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Abstract

The Evasiveness Conjecture for graph properties has natural generalizations to simplicial com-
plexes and to set systems. In this paper we show that the Evasiveness Conjecture for simplicial
complexes holds in dimension 2 and 3. We also present an infinite class of counterexamples to
the Generalized Aanderaa-Rosenberg Conjecture (the Evasiveness Conjecture for set systems). The
smallest member of this class is the only previously known counterexample by ILLIES.

1 Introduction

Let P be any graph property, that is, a property of graphs which is invariant under
graph-isomorphisms, on a fixed set of nodes V' of size n := |V, and let E denote the set
of all edges on V, with m := |E| = (g) We identify P with the set system

Fp:={A C E : Graph (V, A) has property P} C 2%,

and for an unknown graph G = (V, A) on V' we consider the decision problem whether G
has the property P or not. In order to find out if the edge set A of G belongs to Fp, we
ask questions of the type “Is e € A?”, and an oracle answers (correctly) YES or NO.

The number of elements of E that we will have to test in the worst case, if we proceed
according to some optimal strategy, is called the argument complexity ¢(Fp) of P. Then
0 < ¢(Fp) < m, and P is trivial if ¢(Fp) = 0 and non-trivial if ¢(Fp) > 0. P is called
evasive if ¢(Fp) = m and non-evasive otherwise. For general set systems F C 2% these
terms are defined analogously. A graph property is monotone if it is preserved under
deletion of edges.

In the early seventies RICHARD KARP proposed the following remarkable conjecture.

Evasiveness Conjecture for Graph Properties: FEuvery non-trivial monotone graph
property P is evasive.

Extensive work has been done on determining the argument complexity of particular
graph properties (see e.g. [1], [2], [4, Ch. VIII], [20], and references contained therein).

The first successful approach to KARP’s Conjecture was carried through by KAHN,
SAKS, and STURTEVANT [10] in 1984. Using methods from algebraic topology, in par-
ticular, a fixed point theorem by OLIVER [15], they were able to settle the case when
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n is a prime power (and the case n = 6). For this, they restated KARP’s Conjecture
in the language of simplicial complexes: If P is a monotone graph property, then the
corresponding set system Fp is a (finite abstract) simplicial complex with the vertex
set F/. We call Fp the graph complex associated with P. Invariance under permutation
of the nodes of V' (what one naturally requires for P to be a graph property) gives rise
to an induced action of the symmetric group S5, on the edge set E, and thus on the
simplicial complex Fp. Clearly, the action of S, is transitive on E.

By allowing the symmetry group to be any finite group G, one obtains the following
more general situation.

Evasiveness Conjecture for Simplicial Complexes [10]: If F is a non-evasive
vertex-homogeneous simplicial complex (VHSC) on the vertex set E = {1,...,m} with
vertez-transitive action by some group G, then it is the standard (m—1)-simplex A, ;.

To be “non-evasive” is in fact a rather strong topological requirement. The following
sequence of implications holds for finite simplicial complexes (cf. [10]; for an exposition
of topological methods in combinatorics see [3]):

non-evasive = collapsible = contractible = Z-acyclic = Q-acyclic = Yy =0

and leads to further generalizations of the above conjectures (cf. Figure 1). (X denotes
the reduced Euler characteristic of a simplicial complex.)
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Figure 1: Generalizations of the Evasiveness Conjecture (EC) for graph properties.

Instead of relaxing the condition “non-evasive” one can alternatively remove the
monotonicity. The resulting Evasiveness Conjecture for set systems is known as the

Generalized Aanderaa-Rosenberg Conjecture (GARC) [16] Let F C 2% be a set
system with induced transitive symmetry group G C Sg. If 0 € F, but E ¢ F, then F
18 evasive.

Albeit the latter conjecture as well as the Conjecture [VHSC + (x=0) = A,,_1] were
proved by RIVEST and VUILLEMIN [16] for sets E of prime power cardinality, m = ¢°*,



ILLIES [8] provided a counterexample to GARC for m = 12, and there is an abundance
of counterexamples to the Conjecture [VHSC + (x =0) = A,,_,] for m # ¢°*.

In the next section we will review some fixed point theorems and their applications. In
Section 3 we show that there is, apart from the simplex, no Z-acyclic vertex-homogeneous
simplicial complex with m = 6, 10, or 12 vertices. This fact implies the non-existence of
2- and 3-dimensional Z-acyclic vertex-homogeneous simplicial complexes, different from
a simplex.

Furthermore, we construct in Section 4 an infinite class of counterexamples to the
Generalized Aanderaa-Rosenberg Conjecture for m = u(u + 1), v > 3 odd, with the
ILLIES example as the smallest member of the class.

2 Fixed Point Theorems and Group Actions

Recall that if the vertex-transitive action of a (finite) group G on a (finite) simplicial
complex K (with m vertices) has a fixed point, then K is a simplex. This can be seen
geometrically by regarding K as a subcomplex of the (m — 1)-dimensional simplex A, ;
with vertices ey, ..., en,. Any point z of K has a unique representation x = Y ", \e;,
with A; > 0 and ", \; = 1. The group G then acts by permuting the coordinates,
gr =Y "1 Niegy, g € G. If G is transitive, then for every i, j there is some g € G such
that e; = ey(;). If, in addition, the action of GG has a fixed point y, then gy = y for every
group element ¢, and therefore A\ = ... =\, = % But y = % > e is a point of K
if and only if K is a simplex.

This simple fact, in combination with fixed point theorems from algebraic topology,
provides an important tool for the study of group actions on simplicial complexes. It was
shown by SMITH [19] that if a p-group P, i.e., a group with prime power order |P| = p',
acts on a Zj,-acyclic complex, then the fixed point set for this action is Z,-acyclic as well.
In particular, the fixed point set is not empty — hence, there are no vertex-transitive
group actions of a p-group on a Z,-acyclic simplicial complex (that is not a simplex).

The theorem by SMITH has been generalized by OLIVER.

Theorem 1 (OLIVER [15]) Let G be a finite group with subsequent normal subgroups
P <@ <G such that

(i) P is a p-group,
(ii) G/Q is a q-group, and
(iii) Q/P is cyclic.
If G acts on a Z,-acyclic complex K, then the Euler characteristic x(K%) of the fived
point set K is equivalent to 1 (mod q).

We say that a group G is of Oliver (p,q)-type if it has properties (i), (ii) and (iii) of
Theorem 1. A group G of Oliver (p, ¢)-type with ¢ = 1 is called a group of Oliver (p,1)-
type. If a group G of Oliver (p, ¢)-type acts vertex-transitively on a Z,-acyclic simplicial
complex K, then K is a simplex. In fact, if H is an Oliver (p, ¢)-type vertex-transitive
subgroup of some group G, which acts on a Zj,-acyclic complex K, then K is a simplex.

Theorem 2 (KAHN, SAKS, and STURTEVANT [10]) Let Fp, be the graph complex asso-
ciated with some (non-trivial) graph property P, on n = p' nodes, with p prime. Then
Fp, is not Zy-acyclic.



‘ dim H # vertices

6
6, 12

10, 12, 15, 20, 30, 60
10, 12, 15, 20, 30, 60

10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140,
210, 420

7 | 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84,
105, 120, 140, 168, 210, 280, 420, 840

8 || 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60,
63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252,
280, 315, 360, 420, 504, 630, 840, 1260, 2520

| O | W | N

Table 1: Possible numbers of vertices for low-dimensional vertex-homogeneous simplicial complexes with
x = 0.

Proof: Let G = Aff(GF(p')) < S, be the group of affine transformations of GF(p?).
The group G is 2-transitive on {1...n} and therefore transitive on the edge set E.
Furthermore, G is of Oliver (p, 1)-type (choose Q:=G and P:={x — a+b : b € GF(p")}).
Hence, G is a vertex-transitive Oliver (p, 1)-type subgroup of the symmetric group S,
with induced action on all graph complexes Fp . But then either Fp_ is a simplex, and
thus P, is trivial, or Fp, is not Z,-acyclic by Theorem 1. O

If a graph complex is not Z,-acyclic, then it cannot be non-evasive.

Corollary 3 (KAHN, SAKs, and STURTEVANT [10]) The Evasiveness Conjecture for
graph properties holds for every prime power number of nodes.

3 The Evasiveness Conjecture in Dimension 2 and 3

We will show in the following that (non-trivial) non-evasive vertex-homogeneous simpli-
cial complexes do not exist in dimension 2 and 3.

Proposition 4 (BJORNER) Let E be a finite set of cardinality m = |E| = ¢ -+ -q%
(primepower-decomposition) and M = max{q,...,q*}. If K C 2¥ is a vertez-
homogeneous simplicial complex on the verter set E with reduced FEuler characteristic
X(K) =0, then dim(K) > M — 1.

Proof: By the transitivity of the group action, every element of E is contained the
same number of times, s, in the k-sets of every orbit O of (k — 1)-dimensional faces, i.e.,
k-|O| = s-|E|. For M = ¢} this implies that ¢; | |O|if k < M. Now, if dim(K) < M —1,
then, with the exception of the orbit of the empty set, which has size 1, the size of every
orbit of (k — 1)-faces of K is divisible by ¢;. Hence, x(K) = —1modg;, and it follows
that xY(K) # 0. O

Corollary 5 (RIVEST and VUILLEMIN [16]) Conjecture [VHSC + (x=0) = A,,,_1] holds
if m=q? is a prime power.



It follows from Proposition 4 that for every d-dimensional vertex-homogeneous sim-
plicial complex K with reduced Euler characteristic Y = 0 one has M < d+ 1. In
particular, the cardinality m of the vertex set F of K can only attain finitely many
different values. Furthermore, m > d + 2. This follows from the fact that for m = d + 2
there is, by transitivity, only one orbit of d-faces. But the boundary complex of a simplex
is a sphere with xy # 0. Table 1 displays the vertex-numbers that are possible for d < 8.

As a result of the above, we get a lower bound for the dimension of graph complexes
Fp, with reduced Euler characteristic x = 0 for graph properties P, on n nodes. See
Table 2 for small n # p*.

# nodes | 4 vertices # nodes | # vertices
n mz(?) dim > n m:<g> dim >
6 15 4 26 325 24
10 45 8 28 378 26
12 66 10 30 435 28
14 91 12 33 528 15
15 105 6 34 561 16
18 153 16 35 595 16
20 190 18 36 630 8
21 210 6 38 703 36
22 231 10 39 741 18
24 276 22 40 780 12

Table 2: Lower bounds for the dimension of graph complexes (# simplex) with x = 0.

The ‘smallest example’ of a graph property P with y(Fp) = 0 can be found on 6
nodes. It is the property P, of being a subgraph of any of the first four graphs of Figure 2.
The next listed three respective two graphs describe examples of higher-dimensional
graph complexes on 6 nodes with y(Fp) = 0. All three examples have nontrivial re-
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Figure 2: Three examples of graph properties with y(Fp) = 0.

duced homology, i.e., H.(Fp,) = (0,0,Z',7,0,0), H,(Fp,) = (0,0,Z'5,Z5,0,0,0),
and H,(Fp.) = (0,0,0,Z2° & Z3,Z%°,0,0,0,0), as computed with the C-program HO-
MOLOGY by HECKENBACH [7].

REMARK: Although there are many examples of graph complexes with x(Fp) = 0,
there seems to be no example known of a nontrivial Q-acyclic graph complex.



NOTE ADDED TO REVISED VERSION: Jakob Jonsson [9] has recently provided an
example of an 8-dimensional non-trivial Q-acyclic graph complex corresponding to a
graph property on 6 nodes.

We turn back to general vertex-homogeneous simplicial complexes. For every m, there
is a finite number of transitive permutation groups of degree m. These groups were
classified for m < 15 (see [5], [6], [13], [14], [17]), a library of the groups is contained in
the computer algebra package GAP [18]. We determined for all transitive permutation
groups G of degree m = 6,10, 12,14, 15 whether they are of Oliver (p, ¢)-type (for some
p and some ¢) and, in addition, for the groups that are not of Oliver (p, ¢)-type if they
have a transitive subgroup H < G of Oliver (p, ¢)-type. Table 3 gives the statistics.

# Vertices || # Transitive | # Groups G | # Groups without
m group not of Oliver | trans. H < G of
actions (p, q)-type Oliver (p, q)-type

6 16 4 0

10 45 21 3

12 301 107 1

14 63 34 2

15 104 64 )

Table 3: Transitive permutation groups without subgroups of Oliver (p, g)-type.

One example of a permutation group of degree 6 is the group action of the alternating
group As. Although Ajs is not of Oliver (p, q)-type as it is simple, on 6 vertices As has
A4 as a vertex-transitive subgroup of Oliver (2, 1)-type.

Lemma 6 There is, apart from the 2-simplex, no 2-dimensional Z-acyclic vertez-homo-
geneous simplicial complez.

Proof: If there were a non-trivial 2-dimensional Z-acyclic vertex-homogeneous simpli-
cial complex K, then it would have 6 vertices by Proposition 4. But every transitive
permutation group of degree 6 is of Oliver (p, ¢)-type or has a vertex-transitive subgroup
of Oliver (p, g)-type. Thus K cannot be Z-acyclic by Theorem 1. O

There exists a transitive permutation group, [2%] 32:4, on 12 vertices, which is not of
Oliver (p, g)-type and that has no vertex-transitive subgroup of Oliver (p, ¢)-type. Thus,
we cannot use the above argument in the case of 3-dimensional complexes. In this case,
we proceed as follows. We will first determine all simplicial complexes on 12 vertices with
a vertex-transitive action of the group [2%]3%:4 for which ¥ = 0 and then compute their
homology. It will turn out that the homology is non-trivial for each of the complexes.

Definition 7 Let G be a transitive permutation group of the set E = {1,2,...,m}.
Then G acts on the system of sets 2¥, and we denote the set of orbits for this action by
Orbg (2%). We define a partial order “<” on Orbg(2%): For O;,0y € Orbg (2%),
Oy < Oy if and only if for any B € Oy and g € G, gB C A for some A € Oy. The
partially ordered set (Orbg (2F), <) is the orbit poset corresponding to the action of
G on 2°F.



It follows that simplicial complexes K C 2% which are invariant under the induced
action of a transitive permutation group G on E, are in one-to-one correspondence with
the ideals of the orbit poset Orbg (2F).

Since our aim is to determine vertex-homogeneous simplicial complexes with reduced
Euler characteristic y = 0, it is natural to consider weighted orbit posets, where we
label each orbit of k-sets by its size times the sign (—1)**!. Complexes with reduced
Euler characteristic ¥ = 0 then correspond to ideals of weighted orbit posets with
Y oecr wo = 0 for the weights we of the orbits O in the ideal I.

The weighted orbit posets for the As-action and its transitive A4-subaction on 6 ver-

Figure 3: Weighted orbit posets of the transitive As- and A4-actions on 6 vertices.

tices are depicted in Figure 3. The respective ideals I with Y ,_; wo = 0 of these two

Figure 4: 6-vertex triangulation of the real projective plane.

orbit posets all correspond to the 6-vertex triangulation of the real projective plane. For
the case of the A -action we shaded the orbit with 4 triangles in Figure 4 in grey, the
other orbit of 6 triangles is in white.

As listed in Table 3, there are three transitive permutation groups on 10 vertices that
are not of Oliver type and contain no transitive Oliver type subgroup. These groups are
As < Ag < My (with inclusions as transitive permutation groups). On 12 vertices there
is only one such group, [2*]3%:4. There are two groups on 14 vertices, PSL,(7) and
PSL, (13), which are not included in each other; and on 15 vertices we have five groups,
with the inclusions As < Ss, Ag; S5 < Sg, A7; and Ag < Sg, A7. If we want to generate
all vertex-homogeneous simplicial complexes with x = 0 for these actions, it would be



sufficient to do this for the actions A5(10), [24]3%:4, PSL4(7), PSL, (13), and A5(15),
since these are transitive subgroups of the other groups. The weighted orbit poset for
As5(10) is displayed in Figure 5. Nevertheless, we only succeeded with the generation

Figure 5: Weighted orbit poset of the transitive As-action on 10 vertices.

of all ideals (simplicial complexes) with ) .., wo = 0 (x = 0) for the three actions
on 10 vertices, for the action of [24]3%:4 on 12 vertices, of PSLy (13) on 14 vertices,
and of A; on 15 vertices. Table 4 lists the number of complexes that we found with a
GAP-program.

Several of the complexes are combinatorially isomorphic, but none of the complexes
with 10 or 12 vertices is Z-acyclic, which we checked with the C-program HOMOLOGY
by HECKENBACH [7]. (For most of the complexes with 14 and 15 vertices, it was not
possible to determine their homology with the program.)

Theorem 8 There is, other than a simplex, no Z-acyclic vertez-homogeneous simplicial
complex on m = 6, 10, 12 vertices. In particular, there is no 3-dimensional Z-acyclic
vertex-homogeneous simplicial complex other than the 3-simplex.

0]



# Vertices || Weighted | # Complexes | # Z-acyclic
m orbit poset | with x =0 complexes
10 As 112 0

Ag 8 0

Mo 0 0

12 [21]3%:4 336 0
14 PSL, (7) ? ?
PSL,(13) 140 ?

15 As ? ?
S5 ? ?

Ag ? ?

Se ? ?

A 42 ?

Table 4: Transitive permutation groups that do not have any subgroup of Oliver (p, q)-type.

Corollary 9 The FEvasiveness Conjecture holds for 2- and 3-dimensional simplicial
complezes.

REMARK: An As-invariant 5-dimensional Z-acyclic vertex-homogeneous simplicial
complex on 30 vertices with 932 faces and f-vector f = (1,30, 195,340, 255,96, 15) will
be presented in [11] (see also [12]). Additional examples of higher dimension and with
more faces exist on 30 and 60 vertices. The first such example of dimension 11 on 60
vertices was found by OLIVER [10]. We believe that there is, apart from the 4-simplex,
no Z-acyclic vertex-homogeneous simplicial complex of dimension 4.



4 An Infinite Class of Counterexamples
to the Generalized Aanderaa-Rosenberg Conjecture

We construct an infinite class of counterexamples to the Generalized Aanderaa-Rosenberg
Conjecture (see p. 2) in three steps.

Let m = u(u+1), for u > 3 odd. As group of symmetries we consider G = Z,,, with
action on the ground set E = {1,2,...,m} by translation (mod m).

1. Let A,, be the set system of all subsets of the sets of the Z,,-orbit

{1, u+1, 2u+1, ..., (u—1u+1, uu+1}, {1,4,7,10},
{2, u+2, 2u+2, ..., (u—1)u+2, uu+2}, {2,5,8,11},
{3, u+3, 2u+3, ..., (u—1)u+3, uu+31},

{u, utu, 2u+tu, ..., (u—1)u+tu, uu+tu}, {3,6,9,12}

with u sets of u+1 elements each. (On the right hand side, we note ILLIES’ example [§]
for u = 3.)

2. Let B,, be the set system of all subsets of the sets of the Z,,-orbit

{1, 2u+1,4u+1, ..., (u—1)u+1}, {1,7},
{2, 2u+2, 4u+2, ..., (u—1)u+2}, {2,8},
{3, 2u+3, 4u+3, ..., (u—1)u+3}, {3,9},
{2u, 2u+2u, du+2u, ..., (u—1)u+2u}, {6,12}

with 2u sets of (u+1)/2 elements each.

3. Let C,, be the set system of all subsets of the sets of the Z,,-orbit

(1, (kD) +1, 2+ D)+ 1, ..., (u—1)(ut1)+1}, (1,5,9

{2, (u+1)+2, 2(u+1)+2, ..., (u—1)(u+1)+2}, {2,6,1

{3, (u+1)+3,2(u+1)+3, ..., (u—1)(u+1)+3 }, {3,7,1
{

{(ut1), (ut1)+ (1), 2ut 1)+ (1), ..., (w=1)(utr1)+(ut+1)},

with (u+1) sets of u elements each.

Proposition 10 The set system F=(An\ B ) U Cn, is non-evasive and thus provides
an infinite class of counterexamples to the Generalized Aanderaa-Rosenberg Conjecture.

Proof: Let Ac2”. We want to determine whether A is in F,, or not by asking questions
“Is e€ A?”. An oracle answers YES or NO. In order to show that F,, is non-evasive, we
give a decision tree of depth m—1.

Case I (AN{1,2,....m—2u} #0)

We start with elements in {1,2,...,m —2u} and ask successively “Is 1 € A?”,
“Is. 2 € A7, “Is 3 € A?”, ... If none of these elements is in A, we have checked
that {1,2,...,m—2u} N A = (), and this case will be discussed later. Otherwise, the
first time we get YES as an answer, say, for “Is r € A?” with r < m—2u, we next test
the elements in {r+wu,r+3u,...} C {1,2,...,m}, consecutively. Upon completion,
we see by the construction of the set system J,, that, since r < m—2u, there exists at

10



least one element, namely, +2u, such that either both the sets A and AU {r+2u}
lie in F,,, or both do not. Hence, we do not have to ask for r+2u in order to check
whether A is in F,, or not. This gives a leaf of the decision tree, which we depict in
Figure 6 by an oval, containing all the elements we do not have to ask for. Such a leaf
has a depth of altogether at most m —1. Finally, if we have tested all the elements
{r+u,r+3u,...,r+(2k+1)u }, with k the greatest integer such that r+(2k+1)u < m,
and none of them is contained in A, then for A to lie in F,, it has to be in C,,. But then
there is again at least one element that we do not have to ask for, namely r+ (u+1).
Thus, this leaf has also at most depth m —1.

NO
e e
NO
rear]
NO NO
NO
NO
NO

Case Il (AN {1,2,... m—2u} =0)

|7+ (2k+1)ue A

NO

(7“+2u, r+3u, r+4u, r+5u, r+6u, r+7u, )

<r+2u, r+4u, r+5u, r+6u, r+7u, )

(r—|—2u, r+4u, r+6u, r+7u, ..

YES

)

Cr+2u, r+4u, r+6u, ..

)

(r+(u+1), r+2(u+1), r+3(u+1), ... )

Figure 6: Decision tree for r < m—2u.

In this part, we further analyze A in the case where A N {1,2,... ,m—2u} = (). For

this, we can restrict F,, to sets that do not contain the elements 1,2, ...

corresponding sets in A,, \ B,, are

11

,m—2u. The



{( ) 17(m_u)+1}7 {7710}7
{( ) 27( - )+2} {8711}7
{(m—2u)+u, (m u)+u }, {9,12},

and the remaining sets of C,, are

{ )+1, (m—u)+1+1}, {7,11},
{(m_2u)+27 (m_u)+1+2 }7
{

(m—=2u)+(u—1),(m—u)+1+(u—-1) } {8,12}
{(m=2u)+1}, {7}
{(m=2u)+2}, {8},
{(m—2u)+2u }, {12}
{1} { +

If we denote by A,,, By, and C,, the restrictions of A, B,,, and C to the set of remaining
elements { m—2u+1,...,m} respectively, then the restriction F,, = (A, \ Bn) U Cpn
of F,, is a path

(m—u)+1 (m—2u)+1 (m—u)+2 (m—2u)+2 (m—u)+u (m—2u)+u
[ 4 L 4 @ L 4 L 4 L J

Since paths are non-evasive and can be tested in # vertices — 1 steps, the depth of the
leaf corresponding to the above path is again m —1. Altogether, it follows that F,, is
non-evasive. O
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