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Abstra
t

The Evasiveness Conje
ture for graph properties has natural generalizations to simpli
ial 
om-

plexes and to set systems. In this paper we show that the Evasiveness Conje
ture for simpli
ial


omplexes holds in dimension 2 and 3. We also present an in�nite 
lass of 
ounterexamples to

the Generalized Aanderaa-Rosenberg Conje
ture (the Evasiveness Conje
ture for set systems). The

smallest member of this 
lass is the only previously known 
ounterexample by Illies.

1 Introdu
tion

Let P be any graph property, that is, a property of graphs whi
h is invariant under

graph-isomorphisms, on a �xed set of nodes V of size n := jV j, and let E denote the set

of all edges on V , with m := jEj =

�

n

2

�

. We identify P with the set system

F

P

:= fA � E : Graph (V;A) has property Pg � 2

E

;

and for an unknown graph G = (V;A) on V we 
onsider the de
ision problem whether G

has the property P or not. In order to �nd out if the edge set A of G belongs to F

P

, we

ask questions of the type \Is e 2 A?", and an ora
le answers (
orre
tly) YES or NO.

The number of elements of E that we will have to test in the worst 
ase, if we pro
eed

a

ording to some optimal strategy, is 
alled the argument 
omplexity 
(F

P

) of P. Then

0 � 
(F

P

) � m, and P is trivial if 
(F

P

) = 0 and non-trivial if 
(F

P

) > 0. P is 
alled

evasive if 
(F

P

) = m and non-evasive otherwise. For general set systems F � 2

E

, these

terms are de�ned analogously. A graph property is monotone if it is preserved under

deletion of edges.

In the early seventies Ri
hard Karp proposed the following remarkable 
onje
ture.

Evasiveness Conje
ture for Graph Properties: Every non-trivial monotone graph

property P is evasive.

Extensive work has been done on determining the argument 
omplexity of parti
ular

graph properties (see e.g. [1℄, [2℄, [4, Ch. VIII℄, [20℄, and referen
es 
ontained therein).

The �rst su

essful approa
h to Karp's Conje
ture was 
arried through by Kahn,

Saks, and Sturtevant [10℄ in 1984. Using methods from algebrai
 topology, in par-

ti
ular, a �xed point theorem by Oliver [15℄, they were able to settle the 
ase when

�
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n is a prime power (and the 
ase n = 6). For this, they restated Karp's Conje
ture

in the language of simpli
ial 
omplexes: If P is a monotone graph property, then the


orresponding set system F

P

is a (�nite abstra
t) simpli
ial 
omplex with the vertex

set E. We 
all F

P

the graph 
omplex asso
iated with P. Invarian
e under permutation

of the nodes of V (what one naturally requires for P to be a graph property) gives rise

to an indu
ed a
tion of the symmetri
 group S

n

on the edge set E, and thus on the

simpli
ial 
omplex F

P

. Clearly, the a
tion of S

n

is transitive on E.

By allowing the symmetry group to be any �nite group G, one obtains the following

more general situation.

Evasiveness Conje
ture for Simpli
ial Complexes [10℄: If F is a non-evasive

vertex-homogeneous simpli
ial 
omplex (VHSC) on the vertex set E = f1; : : : ; mg with

vertex-transitive a
tion by some group G, then it is the standard (m�1)-simplex �

m�1

.

To be \non-evasive" is in fa
t a rather strong topologi
al requirement. The following

sequen
e of impli
ations holds for �nite simpli
ial 
omplexes (
f. [10℄; for an exposition

of topologi
al methods in 
ombinatori
s see [3℄):

non-evasive ) 
ollapsible ) 
ontra
tible ) Z-a
y
li
 ) Q -a
y
li
 ) ~� = 0

and leads to further generalizations of the above 
onje
tures (
f. Figure 1). (~� denotes

the redu
ed Euler 
hara
teristi
 of a simpli
ial 
omplex.)

VHSC + (~� = 0) = �

m�1

+

VHSC + Q-a
y
li
 = �

m�1

+

VHSC + Z-a
y
li
 = �

m�1

+

VHSC + 
ontra
tible = �

m�1

) VHSC + 
ollapsible = �

m�1

)

EC for set systems

(GARC)

+

EC for simpli
ial 
omplexes

(VHSC + non-evasive = �

m�1

)

+

�

Æ

�




EC for graph properties

Figure 1: Generalizations of the Evasiveness Conje
ture (EC) for graph properties.

Instead of relaxing the 
ondition \non-evasive" one 
an alternatively remove the

monotoni
ity. The resulting Evasiveness Conje
ture for set systems is known as the

Generalized Aanderaa-Rosenberg Conje
ture (GARC) [16℄ Let F � 2

E

be a set

system with indu
ed transitive symmetry group G � S

E

. If ; 2 F , but E =2 F , then F

is evasive.

Albeit the latter 
onje
ture as well as the Conje
ture [VHSC+(~�=0)=�

m�1

℄ were

proved by Rivest and Vuillemin [16℄ for sets E of prime power 
ardinality, m = q

s

,
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Illies [8℄ provided a 
ounterexample to GARC for m = 12, and there is an abundan
e

of 
ounterexamples to the Conje
ture [VHSC+(~�=0)=�

m�1

℄ for m 6= q

s

.

In the next se
tion we will review some �xed point theorems and their appli
ations. In

Se
tion 3 we show that there is, apart from the simplex, no Z-a
y
li
 vertex-homogeneous

simpli
ial 
omplex with m = 6, 10, or 12 verti
es. This fa
t implies the non-existen
e of

2- and 3-dimensional Z-a
y
li
 vertex-homogeneous simpli
ial 
omplexes, di�erent from

a simplex.

Furthermore, we 
onstru
t in Se
tion 4 an in�nite 
lass of 
ounterexamples to the

Generalized Aanderaa-Rosenberg Conje
ture for m = u(u + 1), u � 3 odd, with the

Illies example as the smallest member of the 
lass.

2 Fixed Point Theorems and Group A
tions

Re
all that if the vertex-transitive a
tion of a (�nite) group G on a (�nite) simpli
ial


omplex K (with m verti
es) has a �xed point, then K is a simplex. This 
an be seen

geometri
ally by regarding K as a sub
omplex of the (m�1)-dimensional simplex �

m�1

with verti
es e

1

; : : : ; e

m

. Any point x of K has a unique representation x =

P

m

i=1

�

i

e

i

,

with �

i

� 0 and

P

m

i=1

�

i

= 1. The group G then a
ts by permuting the 
oordinates,

gx =

P

m

i=1

�

i

e

g(i)

, g 2 G. If G is transitive, then for every i; j there is some g 2 G su
h

that e

j

= e

g(i)

. If, in addition, the a
tion of G has a �xed point y, then gy = y for every

group element g, and therefore �

1

= : : : = �

m

=

1

m

. But y =

1

m

P

m

i=1

e

i

is a point of K

if and only if K is a simplex.

This simple fa
t, in 
ombination with �xed point theorems from algebrai
 topology,

provides an important tool for the study of group a
tions on simpli
ial 
omplexes. It was

shown by Smith [19℄ that if a p-group P , i.e., a group with prime power order jP j = p

t

,

a
ts on a Z

p

-a
y
li
 
omplex, then the �xed point set for this a
tion is Z

p

-a
y
li
 as well.

In parti
ular, the �xed point set is not empty { hen
e, there are no vertex-transitive

group a
tions of a p-group on a Z

p

-a
y
li
 simpli
ial 
omplex (that is not a simplex).

The theorem by Smith has been generalized by Oliver.

Theorem 1 (Oliver [15℄) Let G be a �nite group with subsequent normal subgroups

P �Q�G su
h that

(i) P is a p-group,

(ii) G=Q is a q-group, and

(iii) Q=P is 
y
li
.

If G a
ts on a Z

p

-a
y
li
 
omplex K, then the Euler 
hara
teristi
 �(K

G

) of the �xed

point set K

G

is equivalent to 1 (mod q).

We say that a group G is of Oliver (p; q)-type if it has properties (i), (ii) and (iii) of

Theorem 1. A group G of Oliver (p; q)-type with q = 1 is 
alled a group of Oliver (p; 1)-

type. If a group G of Oliver (p; q)-type a
ts vertex-transitively on a Z

p

-a
y
li
 simpli
ial


omplex K, then K is a simplex. In fa
t, if H is an Oliver (p; q)-type vertex-transitive

subgroup of some group G, whi
h a
ts on a Z

p

-a
y
li
 
omplex K, then K is a simplex.

Theorem 2 (Kahn, Saks, and Sturtevant [10℄) Let F

P

n

be the graph 
omplex asso-


iated with some (non-trivial) graph property P

n

on n = p

t

nodes, with p prime. Then

F

P

n

is not Z

p

-a
y
li
.
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dim # verti
es

1 -

2 6

3 6, 12

4 10, 12, 15, 20, 30, 60

5 10, 12, 15, 20, 30, 60

6 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140,

210, 420

7 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84,

105, 120, 140, 168, 210, 280, 420, 840

8 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60,

63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252,

280, 315, 360, 420, 504, 630, 840, 1260, 2520

Table 1: Possible numbers of verti
es for low-dimensional vertex-homogeneous simpli
ial 
omplexes with

~� = 0.

Proof: Let G = A� (GF (p

t

)) < S

n

be the group of aÆne transformations of GF (p

t

).

The group G is 2-transitive on f1 : : : ng and therefore transitive on the edge set E.

Furthermore, G is of Oliver (p; 1)-type (
hoose Q :=G and P :=fx 7! x+b : b 2 GF (p

t

)g).

Hen
e, G is a vertex-transitive Oliver (p; 1)-type subgroup of the symmetri
 group S

n

with indu
ed a
tion on all graph 
omplexes F

P

n

. But then either F

P

n

is a simplex, and

thus P

n

is trivial, or F

P

n

is not Z

p

-a
y
li
 by Theorem 1. 2

If a graph 
omplex is not Z

p

-a
y
li
, then it 
annot be non-evasive.

Corollary 3 (Kahn, Saks, and Sturtevant [10℄) The Evasiveness Conje
ture for

graph properties holds for every prime power number of nodes.

3 The Evasiveness Conje
ture in Dimension 2 and 3

We will show in the following that (non-trivial) non-evasive vertex-homogeneous simpli-


ial 
omplexes do not exist in dimension 2 and 3.

Proposition 4 (Bj

�

orner) Let E be a �nite set of 
ardinality m = jEj = q

�

1

1

� � � q

�

r

r

(primepower-de
omposition) and M = maxfq

�

1

1

; : : : ; q

�

r

r

g . If K � 2

E

is a vertex-

homogeneous simpli
ial 
omplex on the vertex set E with redu
ed Euler 
hara
teristi


~�(K) = 0, then dim(K) �M � 1.

Proof: By the transitivity of the group a
tion, every element of E is 
ontained the

same number of times, s, in the k-sets of every orbit O of (k� 1)-dimensional fa
es, i.e.,

k�jOj = s�jEj. ForM = q

�

i

i

this implies that q

i

j jOj if k < M . Now, if dim(K) < M�1,

then, with the ex
eption of the orbit of the empty set, whi
h has size 1, the size of every

orbit of (k � 1)-fa
es of K is divisible by q

i

. Hen
e, ~�(K) � �1mod q

i

, and it follows

that ~�(K) 6= 0. 2

Corollary 5 (Rivest and Vuillemin [16℄) Conje
ture [VHSC+(~�=0)=�

m�1

℄ holds

if m = q

s

is a prime power.
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It follows from Proposition 4 that for every d-dimensional vertex-homogeneous sim-

pli
ial 
omplex K with redu
ed Euler 
hara
teristi
 ~� = 0 one has M � d + 1. In

parti
ular, the 
ardinality m of the vertex set E of K 
an only attain �nitely many

di�erent values. Furthermore, m > d+ 2. This follows from the fa
t that for m = d+ 2

there is, by transitivity, only one orbit of d-fa
es. But the boundary 
omplex of a simplex

is a sphere with ~� 6= 0. Table 1 displays the vertex-numbers that are possible for d � 8.

As a result of the above, we get a lower bound for the dimension of graph 
omplexes

F

P

n

with redu
ed Euler 
hara
teristi
 ~� = 0 for graph properties P

n

on n nodes. See

Table 2 for small n 6= p

t

.

# nodes # verti
es # nodes # verti
es

n m =

�

n

2

�

dim � n m =

�

n

2

�

dim �

6 15 4 26 325 24

10 45 8 28 378 26

12 66 10 30 435 28

14 91 12 33 528 15

15 105 6 34 561 16

18 153 16 35 595 16

20 190 18 36 630 8

21 210 6 38 703 36

22 231 10 39 741 18

24 276 22 40 780 12

Table 2: Lower bounds for the dimension of graph 
omplexes (6= simplex) with ~� = 0.

The `smallest example' of a graph property P with ~�(F

P

) = 0 
an be found on 6

nodes. It is the property P

A

of being a subgraph of any of the �rst four graphs of Figure 2.

The next listed three respe
tive two graphs des
ribe examples of higher-dimensional

graph 
omplexes on 6 nodes with ~�(F

P

) = 0. All three examples have nontrivial re-

(   )PA

(   )PB

(   )PC

Figure 2: Three examples of graph properties with ~�(F

P

) = 0.

du
ed homology, i.e.,

~

H

�

(F

P

A

) = (0; 0;Z

15

;Z

15

; 0; 0),

~

H

�

(F

P

B

) = (0; 0;Z

15

;Z

15

; 0; 0; 0),

and

~

H

�

(F

P

C

) = (0; 0; 0;Z

20

� Z

3

;Z

20

; 0; 0; 0; 0), as 
omputed with the C-program HO-

MOLOGY by He
kenba
h [7℄.

Remark: Although there are many examples of graph 
omplexes with ~�(F

P

) = 0,

there seems to be no example known of a nontrivial Q -a
y
li
 graph 
omplex.
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Note added to revised version: Jakob Jonsson [9℄ has re
ently provided an

example of an 8-dimensional non-trivial Q -a
y
li
 graph 
omplex 
orresponding to a

graph property on 6 nodes.

We turn ba
k to general vertex-homogeneous simpli
ial 
omplexes. For every m, there

is a �nite number of transitive permutation groups of degree m. These groups were


lassi�ed for m � 15 (see [5℄, [6℄, [13℄, [14℄, [17℄), a library of the groups is 
ontained in

the 
omputer algebra pa
kage GAP [18℄. We determined for all transitive permutation

groups G of degree m = 6; 10; 12; 14; 15 whether they are of Oliver (p; q)-type (for some

p and some q) and, in addition, for the groups that are not of Oliver (p; q)-type if they

have a transitive subgroup H < G of Oliver (p; q)-type. Table 3 gives the statisti
s.

# Verti
es # Transitive # Groups G # Groups without

m group not of Oliver trans. H < G of

a
tions (p; q)-type Oliver (p; q)-type

6 16 4 0

10 45 21 3

12 301 107 1

14 63 34 2

15 104 64 5

Table 3: Transitive permutation groups without subgroups of Oliver (p; q)-type.

One example of a permutation group of degree 6 is the group a
tion of the alternating

group A

5

. Although A

5

is not of Oliver (p; q)-type as it is simple, on 6 verti
es A

5

has

A

4

as a vertex-transitive subgroup of Oliver (2; 1)-type.

Lemma 6 There is, apart from the 2-simplex, no 2-dimensional Z-a
y
li
 vertex-homo-

geneous simpli
ial 
omplex.

Proof: If there were a non-trivial 2-dimensional Z-a
y
li
 vertex-homogeneous simpli-


ial 
omplex K, then it would have 6 verti
es by Proposition 4. But every transitive

permutation group of degree 6 is of Oliver (p; q)-type or has a vertex-transitive subgroup

of Oliver (p; q)-type. Thus K 
annot be Z-a
y
li
 by Theorem 1. 2

There exists a transitive permutation group, [2

4

℄ 3

2

:4, on 12 verti
es, whi
h is not of

Oliver (p; q)-type and that has no vertex-transitive subgroup of Oliver (p; q)-type. Thus,

we 
annot use the above argument in the 
ase of 3-dimensional 
omplexes. In this 
ase,

we pro
eed as follows. We will �rst determine all simpli
ial 
omplexes on 12 verti
es with

a vertex-transitive a
tion of the group [2

4

℄ 3

2

:4 for whi
h ~� = 0 and then 
ompute their

homology. It will turn out that the homology is non-trivial for ea
h of the 
omplexes.

De�nition 7 Let G be a transitive permutation group of the set E = f1; 2; : : : ; mg.

Then G a
ts on the system of sets 2

E

, and we denote the set of orbits for this a
tion by

Orb

G

(2

E

). We de�ne a partial order \< " on Orb

G

(2

E

): For O

1

;O

2

2 Orb

G

(2

E

),

O

2

< O

1

if and only if for any B 2 O

2

and g 2 G, gB � A for some A 2 O

1

. The

partially ordered set (Orb

G

(2

E

); < ) is the orbit poset 
orresponding to the a
tion of

G on 2

E

.
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It follows that simpli
ial 
omplexes K � 2

E

, whi
h are invariant under the indu
ed

a
tion of a transitive permutation group G on E, are in one-to-one 
orresponden
e with

the ideals of the orbit poset Orb

G

(2

E

).

Sin
e our aim is to determine vertex-homogeneous simpli
ial 
omplexes with redu
ed

Euler 
hara
teristi
 ~� = 0, it is natural to 
onsider weighted orbit posets, where we

label ea
h orbit of k-sets by its size times the sign (�1)

k+1

. Complexes with redu
ed

Euler 
hara
teristi
 ~� = 0 then 
orrespond to ideals of weighted orbit posets with

P

O2I

w

O

= 0 for the weights w

O

of the orbits O in the ideal I.

The weighted orbit posets for the A

5

-a
tion and its transitive A

4

-suba
tion on 6 ver-

-3 -12

+6

-1

-15

+6

-1

+6 +6

-1 -1

-15 -3 -12

+10 +10 +4 +4 +6 +6

Figure 3: Weighted orbit posets of the transitive A

5

- and A

4

-a
tions on 6 verti
es.

ti
es are depi
ted in Figure 3. The respe
tive ideals I with

P

O2I

w

O

= 0 of these two

1

2 31

23 4

5
6

Figure 4: 6-vertex triangulation of the real proje
tive plane.

orbit posets all 
orrespond to the 6-vertex triangulation of the real proje
tive plane. For

the 
ase of the A

4

-a
tion we shaded the orbit with 4 triangles in Figure 4 in grey, the

other orbit of 6 triangles is in white.

As listed in Table 3, there are three transitive permutation groups on 10 verti
es that

are not of Oliver type and 
ontain no transitive Oliver type subgroup. These groups are

A

5

< A

6

< M

10

(with in
lusions as transitive permutation groups). On 12 verti
es there

is only one su
h group, [2

4

℄ 3

2

: 4. There are two groups on 14 verti
es, PSL

2

(7) and

PSL

2

(13), whi
h are not in
luded in ea
h other; and on 15 verti
es we have �ve groups,

with the in
lusions A

5

< S

5

; A

6

; S

5

< S

6

; A

7

; and A

6

< S

6

; A

7

. If we want to generate

all vertex-homogeneous simpli
ial 
omplexes with ~� = 0 for these a
tions, it would be

7



suÆ
ient to do this for the a
tions A

5

(10), [2

4

℄ 3

2

: 4, PSL

2

(7), PSL

2

(13), and A

5

(15),

sin
e these are transitive subgroups of the other groups. The weighted orbit poset for

A

5

(10) is displayed in Figure 5. Nevertheless, we only su

eeded with the generation

-30

-1

+10

-15

+10 +20 +30 +30 +30

-5 -10 -15 -30 -30 -60 -60

+6 +6 +30 +30 +30 +30 +60 +60

-5 -10 -15 -30 -30 -60 -60

+10 +20 +30+30 +30

-15 -30

+10

-1

Figure 5: Weighted orbit poset of the transitive A

5

-a
tion on 10 verti
es.

of all ideals (simpli
ial 
omplexes) with

P

O2I

w

O

= 0 ( ~� = 0) for the three a
tions

on 10 verti
es, for the a
tion of [2

4

℄ 3

2

: 4 on 12 verti
es, of PSL

2

(13) on 14 verti
es,

and of A

7

on 15 verti
es. Table 4 lists the number of 
omplexes that we found with a

GAP-program.

Several of the 
omplexes are 
ombinatorially isomorphi
, but none of the 
omplexes

with 10 or 12 verti
es is Z-a
y
li
, whi
h we 
he
ked with the C-program HOMOLOGY

by He
kenba
h [7℄. (For most of the 
omplexes with 14 and 15 verti
es, it was not

possible to determine their homology with the program.)

Theorem 8 There is, other than a simplex, no Z-a
y
li
 vertex-homogeneous simpli
ial


omplex on m = 6, 10, 12 verti
es. In parti
ular, there is no 3-dimensional Z-a
y
li


vertex-homogeneous simpli
ial 
omplex other than the 3-simplex.
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# Verti
es Weighted # Complexes # Z-a
y
li


m orbit poset with ~� = 0 
omplexes

10 A

5

112 0

A

6

8 0

M

10

0 0

12 [2

4

℄ 3

2

:4 336 0

14 PSL

2

(7) ? ?

PSL

2

(13) 140 ?

15 A

5

? ?

S

5

? ?

A

6

? ?

S

6

? ?

A

7

42 ?

Table 4: Transitive permutation groups that do not have any subgroup of Oliver (p; q)-type.

Corollary 9 The Evasiveness Conje
ture holds for 2- and 3-dimensional simpli
ial


omplexes.

Remark: An A

5

-invariant 5-dimensional Z-a
y
li
 vertex-homogeneous simpli
ial


omplex on 30 verti
es with 932 fa
es and f -ve
tor f = (1; 30; 195; 340; 255; 96; 15) will

be presented in [11℄ (see also [12℄). Additional examples of higher dimension and with

more fa
es exist on 30 and 60 verti
es. The �rst su
h example of dimension 11 on 60

verti
es was found by Oliver [10℄. We believe that there is, apart from the 4-simplex,

no Z-a
y
li
 vertex-homogeneous simpli
ial 
omplex of dimension 4.
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4 An In�nite Class of Counterexamples

to the Generalized Aanderaa-Rosenberg Conje
ture

We 
onstru
t an in�nite 
lass of 
ounterexamples to the Generalized Aanderaa-Rosenberg

Conje
ture (see p. 2) in three steps.

Let m = u(u+1), for u � 3 odd. As group of symmetries we 
onsider G = Z

m

, with

a
tion on the ground set E = f1; 2; : : : ; mg by translation (mod m).

1. Let A

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; u+1; 2u+1; : : : ; (u�1)u+1; uu+1 g; f 1; 4; 7; 10 g;

f 2; u+2; 2u+2; : : : ; (u�1)u+2; uu+2 g; f 2; 5; 8; 11 g;

f 3; u+3; 2u+3; : : : ; (u�1)u+3; uu+3 g;

: : :

fu; u+u; 2u+u; : : : ; (u�1)u+u; uu+u g; f 3; 6; 9; 12 g

with u sets of u+1 elements ea
h. (On the right hand side, we note Illies' example [8℄

for u = 3.)

2. Let B

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; 2u+1; 4u+1; : : : ; (u�1)u+1 g; f 1; 7 g;

f 2; 2u+2; 4u+2; : : : ; (u�1)u+2 g; f 2; 8 g;

f 3; 2u+3; 4u+3; : : : ; (u�1)u+3 g; f 3; 9 g;

: : : � � �

f 2u; 2u+2u; 4u+2u; : : : ; (u�1)u+2u g; f 6; 12 g

with 2u sets of (u+1)=2 elements ea
h.

3. Let C

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; (u+1)+1; 2(u+1)+1; : : : ; (u�1)(u+1)+1 g; f 1; 5; 9 g;

f 2; (u+1)+2; 2(u+1)+2; : : : ; (u�1)(u+1)+2 g; f 2; 6; 10 g;

f 3; (u+1)+3; 2(u+1)+3; : : : ; (u�1)(u+1)+3 g; f 3; 7; 11 g;

: : :

f (u+1); (u+1)+(u+1); 2(u+1)+(u+1); : : : ; (u�1)(u+1)+(u+1) g; f 4; 8; 12 g

with (u+1) sets of u elements ea
h.

Proposition 10 The set system F

m

=(A

m

nB

m

)[ C

m

is non-evasive and thus provides

an in�nite 
lass of 
ounterexamples to the Generalized Aanderaa-Rosenberg Conje
ture.

Proof: Let A22

E

. We want to determine whether A is in F

m

or not by asking questions

\Is e2A?". An ora
le answers YES or NO. In order to show that F

m

is non-evasive, we

give a de
ision tree of depth m�1.

Case I (A \ f 1; 2; : : : ; m�2u g 6= ; )

We start with elements in f 1; 2; : : : ; m� 2u g and ask su

essively \Is 1 2 A?",

\Is 2 2 A?", \Is 3 2 A?", : : : If none of these elements is in A, we have 
he
ked

that f 1; 2; : : : ; m�2u g \ A = ;, and this 
ase will be dis
ussed later. Otherwise, the

�rst time we get YES as an answer, say, for \Is r 2 A?" with r � m�2u, we next test

the elements in f r+u; r+3u; : : :g � f 1; 2; : : : ; m g, 
onse
utively. Upon 
ompletion,

we see by the 
onstru
tion of the set system F

m

that, sin
e r � m�2u, there exists at

10



least one element, namely, r+2u, su
h that either both the sets A and A [ f r+2u g

lie in F

m

, or both do not. Hen
e, we do not have to ask for r+2u in order to 
he
k

whether A is in F

m

or not. This gives a leaf of the de
ision tree, whi
h we depi
t in

Figure 6 by an oval, 
ontaining all the elements we do not have to ask for. Su
h a leaf

has a depth of altogether at most m�1. Finally, if we have tested all the elements

f r+u; r+3u; : : : ; r+(2k+1)u g, with k the greatest integer su
h that r+(2k+1)u � m,

and none of them is 
ontained in A, then for A to lie in F

m

it has to be in C

m

. But then

there is again at least one element that we do not have to ask for, namely r+(u+1).

Thus, this leaf has also at most depth m�1.

r r r

?

NO

r�1 2 A ?

-

YES

r r r

?

NO

r 2 A ?

-

YES

?

NO

r r r

r+u 2 A ?

-

YES

�




�

	

r+2u, r+3u, r+4u, r+5u, r+6u, r+7u, : : :

?

NO

r+3u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+5u, r+6u, r+7u, : : :

?

NO

r+5u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+6u, r+7u, : : :

?

NO

r r r

?

NO

r+(2k+1)u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+6u, : : :

?

NO

�




�

	

r+(u+1), r+2(u+1), r+3(u+1), : : :

Figure 6: De
ision tree for r � m�2u.

Case II (A \ f 1; 2; : : : ; m�2u g = ; )

In this part, we further analyze A in the 
ase where A \ f 1; 2; : : : ; m�2u g = ;. For

this, we 
an restri
t F

m

to sets that do not 
ontain the elements 1; 2; : : : ; m�2u. The


orresponding sets in A

m

n B

m

are

11



f (m�2u)+1; (m�u)+1 g; f 7; 10 g;

f (m�2u)+2; (m�u)+2 g; f 8; 11 g;

� � �

f (m�2u)+u; (m�u)+u g; f 9; 12 g;

and the remaining sets of C

m

are

f (m�2u)+1; (m�u)+1+1 g; f 7; 11 g;

f (m�2u)+2; (m�u)+1+2 g;

� � �

f (m�2u)+(u�1); (m�u)+1+(u�1) g f 8; 12 g

f (m�2u)+1 g; f 7 g;

f (m�2u)+2 g; f 8 g;

� � � � � �

f (m�2u)+2u g; f 12 g;

f g; f g:

If we denote byA

m

, B

m

, and C

m

the restri
tions ofA

m

, B

m

, and C

m

to the set of remaining

elements fm�2u+1; : : : ; m g respe
tively, then the restri
tion F

m

= (A

m

n B

m

) [ C

m

of F

m

is a path

(m�u)+1 (m�2u)+1 (m�u)+2 (m�2u)+2 (m�u)+u (m�2u)+u

u u u u

...

u u

Sin
e paths are non-evasive and 
an be tested in # verti
es { 1 steps, the depth of the

leaf 
orresponding to the above path is again m�1. Altogether, it follows that F

m

is

non-evasive. 2
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