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Abstrat

The Evasiveness Conjeture for graph properties has natural generalizations to simpliial om-

plexes and to set systems. In this paper we show that the Evasiveness Conjeture for simpliial

omplexes holds in dimension 2 and 3. We also present an in�nite lass of ounterexamples to

the Generalized Aanderaa-Rosenberg Conjeture (the Evasiveness Conjeture for set systems). The

smallest member of this lass is the only previously known ounterexample by Illies.

1 Introdution

Let P be any graph property, that is, a property of graphs whih is invariant under

graph-isomorphisms, on a �xed set of nodes V of size n := jV j, and let E denote the set

of all edges on V , with m := jEj =

�

n

2

�

. We identify P with the set system

F

P

:= fA � E : Graph (V;A) has property Pg � 2

E

;

and for an unknown graph G = (V;A) on V we onsider the deision problem whether G

has the property P or not. In order to �nd out if the edge set A of G belongs to F

P

, we

ask questions of the type \Is e 2 A?", and an orale answers (orretly) YES or NO.

The number of elements of E that we will have to test in the worst ase, if we proeed

aording to some optimal strategy, is alled the argument omplexity (F

P

) of P. Then

0 � (F

P

) � m, and P is trivial if (F

P

) = 0 and non-trivial if (F

P

) > 0. P is alled

evasive if (F

P

) = m and non-evasive otherwise. For general set systems F � 2

E

, these

terms are de�ned analogously. A graph property is monotone if it is preserved under

deletion of edges.

In the early seventies Rihard Karp proposed the following remarkable onjeture.

Evasiveness Conjeture for Graph Properties: Every non-trivial monotone graph

property P is evasive.

Extensive work has been done on determining the argument omplexity of partiular

graph properties (see e.g. [1℄, [2℄, [4, Ch. VIII℄, [20℄, and referenes ontained therein).

The �rst suessful approah to Karp's Conjeture was arried through by Kahn,

Saks, and Sturtevant [10℄ in 1984. Using methods from algebrai topology, in par-

tiular, a �xed point theorem by Oliver [15℄, they were able to settle the ase when

�
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n is a prime power (and the ase n = 6). For this, they restated Karp's Conjeture

in the language of simpliial omplexes: If P is a monotone graph property, then the

orresponding set system F

P

is a (�nite abstrat) simpliial omplex with the vertex

set E. We all F

P

the graph omplex assoiated with P. Invariane under permutation

of the nodes of V (what one naturally requires for P to be a graph property) gives rise

to an indued ation of the symmetri group S

n

on the edge set E, and thus on the

simpliial omplex F

P

. Clearly, the ation of S

n

is transitive on E.

By allowing the symmetry group to be any �nite group G, one obtains the following

more general situation.

Evasiveness Conjeture for Simpliial Complexes [10℄: If F is a non-evasive

vertex-homogeneous simpliial omplex (VHSC) on the vertex set E = f1; : : : ; mg with

vertex-transitive ation by some group G, then it is the standard (m�1)-simplex �

m�1

.

To be \non-evasive" is in fat a rather strong topologial requirement. The following

sequene of impliations holds for �nite simpliial omplexes (f. [10℄; for an exposition

of topologial methods in ombinatoris see [3℄):

non-evasive ) ollapsible ) ontratible ) Z-ayli ) Q -ayli ) ~� = 0

and leads to further generalizations of the above onjetures (f. Figure 1). (~� denotes

the redued Euler harateristi of a simpliial omplex.)

VHSC + (~� = 0) = �

m�1

+

VHSC + Q-ayli = �

m�1

+

VHSC + Z-ayli = �

m�1

+

VHSC + ontratible = �

m�1

) VHSC + ollapsible = �

m�1

)

EC for set systems

(GARC)

+

EC for simpliial omplexes

(VHSC + non-evasive = �

m�1

)

+

�

Æ

�



EC for graph properties

Figure 1: Generalizations of the Evasiveness Conjeture (EC) for graph properties.

Instead of relaxing the ondition \non-evasive" one an alternatively remove the

monotoniity. The resulting Evasiveness Conjeture for set systems is known as the

Generalized Aanderaa-Rosenberg Conjeture (GARC) [16℄ Let F � 2

E

be a set

system with indued transitive symmetry group G � S

E

. If ; 2 F , but E =2 F , then F

is evasive.

Albeit the latter onjeture as well as the Conjeture [VHSC+(~�=0)=�

m�1

℄ were

proved by Rivest and Vuillemin [16℄ for sets E of prime power ardinality, m = q

s

,
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Illies [8℄ provided a ounterexample to GARC for m = 12, and there is an abundane

of ounterexamples to the Conjeture [VHSC+(~�=0)=�

m�1

℄ for m 6= q

s

.

In the next setion we will review some �xed point theorems and their appliations. In

Setion 3 we show that there is, apart from the simplex, no Z-ayli vertex-homogeneous

simpliial omplex with m = 6, 10, or 12 verties. This fat implies the non-existene of

2- and 3-dimensional Z-ayli vertex-homogeneous simpliial omplexes, di�erent from

a simplex.

Furthermore, we onstrut in Setion 4 an in�nite lass of ounterexamples to the

Generalized Aanderaa-Rosenberg Conjeture for m = u(u + 1), u � 3 odd, with the

Illies example as the smallest member of the lass.

2 Fixed Point Theorems and Group Ations

Reall that if the vertex-transitive ation of a (�nite) group G on a (�nite) simpliial

omplex K (with m verties) has a �xed point, then K is a simplex. This an be seen

geometrially by regarding K as a subomplex of the (m�1)-dimensional simplex �

m�1

with verties e

1

; : : : ; e

m

. Any point x of K has a unique representation x =

P

m

i=1

�

i

e

i

,

with �

i

� 0 and

P

m

i=1

�

i

= 1. The group G then ats by permuting the oordinates,

gx =

P

m

i=1

�

i

e

g(i)

, g 2 G. If G is transitive, then for every i; j there is some g 2 G suh

that e

j

= e

g(i)

. If, in addition, the ation of G has a �xed point y, then gy = y for every

group element g, and therefore �

1

= : : : = �

m

=

1

m

. But y =

1

m

P

m

i=1

e

i

is a point of K

if and only if K is a simplex.

This simple fat, in ombination with �xed point theorems from algebrai topology,

provides an important tool for the study of group ations on simpliial omplexes. It was

shown by Smith [19℄ that if a p-group P , i.e., a group with prime power order jP j = p

t

,

ats on a Z

p

-ayli omplex, then the �xed point set for this ation is Z

p

-ayli as well.

In partiular, the �xed point set is not empty { hene, there are no vertex-transitive

group ations of a p-group on a Z

p

-ayli simpliial omplex (that is not a simplex).

The theorem by Smith has been generalized by Oliver.

Theorem 1 (Oliver [15℄) Let G be a �nite group with subsequent normal subgroups

P �Q�G suh that

(i) P is a p-group,

(ii) G=Q is a q-group, and

(iii) Q=P is yli.

If G ats on a Z

p

-ayli omplex K, then the Euler harateristi �(K

G

) of the �xed

point set K

G

is equivalent to 1 (mod q).

We say that a group G is of Oliver (p; q)-type if it has properties (i), (ii) and (iii) of

Theorem 1. A group G of Oliver (p; q)-type with q = 1 is alled a group of Oliver (p; 1)-

type. If a group G of Oliver (p; q)-type ats vertex-transitively on a Z

p

-ayli simpliial

omplex K, then K is a simplex. In fat, if H is an Oliver (p; q)-type vertex-transitive

subgroup of some group G, whih ats on a Z

p

-ayli omplex K, then K is a simplex.

Theorem 2 (Kahn, Saks, and Sturtevant [10℄) Let F

P

n

be the graph omplex asso-

iated with some (non-trivial) graph property P

n

on n = p

t

nodes, with p prime. Then

F

P

n

is not Z

p

-ayli.
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dim # verties

1 -

2 6

3 6, 12

4 10, 12, 15, 20, 30, 60

5 10, 12, 15, 20, 30, 60

6 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140,

210, 420

7 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84,

105, 120, 140, 168, 210, 280, 420, 840

8 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60,

63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252,

280, 315, 360, 420, 504, 630, 840, 1260, 2520

Table 1: Possible numbers of verties for low-dimensional vertex-homogeneous simpliial omplexes with

~� = 0.

Proof: Let G = A� (GF (p

t

)) < S

n

be the group of aÆne transformations of GF (p

t

).

The group G is 2-transitive on f1 : : : ng and therefore transitive on the edge set E.

Furthermore, G is of Oliver (p; 1)-type (hoose Q :=G and P :=fx 7! x+b : b 2 GF (p

t

)g).

Hene, G is a vertex-transitive Oliver (p; 1)-type subgroup of the symmetri group S

n

with indued ation on all graph omplexes F

P

n

. But then either F

P

n

is a simplex, and

thus P

n

is trivial, or F

P

n

is not Z

p

-ayli by Theorem 1. 2

If a graph omplex is not Z

p

-ayli, then it annot be non-evasive.

Corollary 3 (Kahn, Saks, and Sturtevant [10℄) The Evasiveness Conjeture for

graph properties holds for every prime power number of nodes.

3 The Evasiveness Conjeture in Dimension 2 and 3

We will show in the following that (non-trivial) non-evasive vertex-homogeneous simpli-

ial omplexes do not exist in dimension 2 and 3.

Proposition 4 (Bj

�

orner) Let E be a �nite set of ardinality m = jEj = q

�

1

1

� � � q

�

r

r

(primepower-deomposition) and M = maxfq

�

1

1

; : : : ; q

�

r

r

g . If K � 2

E

is a vertex-

homogeneous simpliial omplex on the vertex set E with redued Euler harateristi

~�(K) = 0, then dim(K) �M � 1.

Proof: By the transitivity of the group ation, every element of E is ontained the

same number of times, s, in the k-sets of every orbit O of (k� 1)-dimensional faes, i.e.,

k�jOj = s�jEj. ForM = q

�

i

i

this implies that q

i

j jOj if k < M . Now, if dim(K) < M�1,

then, with the exeption of the orbit of the empty set, whih has size 1, the size of every

orbit of (k � 1)-faes of K is divisible by q

i

. Hene, ~�(K) � �1mod q

i

, and it follows

that ~�(K) 6= 0. 2

Corollary 5 (Rivest and Vuillemin [16℄) Conjeture [VHSC+(~�=0)=�

m�1

℄ holds

if m = q

s

is a prime power.
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It follows from Proposition 4 that for every d-dimensional vertex-homogeneous sim-

pliial omplex K with redued Euler harateristi ~� = 0 one has M � d + 1. In

partiular, the ardinality m of the vertex set E of K an only attain �nitely many

di�erent values. Furthermore, m > d+ 2. This follows from the fat that for m = d+ 2

there is, by transitivity, only one orbit of d-faes. But the boundary omplex of a simplex

is a sphere with ~� 6= 0. Table 1 displays the vertex-numbers that are possible for d � 8.

As a result of the above, we get a lower bound for the dimension of graph omplexes

F

P

n

with redued Euler harateristi ~� = 0 for graph properties P

n

on n nodes. See

Table 2 for small n 6= p

t

.

# nodes # verties # nodes # verties

n m =

�

n

2

�

dim � n m =

�

n

2

�

dim �

6 15 4 26 325 24

10 45 8 28 378 26

12 66 10 30 435 28

14 91 12 33 528 15

15 105 6 34 561 16

18 153 16 35 595 16

20 190 18 36 630 8

21 210 6 38 703 36

22 231 10 39 741 18

24 276 22 40 780 12

Table 2: Lower bounds for the dimension of graph omplexes (6= simplex) with ~� = 0.

The `smallest example' of a graph property P with ~�(F

P

) = 0 an be found on 6

nodes. It is the property P

A

of being a subgraph of any of the �rst four graphs of Figure 2.

The next listed three respetive two graphs desribe examples of higher-dimensional

graph omplexes on 6 nodes with ~�(F

P

) = 0. All three examples have nontrivial re-

(   )PA

(   )PB

(   )PC

Figure 2: Three examples of graph properties with ~�(F

P

) = 0.

dued homology, i.e.,

~

H

�

(F

P

A

) = (0; 0;Z

15

;Z

15

; 0; 0),

~

H

�

(F

P

B

) = (0; 0;Z

15

;Z

15

; 0; 0; 0),

and

~

H

�

(F

P

C

) = (0; 0; 0;Z

20

� Z

3

;Z

20

; 0; 0; 0; 0), as omputed with the C-program HO-

MOLOGY by Hekenbah [7℄.

Remark: Although there are many examples of graph omplexes with ~�(F

P

) = 0,

there seems to be no example known of a nontrivial Q -ayli graph omplex.
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Note added to revised version: Jakob Jonsson [9℄ has reently provided an

example of an 8-dimensional non-trivial Q -ayli graph omplex orresponding to a

graph property on 6 nodes.

We turn bak to general vertex-homogeneous simpliial omplexes. For every m, there

is a �nite number of transitive permutation groups of degree m. These groups were

lassi�ed for m � 15 (see [5℄, [6℄, [13℄, [14℄, [17℄), a library of the groups is ontained in

the omputer algebra pakage GAP [18℄. We determined for all transitive permutation

groups G of degree m = 6; 10; 12; 14; 15 whether they are of Oliver (p; q)-type (for some

p and some q) and, in addition, for the groups that are not of Oliver (p; q)-type if they

have a transitive subgroup H < G of Oliver (p; q)-type. Table 3 gives the statistis.

# Verties # Transitive # Groups G # Groups without

m group not of Oliver trans. H < G of

ations (p; q)-type Oliver (p; q)-type

6 16 4 0

10 45 21 3

12 301 107 1

14 63 34 2

15 104 64 5

Table 3: Transitive permutation groups without subgroups of Oliver (p; q)-type.

One example of a permutation group of degree 6 is the group ation of the alternating

group A

5

. Although A

5

is not of Oliver (p; q)-type as it is simple, on 6 verties A

5

has

A

4

as a vertex-transitive subgroup of Oliver (2; 1)-type.

Lemma 6 There is, apart from the 2-simplex, no 2-dimensional Z-ayli vertex-homo-

geneous simpliial omplex.

Proof: If there were a non-trivial 2-dimensional Z-ayli vertex-homogeneous simpli-

ial omplex K, then it would have 6 verties by Proposition 4. But every transitive

permutation group of degree 6 is of Oliver (p; q)-type or has a vertex-transitive subgroup

of Oliver (p; q)-type. Thus K annot be Z-ayli by Theorem 1. 2

There exists a transitive permutation group, [2

4

℄ 3

2

:4, on 12 verties, whih is not of

Oliver (p; q)-type and that has no vertex-transitive subgroup of Oliver (p; q)-type. Thus,

we annot use the above argument in the ase of 3-dimensional omplexes. In this ase,

we proeed as follows. We will �rst determine all simpliial omplexes on 12 verties with

a vertex-transitive ation of the group [2

4

℄ 3

2

:4 for whih ~� = 0 and then ompute their

homology. It will turn out that the homology is non-trivial for eah of the omplexes.

De�nition 7 Let G be a transitive permutation group of the set E = f1; 2; : : : ; mg.

Then G ats on the system of sets 2

E

, and we denote the set of orbits for this ation by

Orb

G

(2

E

). We de�ne a partial order \< " on Orb

G

(2

E

): For O

1

;O

2

2 Orb

G

(2

E

),

O

2

< O

1

if and only if for any B 2 O

2

and g 2 G, gB � A for some A 2 O

1

. The

partially ordered set (Orb

G

(2

E

); < ) is the orbit poset orresponding to the ation of

G on 2

E

.
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It follows that simpliial omplexes K � 2

E

, whih are invariant under the indued

ation of a transitive permutation group G on E, are in one-to-one orrespondene with

the ideals of the orbit poset Orb

G

(2

E

).

Sine our aim is to determine vertex-homogeneous simpliial omplexes with redued

Euler harateristi ~� = 0, it is natural to onsider weighted orbit posets, where we

label eah orbit of k-sets by its size times the sign (�1)

k+1

. Complexes with redued

Euler harateristi ~� = 0 then orrespond to ideals of weighted orbit posets with

P

O2I

w

O

= 0 for the weights w

O

of the orbits O in the ideal I.

The weighted orbit posets for the A

5

-ation and its transitive A

4

-subation on 6 ver-

-3 -12

+6

-1

-15

+6

-1

+6 +6

-1 -1

-15 -3 -12

+10 +10 +4 +4 +6 +6

Figure 3: Weighted orbit posets of the transitive A

5

- and A

4

-ations on 6 verties.

ties are depited in Figure 3. The respetive ideals I with

P

O2I

w

O

= 0 of these two

1

2 31

23 4

5
6

Figure 4: 6-vertex triangulation of the real projetive plane.

orbit posets all orrespond to the 6-vertex triangulation of the real projetive plane. For

the ase of the A

4

-ation we shaded the orbit with 4 triangles in Figure 4 in grey, the

other orbit of 6 triangles is in white.

As listed in Table 3, there are three transitive permutation groups on 10 verties that

are not of Oliver type and ontain no transitive Oliver type subgroup. These groups are

A

5

< A

6

< M

10

(with inlusions as transitive permutation groups). On 12 verties there

is only one suh group, [2

4

℄ 3

2

: 4. There are two groups on 14 verties, PSL

2

(7) and

PSL

2

(13), whih are not inluded in eah other; and on 15 verties we have �ve groups,

with the inlusions A

5

< S

5

; A

6

; S

5

< S

6

; A

7

; and A

6

< S

6

; A

7

. If we want to generate

all vertex-homogeneous simpliial omplexes with ~� = 0 for these ations, it would be

7



suÆient to do this for the ations A

5

(10), [2

4

℄ 3

2

: 4, PSL

2

(7), PSL

2

(13), and A

5

(15),

sine these are transitive subgroups of the other groups. The weighted orbit poset for

A

5

(10) is displayed in Figure 5. Nevertheless, we only sueeded with the generation

-30

-1

+10

-15

+10 +20 +30 +30 +30

-5 -10 -15 -30 -30 -60 -60

+6 +6 +30 +30 +30 +30 +60 +60

-5 -10 -15 -30 -30 -60 -60

+10 +20 +30+30 +30

-15 -30

+10

-1

Figure 5: Weighted orbit poset of the transitive A

5

-ation on 10 verties.

of all ideals (simpliial omplexes) with

P

O2I

w

O

= 0 ( ~� = 0) for the three ations

on 10 verties, for the ation of [2

4

℄ 3

2

: 4 on 12 verties, of PSL

2

(13) on 14 verties,

and of A

7

on 15 verties. Table 4 lists the number of omplexes that we found with a

GAP-program.

Several of the omplexes are ombinatorially isomorphi, but none of the omplexes

with 10 or 12 verties is Z-ayli, whih we heked with the C-program HOMOLOGY

by Hekenbah [7℄. (For most of the omplexes with 14 and 15 verties, it was not

possible to determine their homology with the program.)

Theorem 8 There is, other than a simplex, no Z-ayli vertex-homogeneous simpliial

omplex on m = 6, 10, 12 verties. In partiular, there is no 3-dimensional Z-ayli

vertex-homogeneous simpliial omplex other than the 3-simplex.
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# Verties Weighted # Complexes # Z-ayli

m orbit poset with ~� = 0 omplexes

10 A

5

112 0

A

6

8 0

M

10

0 0

12 [2

4

℄ 3

2

:4 336 0

14 PSL

2

(7) ? ?

PSL

2

(13) 140 ?

15 A

5

? ?

S

5

? ?

A

6

? ?

S

6

? ?

A

7

42 ?

Table 4: Transitive permutation groups that do not have any subgroup of Oliver (p; q)-type.

Corollary 9 The Evasiveness Conjeture holds for 2- and 3-dimensional simpliial

omplexes.

Remark: An A

5

-invariant 5-dimensional Z-ayli vertex-homogeneous simpliial

omplex on 30 verties with 932 faes and f -vetor f = (1; 30; 195; 340; 255; 96; 15) will

be presented in [11℄ (see also [12℄). Additional examples of higher dimension and with

more faes exist on 30 and 60 verties. The �rst suh example of dimension 11 on 60

verties was found by Oliver [10℄. We believe that there is, apart from the 4-simplex,

no Z-ayli vertex-homogeneous simpliial omplex of dimension 4.
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4 An In�nite Class of Counterexamples

to the Generalized Aanderaa-Rosenberg Conjeture

We onstrut an in�nite lass of ounterexamples to the Generalized Aanderaa-Rosenberg

Conjeture (see p. 2) in three steps.

Let m = u(u+1), for u � 3 odd. As group of symmetries we onsider G = Z

m

, with

ation on the ground set E = f1; 2; : : : ; mg by translation (mod m).

1. Let A

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; u+1; 2u+1; : : : ; (u�1)u+1; uu+1 g; f 1; 4; 7; 10 g;

f 2; u+2; 2u+2; : : : ; (u�1)u+2; uu+2 g; f 2; 5; 8; 11 g;

f 3; u+3; 2u+3; : : : ; (u�1)u+3; uu+3 g;

: : :

fu; u+u; 2u+u; : : : ; (u�1)u+u; uu+u g; f 3; 6; 9; 12 g

with u sets of u+1 elements eah. (On the right hand side, we note Illies' example [8℄

for u = 3.)

2. Let B

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; 2u+1; 4u+1; : : : ; (u�1)u+1 g; f 1; 7 g;

f 2; 2u+2; 4u+2; : : : ; (u�1)u+2 g; f 2; 8 g;

f 3; 2u+3; 4u+3; : : : ; (u�1)u+3 g; f 3; 9 g;

: : : � � �

f 2u; 2u+2u; 4u+2u; : : : ; (u�1)u+2u g; f 6; 12 g

with 2u sets of (u+1)=2 elements eah.

3. Let C

m

be the set system of all subsets of the sets of the Z

m

-orbit

f 1; (u+1)+1; 2(u+1)+1; : : : ; (u�1)(u+1)+1 g; f 1; 5; 9 g;

f 2; (u+1)+2; 2(u+1)+2; : : : ; (u�1)(u+1)+2 g; f 2; 6; 10 g;

f 3; (u+1)+3; 2(u+1)+3; : : : ; (u�1)(u+1)+3 g; f 3; 7; 11 g;

: : :

f (u+1); (u+1)+(u+1); 2(u+1)+(u+1); : : : ; (u�1)(u+1)+(u+1) g; f 4; 8; 12 g

with (u+1) sets of u elements eah.

Proposition 10 The set system F

m

=(A

m

nB

m

)[ C

m

is non-evasive and thus provides

an in�nite lass of ounterexamples to the Generalized Aanderaa-Rosenberg Conjeture.

Proof: Let A22

E

. We want to determine whether A is in F

m

or not by asking questions

\Is e2A?". An orale answers YES or NO. In order to show that F

m

is non-evasive, we

give a deision tree of depth m�1.

Case I (A \ f 1; 2; : : : ; m�2u g 6= ; )

We start with elements in f 1; 2; : : : ; m� 2u g and ask suessively \Is 1 2 A?",

\Is 2 2 A?", \Is 3 2 A?", : : : If none of these elements is in A, we have heked

that f 1; 2; : : : ; m�2u g \ A = ;, and this ase will be disussed later. Otherwise, the

�rst time we get YES as an answer, say, for \Is r 2 A?" with r � m�2u, we next test

the elements in f r+u; r+3u; : : :g � f 1; 2; : : : ; m g, onseutively. Upon ompletion,

we see by the onstrution of the set system F

m

that, sine r � m�2u, there exists at

10



least one element, namely, r+2u, suh that either both the sets A and A [ f r+2u g

lie in F

m

, or both do not. Hene, we do not have to ask for r+2u in order to hek

whether A is in F

m

or not. This gives a leaf of the deision tree, whih we depit in

Figure 6 by an oval, ontaining all the elements we do not have to ask for. Suh a leaf

has a depth of altogether at most m�1. Finally, if we have tested all the elements

f r+u; r+3u; : : : ; r+(2k+1)u g, with k the greatest integer suh that r+(2k+1)u � m,

and none of them is ontained in A, then for A to lie in F

m

it has to be in C

m

. But then

there is again at least one element that we do not have to ask for, namely r+(u+1).

Thus, this leaf has also at most depth m�1.

r r r

?

NO

r�1 2 A ?

-

YES

r r r

?

NO

r 2 A ?

-

YES

?

NO

r r r

r+u 2 A ?

-

YES

�




�

	

r+2u, r+3u, r+4u, r+5u, r+6u, r+7u, : : :

?

NO

r+3u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+5u, r+6u, r+7u, : : :

?

NO

r+5u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+6u, r+7u, : : :

?

NO

r r r

?

NO

r+(2k+1)u 2 A ?

-

YES

�




�

	

r+2u, r+4u, r+6u, : : :

?

NO

�




�

	

r+(u+1), r+2(u+1), r+3(u+1), : : :

Figure 6: Deision tree for r � m�2u.

Case II (A \ f 1; 2; : : : ; m�2u g = ; )

In this part, we further analyze A in the ase where A \ f 1; 2; : : : ; m�2u g = ;. For

this, we an restrit F

m

to sets that do not ontain the elements 1; 2; : : : ; m�2u. The

orresponding sets in A

m

n B

m

are

11



f (m�2u)+1; (m�u)+1 g; f 7; 10 g;

f (m�2u)+2; (m�u)+2 g; f 8; 11 g;

� � �

f (m�2u)+u; (m�u)+u g; f 9; 12 g;

and the remaining sets of C

m

are

f (m�2u)+1; (m�u)+1+1 g; f 7; 11 g;

f (m�2u)+2; (m�u)+1+2 g;

� � �

f (m�2u)+(u�1); (m�u)+1+(u�1) g f 8; 12 g

f (m�2u)+1 g; f 7 g;

f (m�2u)+2 g; f 8 g;

� � � � � �

f (m�2u)+2u g; f 12 g;

f g; f g:

If we denote byA

m

, B

m

, and C

m

the restritions ofA

m

, B

m

, and C

m

to the set of remaining

elements fm�2u+1; : : : ; m g respetively, then the restrition F

m

= (A

m

n B

m

) [ C

m

of F

m

is a path

(m�u)+1 (m�2u)+1 (m�u)+2 (m�2u)+2 (m�u)+u (m�2u)+u

u u u u

...

u u

Sine paths are non-evasive and an be tested in # verties { 1 steps, the depth of the

leaf orresponding to the above path is again m�1. Altogether, it follows that F

m

is

non-evasive. 2
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