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Abstra
t

It was shown in [11℄ that there are no (non-trivial) 2- and 3-dimensional Z-a
y
li
 vertex-ho-

mogeneous simpli
ial 
omplexes. In this paper we 
onstru
t a 5-dimensional example and further

examples in higher dimensions, one of whi
h is Oliver's example of dimension 11, the only pre-

viously known example of a non-
ontra
tible Z-a
y
li
 vertex-homogeneous simpli
ial 
omplex.

We also present an in�nite series of 
ontra
tible vertex-homogeneous simpli
ial 
omplexes by

starting with one of the Z-a
y
li
 examples.

1 Introdu
tion

Interest in vertex-homogeneous simpli
ial 
omplexes with 
ertain topologi
al proper-

ties 
an arise from di�erent perspe
tives. For example su
h 
omplexes appear natu-

rally when one studies 
ertain �xed point theorems in algebrai
 topology but they also

show up in 
onne
tion with the famous Evasiveness Conje
ture in 
omplexity theory.

This astonishing 
onjun
tion was established by Kahn, Saks, and Sturtevant in [10℄

where they made use of a �xed point theorem by Oliver [12℄ to settle the Evasiveness

Conje
ture in the prime power 
ase (and for n = 6).

In some sense at the 
ore of the 
onne
tion is the observation that if the vertex-

transitive a
tion of a (�nite) group G on a (�nite) simpli
ial 
omplex K (with m

verti
es) has a �xed point, then K is a simplex. To see this geometri
ally, we may

regard K as a sub
omplex of the standard (m � 1)-dimensional simplex �

m�1

with

verti
es e

1

; : : : ; e

m

. Any point x of K then has a unique representation x =

P

m

i=1

�

i

e

i

,

with �

i

� 0 and

P

m

i=1

�

i

= 1. The group G a
ts by permuting the 
oordinates,

gx =

P

m

i=1

�

i

e

g(i)

, g 2 G. If G is transitive, then for every i; j there is some g 2 G

su
h that e

j

= e

g(i)

. If, in addition, the a
tion of G has a �xed point y, then gy = y

for every group element g, and therefore �

1

= : : : = �

m

=

1

m

. But y =

1

m

P

m

i=1

e

i

is a

point of K if and only if K is the simplex �

m�1

.

For 
ertain group a
tions the existen
e of su
h �xed points 
an be guaranteed by

�xed point theorems. It was shown by Smith [15℄ that if a p-group P , i.e., a group

with prime power order jP j = p

t

, a
ts on a Z

p

-a
y
li
 
omplex, then the �xed point

�
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set for this a
tion is Z

p

-a
y
li
 as well. In parti
ular, the �xed point set is not empty

{ hen
e, there are no vertex-transitive group a
tions of a p-group on a Z

p

-a
y
li


simpli
ial 
omplex (that is not a simplex).

The theorem by Smith has been generalized by Oliver.

Theorem 1 (Oliver [12℄) Let G be a �nite group with subsequent normal subgroups

P CQCG su
h that

(i) P is a p-group,

(ii) G=Q is a q-group, and

(iii) Q=P is 
y
li
.

If G a
ts on a Z

p

-a
y
li
 
omplex K, then the Euler 
hara
teristi
 �(K

G

) of the

�xed point set K

G

is equivalent to 1 (mod q).

In order to give a brief a

ount on the Evasiveness Conje
ture, let P be any graph

property, that is, a property of graphs whi
h is invariant under graph-isomorphisms,

on a �xed set of nodes V of size n := jV j, and let E denote the set of all edges on V ,

with m := jEj =

�

n

2

�

. We identify P with the set system

F

P

:= fA � E : Graph (V;A) has property Pg � 2

E

;

and for an unknown graph G = (V;A) on V we 
onsider the de
ision problem whether

G has the property P or not. In order to �nd out if the edge set A of G belongs to

F

P

, we ask questions of the type \Is e 2 A?", and an ora
le answers (
orre
tly) YES

or NO.

The number of elements of E that we will have to test in the worst 
ase, if we

pro
eed a

ording to some optimal strategy, is 
alled the argument 
omplexity 
(F

P

)

of P. Then 0 � 
(F

P

) � m, and P is trivial if 
(F

P

) = 0 and non-trivial if 
(F

P

) > 0.

P is 
alled evasive if 
(F

P

) = m and non-evasive otherwise. For general set systems

F � 2

E

, these terms are de�ned analogously. A graph property is monotone if it is

preserved under deletion of edges.

In the early seventies Ri
hard Karp proposed the following remarkable 
onje
ture.

Evasiveness Conje
ture for graph properties: Every non-trivial monotone graph

property P is evasive.

Extensive work has been done on determining the argument 
omplexity of parti
-

ular graph properties (see e.g. [1℄, [2℄, [5, Ch. VIII℄, [19℄).

Kahn, Saks, and Sturtevant's approa
h to the Evasiveness Conje
ture was by refor-

mulating Karp's 
onje
ture in the language of simpli
ial 
omplexes: If P is a monotone

graph property, then the 
orresponding set system F

P

is a (�nite abstra
t) simpli
ial


omplex with vertex set E. Let us denote by F

P

the graph 
omplex asso
iated with

P. Invarian
e under permutation of the nodes of V (what one naturally requires for

P to be a graph property) gives rise to an indu
ed a
tion of the symmetri
 group S

n

on the edge set E, and thus on the simpli
ial 
omplex F

P

. Clearly, the a
tion of S

n

is transitive on E.

2



Theorem 2 (Kahn, Saks, and Sturtevant [10℄) Let F

P

n

be the graph 
omplex asso
i-

ated with some (non-trivial) graph property P

n

on n = p

t

nodes, with p prime. Then

F

P

n

is not Z

p

-a
y
li
.

Proof. Let G = A� (GF (p

t

)) < S

n

be the group of aÆne transformations of GF (p

t

)

and let Q :=G and P := fx 7! x+b : b 2 GF (p

t

)g. The group G is 2-transitive on

f1 : : : ng and therefore transitive on the edge set E. Hen
e, G is a vertex-transitive

subgroup of the symmetri
 group S

n

with indu
ed a
tion on all graph 
omplexes F

P

n

.

But then either F

P

n

is a simplex, and thus P

n

is trivial, or F

P

n

is not Z

p

-a
y
li
 by

Theorem 1 and the parti
ular 
hoi
e of Q and P . �

If a graph 
omplex is not Z

p

-a
y
li
, then it 
annot be non-evasive (see below).

Corollary 3 (Kahn, Saks, and Sturtevant [10℄) The Evasiveness Conje
ture for graph

properties holds for every prime power number of nodes.

By 
onsidering arbitrary vertex-homogeneous simpli
ial 
omplexes one obtains the

following more general situation.

Evasiveness Conje
ture for simpli
ial 
omplexes [10℄: If F is a non-evasive

vertex-homogeneous simpli
ial 
omplex on the vertex set E = f1; : : : ; mg with vertex-

transitive a
tion by some group G, then it is the standard (m�1)-simplex �

m�1

.

To be \non-evasive" is a strong topologi
al requirement. The following sequen
e of

impli
ations holds for �nite simpli
ial 
omplexes (
f. [3℄, [10℄, and [18℄):

non-evasive ) 
ollapsible ) 
ontra
tible ) Z-a
y
li
 ) Q -a
y
li
 ) ~� = 0

and leads to further generalizations of the above 
onje
ture if we repla
e \non-evasive"

with the respe
tive weaker requirements (~� denotes the redu
ed Euler 
hara
teristi


of a simpli
ial 
omplex).

These generalized 
onje
tures all hold on
e again for prime power numbers of ver-

ti
es by a theorem of Rivest and Vuillemin [13℄ (see also [11℄). Yet, for non-prime

power numbers there are 
ounterexamples known to all of the generalized 
onje
tures

with the ex
eption of the Evasiveness Conje
ture for simpli
ial 
omplexes whi
h still

remains open.

There is an abundan
e of (non-trivial) Q -a
y
li
 vertex-homogeneous simpli
ial


omplexes and even more with ~� = 0. The smallest Q -a
y
li
 example is the 6-vertex

triangulation of the real proje
tive plane (see below and 
f. [11℄).

In [11℄ it was shown that there are no 2- and 3-dimensional Z-a
y
li
 vertex-ho-

mogeneous simpli
ial 
omplexes other than a simplex. In Se
tion 4 we will present

a 5-dimensional example and further examples in higher dimensions, one of whi
h

is Oliver's example of dimension 11, the only previously known example of a non-


ontra
tible Z-a
y
li
 vertex-homogeneous simpli
ial 
omplex. In Se
tion 2 we will

dis
uss some topologi
al tools that will be used for our later 
onstru
tions, and in

Se
tion 3 we will give an in�nite series of 
ontra
tible vertex-homogeneous simpli
ial


omplexes. It remains to mention that Oliver des
ribed te
hniques to 
onstru
t a
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ollapsible vertex-homogeneous simpli
ial 
omplex (
f. [10℄). On the other hand,

evasiveness is preserved by various standard 
onstru
tions as, for example, join or

bary
entri
 subdivision [18℄. Thus, in 
on
lusion, the present te
hniques seem to

be insuÆ
ient to settle the Evasiveness Conje
ture for simpli
ial 
omplexes or to


onstru
t better 
ounterexamples than the Z-a
y
li
 and 
ontra
tible ones dis
ussed

in this paper, whi
h leaves Karp's original Evasiveness Conje
ture for graph properties

wide open.

2 Topologi
al Tools

The main tools for our 
onstru
tions will be the well known nerve operation and

duality observations.

2.1 The Nerve Operation

Let K be a (�nite abstra
t) simpli
ial 
omplex, F = (F

j

)

j2J

its 
olle
tion of maximal

fa
es (fa
ets), and J the 
orresponding index set. We 
all the 
overing of K by its

fa
ets F the standard 
overing of K.

Theorem 4 (Nerve Theorem, Borsuk, 
f. [3℄) Let N (K) be the nerve 
omplex of

K (with respe
t to the standard 
overing F = (F

j

)

j2J

), that is, N (K) is the simpli
ial


omplex on the vertex set J su
h that � � J is a simplex of N (K) if and only if

T

j2�

F

j

6= ;. Then K and N := N (K) are homotopy equivalent.

The nerve 
omplex of a simplex of any dimension is a point, and Gr�unbaum de-

s
ribes in [8℄ the 
lass of all simpli
ial 
omplexes having the same nerve. Moreover,

by a theorem of Mani (
f. [8℄), there is for every simpli
ial 
omplex N some simpli
ial


omplex K su
h that N = N (K).

De�nition 5 Let E be the vertex set of K, and for every vertex e of K let e

1

; : : : ; e

n

be n distin
t 
opies. The n-th multiple nK of K is the simpli
ial 
omplex on the

vertex set nE =

S

n

r=1

E

r

, where E

r

denotes the r-th 
opy of E, that has as its maximal

fa
es the sets nF = fe

1

1

; e

2

1

; : : : ; e

n

1

; : : : ; e

1

k

; e

2

k

; : : : ; e

n

k

g for the fa
ets F = fe

1

; : : : ; e

k

g

of K.

By 
onstru
tion,

T

j2�

F

j

6= ; if and only if

T

j2�

nF

j

6= ;. Hen
e, N (nK) = N (K),

and nK is homotopy equivalent to K.

Although the above examples demonstrate that there are always 
ombinatorially

non-isomorphi
 simpli
ial 
omplexes whi
h have the same nerve 
omplex, the nerve

operation is inje
tive on a large 
lass of simpli
ial 
omplexes. Gr�unbaum [8℄ 
alls a

simpli
ial 
omplex taut if every vertex is the interse
tion of the fa
ets 
ontaining it.

Lemma 6 (Duality, [8℄) If K is taut, then N (K) is taut and K = N (N (K)).

Proof. Let K be taut with standard 
overing F = (F

j

)

j2J

. The nerve N = N (K)

has one vertex j for every fa
et F

j

of K, j 2 J . If �

e

� J is the 
olle
tion of all j's
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so that the 
orresponding fa
ets F

j


ontain the vertex e 2 E, then, by the tautness

of K,

T

j2�

e

F

j

= f e g and �

e

is a fa
et of N . Hen
e, to any vertex e of K there

uniquely 
orresponds a fa
et �

e

= f j : e 2 F

j

g of N .

On the other hand, let j 2 J . Suppose there exists some j

0

2 J , j

0

6= j, su
h that

j

0

2

T

e2E;j2�

e

�

e

. But then F

j

� F

j

0

, whi
h is a 
ontradi
tion to the maximality of

F

j

. Thus, the nerve N is taut, and N (N (K)) = K. �

The nerve 
omplex N (K) of a simpli
ial 
omplexK need not be taut. For example,

the nerve 
omplex of a path of length n is a path of length (n� 1). A point is taut,

and n-gons C

n

are taut for n � 3.

2.2 The Join and the Dual Join Produ
t

Re
all that the join K �K

0

of two simpli
ial 
omplexes K and K

0

(with disjoint vertex

sets) is de�ned as K �K

0

:= f� [�

0

: � 2 K;�

0

2 K

0

g.

Lemma 7 If K and K

0

are taut simpli
ial 
omplexes, di�erent from a point, then

their join produ
t K �K

0

is taut as well.

Proof. The vertex set of K �K

0

is E [ E

0

. Let e be a vertex of K �K

0

with e 2 E.

If V = (F

j

[ F

0

j

0

)

(j2J;j

0

2J

0

)

denotes the 
olle
tion of maximal fa
es of K � K

0

for the

fa
ets F = (F

j

)

j2J

of K and the fa
ets F

0

= (F

0

j

0

)

j

0

2J

0

of K

0

, then

\

j 2 J; j

0

2 J

0

;

e 2 F

j

[ F

0

j

0

F

j

[ F

0

j

0

=

\

j 2 J;

e 2 F

j

F

j

= feg;

and the same is true for e 2 E

0

. Therefore, K �K

0

is taut. �

De�nition 8 Let K and K

0

be (�nite abstra
t) simpli
ial 
omplexes. Then the dual

join produ
t of K and K

0

is the produ
t

K on K

0

:= N (N (K) � N (K

0

) ): (1)

The dual join produ
t of two (non-trivial) taut 
omplexes K and K

0

is taut by

Lemma 6 and Lemma 7. In parti
ular, the following equality holds for (non-trivial)

taut 
omplexes,

N (K on K

0

) = N (K) � N (K

0

): (2)

3 Vertex-Homogeneous Simpli
ial Complexes

3.1 The Nerve of a Vertex-Homogeneous Simpli
ial Complex

Let G be a permutation group of the vertex set E, and let K � 2

E

be a simpli
ial


omplex whi
h is invariant under the given G-a
tion.

Lemma 9 The a
tion of G on K indu
es an a
tion of G on the nerve N (K) of K.
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Proof. Let F = (F

j

)

j2J

be the standard 
overing of K. The a
tion of G on the set J

of fa
ets of K gives rise to an a
tion of G on the nerve N (K), sin
e

T

j2�

gF

j

6= ;

if and only if

T

j2�

F

j

6= ; for any � 2 N (K). �

Let, from now on, K be a vertex-homogeneous simpli
ial 
omplex. Then the

indu
ed a
tion of G on the nerve N of K is, in general, not vertex-homogeneous

anymore. More pre
isely, the a
tion of G on N is transitive on the set of verti
es of

N if and only if K has exa
tly one orbit of maximal fa
es.

Lemma 10 (Chara
terization of vertex-homogeneous simpli
ial 
omplexes)

(i) If K is vertex-homogeneous, then its nerve N = N (K) is fa
et-homogeneous.

(ii) If N is fa
et-homogeneous, then its nerve K = N (N) is vertex-homogeneous.

Proof. (i) Let K be a vertex-homogeneous simpli
ial 
omplex on n verti
es.

We �rst show that N = N (K) is pure. Let Max(K) denote the 
olle
tion of

orbits of maximal fa
es of K. By transitivity, every vertex e 2 E is 
ontained the

same number of times, r

O

, in the k-element sets of any parti
ular orbit O of fa
ets

of K, i.e., k � jOj = r

O

� n. Altogether, every vertex e is 
ontained in pre
isely

r =

P

O2Max(K)

r

O

distin
t fa
ets of K, i.e., dim(�

e

) = r � 1 for every e. In

parti
ular, dim(N (K)) = r � 1.

Let � and �

0

be two di�erent fa
ets of N . Then � and �

0


orrespond to two

distin
t sets of r maximal fa
es of K respe
tively. Let e be some element in the

interse
tion of the r maximal fa
es of K 
orresponding to � (there 
an be more than

one su
h element if K is not taut!), and let e

0

be an element of E representing �

0

.

Sin
e the a
tion of G is transitive on E, there exists a group element g 2 G su
h that

e

0

= g � e. But then g maps the fa
ets 
orresponding to e to the fa
ets 
orresponding

to e

0

, and hen
e the a
tion of G on N is transitive on the fa
ets of N .

(ii) Trivial, sin
e any fa
et-homogeneous simpli
ial 
omplex has only one orbit of

maximal fa
es. �

Example 1: The n-gon C

n

, n � 3, with rotations by elements of Z

n

is a taut

vertex-homogeneous and fa
et-homogeneous simpli
ial 
omplex with C

n

= N (C

n

).

If we repla
e every edge of the 
ir
le C

n

by an m-simplex, m � 2, then the

resulting (n;m)-ne
kla
e C

m

n

is a fa
et-homogeneous pure simpli
ial 
omplex with

C

n

= N (C

m

n

). Thus, (n;m)-ne
kla
es form an in�nite 
lass of fa
et-homogeneous

simpli
ial 
omplexes, whi
h all have the same nerve.

Example 2: For n � 3, the 2-fold multiple 2C

n

is a 
hain of tetrahedra (Figure 1):

With respe
t to the a
tion of Z

n

� Z

2

, whi
h rotates the tetrahedra and 
ips the

upper and lower verti
es, the 2-fold multiple 2C

n

is vertex-homogeneous and fa
et-

homogeneous, with C

n

= N (2C

n

).

Example 3: The 6-vertex triangulation RP

2

6

(see Figure 2) of the real proje
tive

plane is vertex-homogeneous and taut.

6



321 n-1 n 1

2n-1 2n n+1n+1 n+2 n+3

* * * *

Figure 1: The 2-fold multiple 2C

n

.

1

2 31

23 4

5
6

Figure 2: The 6-vertex triangulation of the real proje
tive plane.

The symmetry group of RP

2

6

is A

5

(6) = h (1; 2; 3; 4; 6); (1; 4)(5; 6) i, with A

5

(6)

a
ting transitively on the set of maximal fa
es:

1 f1; 2; 4g, 2 f1; 2; 5g, 3 f1; 3; 4g, 4 f1; 3; 6g, 5 f1; 5; 6g,

6 f2; 3; 5g, 7 f2; 3; 6g, 8 f2; 4; 6g, 9 f3; 4; 5g, 10 f4; 5; 6g.

The nerve of RP

2

6

is a taut 4-dimensional vertex-homogeneous and fa
et-homogeneous

simpli
ial 
omplex on 10 verti
es:

1 f1; 2; 3; 4; 5g, 2 f1; 2; 6; 7; 8g, 3 f3; 4; 6; 7; 9g,

4 f1; 3; 8; 9; 10g, 5 f2; 5; 6; 9; 10g, 6 f4; 5; 7; 8; 10g.

If we 
ompute the nerve of this 
omplex, then we get RP

2

6

again.

Remark: We see by this example that the nerve of a vertex-homogeneous 
omplex


an have more verti
es and 
an be of higher dimension than the original 
omplex, it

also 
an have less verti
es and 
an be of lower dimension.

Example 4: Q-A
y
li
 Vertex-Homogeneous Simpli
ial Complexes

It turned out in [11℄ that the 6-vertex triangulation of the real proje
tive plane is the

smallest (non-trivial) example of a Q -a
y
li
 vertex-homogeneous simpli
ial 
omplex.

We will make use of Lemma 10 to derive further examples of vertex-homogeneous

as well as fa
et-homogeneous Q -a
y
li
 simpli
ial 
omplexes, whi
h are homotopy

equivalent to RP

2

.

7



Besides that it is vertex-homogeneous, the 6-vertex triangulation of the proje
tive

plane Aa (
f. Figure 3) is fa
et-homogeneous as was mentioned above. Hen
e, the

nerve 
omplex aA of Aa (in Figure 3, vertex-homogeneous and fa
et-homogeneous

simpli
ial 
omplexes are labeled by 
apital letters and small letters respe
tively) is

a fa
et-homogeneous and vertex-homogeneous simpli
ial 
omplex on 10 verti
es with

the shaded pentagons depi
ting the six 4-dimensional fa
ets glued together along the

sides of the pentagons.

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

Aa b c

aA d D

Figure 3: Vertex-/fa
et-homogeneous simpli
ial 
omplexes homotopy equivalent to RP

2

.

The nerve 
omplex B (C) of the fa
et-homogeneous subdivision b (of the fa
et-

homogeneous bary
entri
 subdivision 
) of Aa is vertex-homogeneous on 30 (60) ver-

ti
es.

If we repla
e in b for any bold edge both neighboring triangles by a tetrahedron,

then the resulting simpli
ial 
omplex d is still fa
et-homogeneous. Its nerve 
omplex

D is on 15 verti
es with two orbits of maximal fa
es, one 
onsisting of six 4-simpli
es

(shaded pentagons) and the other of 10 triangles. The same 
onstru
tion 
an be


arried through for 
 leading to 
omplexes e and E (the latter on 30 verti
es).

A further example F of a vertex-homogeneous simpli
ial 
omplex on 15 verti
es,

homotopy equivalent to the proje
tive plane, 
an be obtained from D by gluing in 60

tetrahedra in the following way. For any white triangle of D we add six tetrahedra

with vertex-sets the triangle and in addition one vertex of a neighboring white triangle

respe
tively. The resulting spa
e F is still vertex-homogeneous, and it 
an be worked

out easily that it 
ollapses to D and thus is homotopy equivalent to D.
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3.2 Constru
tions with Vertex-Homogeneous Simpli
ial Complexes

After we now have seen some simple examples of vertex-homogeneous simpli
ial 
om-

plexes, we will next dis
uss three 
onstru
tions that allow us to derive further vertex-

homogeneous simpli
ial 
omplexes if we start with a given one.

Proposition 11 Let (K;G) denote a pair of a simpli
ial 
omplex K with vertex set E

of 
ardinality m and a group G < S

m

that a
ts vertex-transitively on K. If F is a

�nite set with n = jF j elements and H < S

n

is a transitive permutation group of

degree n, whi
h a
ts on F , then the simpli
ial 
omplexes

(i) (K

�n

; G�H) (Oliver, 
f. [10℄)

(ii) (K on F;G�H)

(iii) (nK;G�H)

are vertex-homogeneous for the obvious a
tions of G�H.

Proof. (i) Let the dire
t produ
t G � H a
t on the n-fold join produ
t K

�n

, with

G a
ting transitively on every 
opy of K and with H permuting the n 
opies of K.

The vertex set of K

�n

is the union E

[

=

S

n

r=1

E

r

of n 
opies of E, and the a
tion of

G�H is 
learly transitive on E

[

.

(ii) Sin
e (K;G) and (F;H) are vertex-homogeneous 
omplexes, their nerve 
om-

plexes (N (K); G) and (N (F ); H) are fa
et-homogeneous, with N (F ) = F . The join

produ
t N (K) � F is fa
et-homogeneous for the diagonal a
tion of G�H, and thus

(KonF;G�H) is vertex-homogeneous.

(iii) As in (i), G�H a
ts transitively on E

[

=

S

n

r=1

E

r

. �

Corollary 12 If K is a Z-a
y
li
 vertex-homogeneous simpli
ial 
omplex, then the

n-fold multiples nK form an in�nite series of Z-a
y
li
 vertex-homogeneous simpli
ial


omplexes. Moreover, the series K

�n

and K on F provide examples of 
ontra
tible

vertex-homogeneous simpli
ial 
omplexes.

Proof. It remains to show that K

�n

and K on F are 
ontra
tible for n � 2. If K is

Z-a
y
li
, then it is 
onne
ted. Now, the join produ
t of a k-
onne
ted 
omplex with

an l-
onne
ted 
omplex is (k+ l+2)-
onne
ted. In parti
ular, K

�n

and K on F are at

least (0� 1+ 2)-
onne
ted, that is, simply 
onne
ted. But sin
e a simpli
ial 
omplex

is 
ontra
tible if and only if it is simply 
onne
ted and Z-a
y
li
 (
f. [3℄), the result

follows. �

4 The Identi�ed Dode
ahedron and Seven Related Z-A
y
li


Vertex-Homogeneous Simpli
ial Complexes

Let us 
onsider the boundary 
omplex of the dode
ahedron with 12 pentagonal fa
ets,

30 edges, and 20 verti
es. If we identify opposite pentagons by a 
oherent twist of

�=5 radians, then the resulting 
ell 
omplex Q is Z-a
y
li
; see Figure 4 and 
f. [4℄, [6,

p. 57℄, and [7℄. The symmetry group of the identi�ed dode
ahedron Q is the alternating

9



group A

5

. Let us remark that the identi�ed dode
ahedron is simply the 2-skeleton

of the Poin
ar�e homology 3-sphere in its des
ription by Threlfall and Seifert [16℄ and

Weber and Seifert [17℄ as the spheri
al dode
ahedron spa
e, whi
h is given by the full

dode
ahedron with the same identi�
ations on the boundary as above.

1
2

3
4

5

1
2

34

5

3

2

4

3

5

1

2

5

1

4

Figure 4: The Z-a
y
li
 identi�ed dode
ahedron.

Lemma 13 There are pre
isely two A

5

-invariant fa
et-transitive triangulations of the

Z-a
y
li
 
omplex Q.

Proof. Every edge of the 
ell 
omplex Q is the interse
tion of three pentagonal 
ells,

whi
h implies that the 1-skeleton of Q is ne
essarily in
luded in the 1-skeleton of any

A

5

-invariant triangulation of Q. This is also the 
ase for the �ve verti
es of Q. The

a
tion of A

5

on Q is transitive on the pentagons, and any of the pentagons has the

dihedral group D

5

< A

5

as its isotropy group. It is therefore suÆ
ient to determine

D

5

-invariant fa
et-transitive triangulations of a pentagon. There are exa
tly two

su
h triangulations, one with 5 and the other with 10 triangles. We denote the


orresponding triangulations of Q with 30 and 60 triangles by N

I

and N

O

respe
tively

(see Figures 6 and 5). �

Corollary 14 The nerve 
omplexes K

1

:=N (N

I

) and K

O

:=N (N

O

) are examples of

Z-a
y
li
 but not 
ontra
tible vertex-homogeneous simpli
ial 
omplexes on 30 and 60

verti
es respe
tively.

Oliver's Example K

O

The 
omplex K

O

was �rst found by Bob Oliver. His 
onstru
tion is purely algebrai


and was mentioned in [10℄ and in a paper by Segev [14℄. In fa
t, Segev presented

an expli
it proof that the nerve 
omplex N

O

= N (K

O

), and hen
e K

O

, is Z-a
y
li
.

Moreover, it was 
onje
tured in [14℄ that N (K

O

) is homeomorphi
 to Q. Sin
e N

O

is

simply a triangulation of Q, this is indeed the 
ase.

10



Let A

5

be the alternating group of even permutations of the set f1; 2; 3; 4; 5g. De�ne

the subgroups

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

where N

A

5

(H) denotes the normalizer in A

5

of a subgroup H of A

5

. The stabilizer

U of the point 2 is isomorphi
 to the alternating group A

4

and has 12 elements. The

subgroups V and W are isomorphi
 to the dihedral groups D

5

and D

3

with 10 and 6

elements respe
tively.

Oliver takes as vertex set E for the simpli
ial 
omplex K

O

the 60 elements of A

5

and lets A

5

a
t transitively on E by left multipli
ation. He de�nes K

O

to be the

simpli
ial 
omplex that has the left 
osets of U , V , and W as its (orbits of) maximal

fa
es:

K

O

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�W

:

Theorem 15 (Oliver, 
f. [10℄) The 11-dimensional simpli
ial 
omplex K

O

is vertex-

homogeneous and Z-a
y
li
.

Proof. By 
onstru
tion, K

O

is 11-dimensional and vertex-homogeneous. To see that

K

O

is Z-a
y
li
, we 
ompute the nerve N (K

O

) of K

O

. As maximal fa
es of the nerve

we get 60 triangles. By a suitable labeling of the verti
es, N (K

O

) turns out to be the

triangulation N

O

of the Z-a
y
li
 identi�ed dode
ahedron Q (see Figure 5). Thus K

O

is Z-a
y
li
 by the Nerve Theorem 4. �

Let us have a 
loser look at the 
onstru
tion of K

O

. By de�nition, K

O

is made up

of three orbits of maximal fa
es 
onsisting of �ve 12-element sets, six 10-element sets,

and ten 6-element sets 
orresponding to the left 
osets of the subgroups U , V , and

W , respe
tively. In parti
ular, K

O

is not pure! The 
omplex K

O

is taut, and so is

its nerve N

O

. Hen
e, if we want to re
onstru
t K

O

from N

O

, we see by Figure 5 that

N

O

has 60 triangles, so K

O

has 60 
orresponding verti
es. Further, we observe that

there are �ve verti
es of N

O

whi
h have twelve neighboring triangles ea
h, namely

the original verti
es 1{5 of the identi�ed dode
ahedron. Thus the nerve operation

applied to N

O

will produ
e a 12-tuple as maximal fa
e of K

O

= N (N

O

) for ea
h of

these verti
es. Similarly, the six verti
es 6{11 of N

O

have ten neighboring triangles

and thus yield six 10-tuples as fa
ets of K

O

. The ten verti
es 12{21 �nally give ten

6-element sets as fa
ets of K

O

. Thus, alternatively to Oliver's algebrai
 
onstru
tion,

all information on K

O


an be obtained geometri
ally via the nerve operation from the

pi
ture of N

O

in Figure 5.

New Z-A
y
li
 Vertex-Homogeneous Simpli
ial Complexes

In [11℄, we enumerated all vertex-homogeneous simpli
ial 
omplexes with redu
ed

Euler 
hara
teristi
 ~� = 0 
orresponding to a given group a
tion on few verti
es.

For the A

5

-a
tion on 60 verti
es it is hopeless to generate all vertex-homogeneous

11
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Figure 5: Triangulation N

O

of the identi�ed dode
ahedron Q with 60 triangles.

simpli
ial 
omplexes with ~� = 0 and then 
ompute their homology in order to �nd

Z-a
y
li
 examples. But if we restri
t our 
omputer sear
h to 
omplexes that have

only few orbits of maximal fa
es with orbit size less than 30, then, in parti
ular, we

obtain the above example K

O

. Re
all [11℄ that an A

5

-orbit of k-sets on 60 verti
es


an have size less than 30 if and only if g
d(k; 60) > 2. We formed 
ombinations of

at most six orbits with at most two orbits of maximal fa
es of the same dimension.

For every simpli
ial 
omplex K 
orresponding to one of these 
olle
tions of orbits of

fa
ets, we 
omputed the redu
ed Euler 
hara
teristi
 ~�(N (K)) of the nerve 
omplex

of K. Whenever ~� was zero, we 
omputed the homology of N (K) with the program

HOMOLOGY by He
kenba
h [9℄. In
luding K

O

, we found �ve Z-a
y
li
 A

5

-invariant


omplexes on 60 verti
es that we denote by K

O

, K

2

, K

4

, K

5

, and K

6

. The examples

K

2

andK

4

are not taut, and it turns out thatK

1

:= N (N (K

2

)) and K

3

:= N (N (K

4

))

are taut A

5

-invariant Z-a
y
li
 simpli
ial 
omplexes on 30 verti
es. We believe that

if we extended our sear
h, then further 
omplexes would appear.

Theorem 16 There are at least seven non-
ontra
tible Z-a
y
li
 simpli
ial 
omplexes

with a vertex-transitive A

5

-a
tion that are homotopy equivalent to the identi�ed dode-


ahedron Q.

Table 1 gives an overview of the examples. All seven 
omplexes 
an be 
hara
terized

algebrai
ly, and this we will do for K

1

to K

6

in the following. Moreover, we give

geometri
 des
riptions of the 
orresponding fa
et-homogeneous nerve 
omplexes N

I

to N

IV

.

12



Complex # verti
es dim

K

O

= N (N

O

) 60 11

K

1

= N (N

I

) 30 11

K

2

= 2K

1

60 23

K

3

= N (N

II

) 30 5

K

4

= 2K

3

60 11

K

5

= N (N

III

) 60 11

K

6

= N (N

IV

) 60 11

Table 1: Z-a
y
li
 vertex-homogeneous simpli
ial 
omplexes with A

5

-a
tion.

Remark: Although the examples K

O

and K

1

to K

6

are not 
ontra
tible, by

Proposition 11 there exist in�nite series of 
ontra
tible vertex-homogeneous simpli
ial


omplexes asso
iated with K

O

and K

1

to K

6

.

The Z-A
y
li
 Complexes K

1

and K

2

Consider the subgroups of A

5

,

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

.

Then the 24-element set

A := U [ U � (2; 5; 3)

determines an A

5

-orbit of size 5. De�ne

K

2

:=

[

g2A

5

2

g�A

[

[

g2A

5

2

g�V

;

and

K

1

:= N (N (K

2

)):

Theorem 17 The examples K

1

and K

2

are Z-a
y
li
 vertex-homogeneous simpli
ial


omplexes on 30 and 60 verti
es respe
tively, with K

2

= 2K

1

.

Proof. The nerve 
omplex N

I

= N (K

1

) = N (K

2

) of K

1

and K

2

is the fa
et-

homogeneous triangulation of the identi�ed dode
ahedron Q with 30 triangles (see

Figure 6). �

As before in the 
ase of K

O

, we 
an easily re
onstru
t K

1

from the taut triangu-

lation N

I

of Q as follows. N

I

has 30 triangles and �ve verti
es 1{5 with twelve and

six verti
es 6{11 with �ve neighboring triangles. Thus, K

1

has 30 verti
es and �ve

12-tuples and six 5-element sets as fa
ets.

Sin
e the group A

5

with 60 elements a
ts transitively on the 30 verti
es of K

1

, we


an simply repla
e every vertex in ea
h fa
et of K

1

by a pair of verti
es to obtain a


omplex K

2

= 2K

1

. This 
omplex with 60 verti
es then has an obvious a
tion by A

5

.
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Figure 6: Triangulation N

I

of the identi�ed dode
ahedron Q with 30 triangles.

The Z-A
y
li
 Complexes K

3

and K

4

Take the subgroups of A

5

,

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

and 
onsider the 12-element set

B := W [ W � (3; 4; 5).

De�ne

K

4

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�B

[

[

g2A

5

2

g�V

;

and set

K

3

:= N (N (K

4

)):

The nerve N

II

=N (K

3

) =N (K

4

) of K

3

and K

4

is a taut 3-dimensional fa
et-homo-

geneous simpli
ial 
omplex with 30 tetrahedra (see Figure 7). For every pentagon of

N

O

, 5 tetrahedra are glued in as indi
ated by the dashed lines. Sin
e N

II


ollapses to

N

O

, the 
omplex N

II

is homotopy equivalent to Q.

Theorem 18 The example K

3

provides a 5-dimensional non-
ontra
tible Z-a
y
li


vertex-homogeneous simpli
ial 
omplex on 30 verti
es.
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Figure 7: Triangulation N

II

with 30 tetrahedra repla
ing the 60 triangles.

We saw in [11℄ that there are no (non-trivial) 2- and 3-dimensional Z-a
y
li
 vertex-

homogeneous simpli
ial 
omplexes, and that if there were a 4-dimensional exam-

ple, then it would have 15, 20, 30, or 60 verti
es. Our attempts failed to �nd a

4-dimensional example.

Conje
ture 19 The 
omplex K

3

with f -ve
tor f = (1; 30; 195; 340; 255; 96; 15) is the

smallest example of a non-
ontra
tible Z-a
y
li
 vertex-homogeneous simpli
ial 
om-

plex, with respe
t to dimension, the number of verti
es, and the total number of fa
es.

The join K

3

� K

3

of dimension 11 with 60 verti
es is, apart from a simplex, the

smallest example of a 
ontra
tible vertex-homogeneous simpli
ial 
omplex.

The Z-A
y
li
 Complexes K

5

and K

6

Let U , V , W , and R be subgroups of A

5

with

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

R := h (1; 2)(3; 5); (1; 3)(2; 5) i

�

=

Z

2

� Z

2

,

and 
onsider the 8-element set

C := R [ R� (2; 3; 4).

De�ne

K

5

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�C

[

[

g2A

5

2

g�W

:

15



1

23

4

5

1

2

3 4

5

1

2

3

45

6

7

8

9

10
11

12

13

14

15
16

17

18
19

20

21

12

13

14

15

16

17

18

19

20

21

22 22 22

22

23 23

23
23

24

24
24

2425

25

25
25

26

26

26
26

27

27 27 27
23

23

23
23

31

31
31

31 32

32

32
32

35

35

35
35

28 28

28
28

24

24

24
24 27

27

27
27

33

33

33
33

36

36
36 36

29

29
29

29 25

25

25
25

28

28

28
28

34

34 34 34

32
32

32
32

26
26

26
26

29

29 29 29

35 35

35
35

33

33
33

33 30

30
3030

22

22
22 22

30 30

30
30

36

36
3636

34
34

34
34

31

31

31
31

Figure 8: Triangulation N

III

with 60 4-simpli
es.

The nerve N

III

= N (K

5

), 
omposed of 60 4-simpli
es on 36 verti
es, is a taut fa
et-

homogeneous simpli
ial 
omplex homotopy equivalent to Q. Figure 8 gives an illustra-

tion of N

III

via a proje
tion onto N

O

. To every of the 60 triangles of the triangulation

N

O

of Q there uniquely 
orresponds a 4-simplex of N

III

whi
h has as its verti
es

the three verti
es of the respe
tive triangle and in addition the two verti
es that are

pla
ed within the triangle. For example, at the top of Figure 8 we �nd the 4-simpli
es

1 8 16 27 33 and 1 8 20 24 27. It 
an easily be veri�ed thatN

III


ollapses to N

O

, and thus

N

III

is homotopy equivalent to Q. Ea
h of the 15 verti
es 22{36 is 
ontained in eight

4-simpli
es, hen
e these verti
es 
ontribute 15 8-tuples as fa
ets to K

5

= N (N

III

).

Let on
e more U , V , W , and S be subgroups of A

5

with

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

S := h (1; 3)(4; 5); (1; 4)(3; 5) i

�

=

Z

2

� Z

2

,

and 
onsider the 8-element set

D := S [ S � (2; 3; 5).

De�ne

K

6

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�D

[

[

g2A

5

2

g�W

:
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The nerve 
omplex N

IV

= N (K

6

) is again 4-dimensional but 
ombinatorially dis-

tin
t from N

III

, and provides another example of a taut fa
et-homogeneous simpli
ial


omplex homotopy equivalent to Q. The 60 4-simpli
es of N

IV

are drawn in Figure 9.
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Figure 9: Triangulation N

IV

with 60 4-simpli
es.
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