, {i + 1, .., i + j}, and {i + j + 1, .., i +

j + k}. A partial arrangement on this set is called consistent if any two pseudolines from consistent

different parts cross while any two pseudolines from the same part do not cross. The

zonotopal duals of consistent partial arrangements are rhombic tilings of the centrally

symmetric hexagon H(i , j, k) with side lengths i , j and k ; Figure 9 shows an example.

}
}

}

Figure 9: The hexagon H(5, 5, 5) with one of its rhombic tilings and a consistent partial

arrangement corresponding to the tiling.

The enumeration of rhombic tilings of H(i , j, k) is a classical combinatorial problem

solved by MacMahon [10]. There are

PP (i , j, k) =

i−1∏
a=0

j−1∏
b=0

k−1∏
c=0

a + b + c + 2

a + b + c + 1
(11)

such tilings.

Consider a consistent partial arrangement with three parts of size n. Such a partial

arrangement can be completed to a ‘full’ arrangement of 3n pseudolines by adding any

arrangement of n lines for each of the three parts. E.g. in Figure 9 the addition can be

done by glueing three arrangements of 5 pseudolines each to the picture where the braces

are. This construction shows that

B3n ≥ PP (n, n, n) Bn
3. (12)

To find the growth rate of PP (n, n, n) we first note that PP (n, n, n) = T (n)/T (0) where

T (k) =
∏n−1
a=0

∏n−1
b=0(a+b+k+1). Let t(k) = lnT (k) and approximate t(k) by an integral:

t(k) = lnT (k) =

n−1∑
a=0

n−1∑
b=0

ln(a + b + k + 1) ≈
∫ n

x=0

∫ n

y=0

ln(x + y + k + 1) dy dx. (13)

From this approximation it can be concluded that

lnPP (n, n, n) = t(n)− t(0) ≈
(9

2
ln(3)− 6 ln(2)

)
n2. (14)
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Combining this with Formula (12) we get:

Proposition 1 The number Bn of arrangements of n pseudolines is at least 20.1887 n2
.

Computations were mainly done with Maple.
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