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Abstract

It was shown in [11] that there are no (non-trivial) 2- and 3-dimensional Z-acyclic vertex-ho-
mogeneous simplicial complexes. In this paper we construct a 5-dimensional example and further
examples in higher dimensions, one of which is Oliver’s example of dimension 11, the only pre-
viously known example of a non-contractible Z-acyclic vertex-homogeneous simplicial complex.
We also present an infinite series of contractible vertex-homogeneous simplicial complexes by
starting with one of the Z-acyclic examples.

1 Introduction

Interest in vertex-homogeneous simplicial complexes with certain topological proper-
ties can arise from different perspectives. For example such complexes appear natu-
rally when one studies certain fixed point theorems in algebraic topology but they also
show up in connection with the famous Evasiveness Conjecture in complexity theory.
This astonishing conjunction was established by Kahn, Saks, and Sturtevant in [10]
where they made use of a fixed point theorem by Oliver [12] to settle the Evasiveness
Conjecture in the prime power case (and for n = 6).

In some sense at the core of the connection is the observation that if the vertex-
transitive action of a (finite) group G on a (finite) simplicial complex K (with m
vertices) has a fixed point, then K is a simplex. To see this geometrically, we may
regard K as a subcomplex of the standard (m — 1)-dimensional simplex A,, ; with
vertices eq, ..., en. Any point z of K then has a unique representation z =" | \e;,
with A; > 0 and ) ", A\; = 1. The group G acts by permuting the coordinates,
gr = > Niegy, g € G. If G is transitive, then for every i,j there is some g € G
such that e; = eg4(;). If, in addition, the action of G has a fixed point y, then gy =y
for every group element g, and therefore \; = ... =\, = % But y = % dorteiisa
point of K if and only if K is the simplex A,, ;.

For certain group actions the existence of such fixed points can be guaranteed by
fixed point theorems. It was shown by Smith [15] that if a p-group P, i.e., a group
with prime power order |P| = p’, acts on a Z,-acyclic complex, then the fixed point
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set for this action is Z,-acyclic as well. In particular, the fixed point set is not empty
— hence, there are no vertex-transitive group actions of a p-group on a Z,-acyclic
simplicial complex (that is not a simplex).

The theorem by Smith has been generalized by Oliver.

Theorem 1 (Oliver [12]) Let G be a finite group with subsequent normal subgroups
P <@ <G such that

(i) P is a p-group,
(ii) G/Q is a q-group, and
(iii) Q/P is cyclic.

If G acts on a Zy-acyclic complex K, then the Euler characteristic x(K%) of the
fized point set K¢ is equivalent to 1 (mod g).

In order to give a brief account on the Evasiveness Conjecture, let P be any graph
property, that is, a property of graphs which is invariant under graph-isomorphisms,
on a fixed set of nodes V of size n := |V, and let E denote the set of all edges on V/,
with m := |E| = (). We identify P with the set system

Fp:={AC E:Graph (V, A) has property P} C 2%,

and for an unknown graph G = (V, A) on V' we consider the decision problem whether
G has the property P or not. In order to find out if the edge set A of G belongs to
Fp, we ask questions of the type “Is e € A?”, and an oracle answers (correctly) YES
or NO.

The number of elements of F that we will have to test in the worst case, if we
proceed according to some optimal strategy, is called the argument complexity ¢(Fp)
of P. Then 0 < ¢(Fp) < m, and P is trivial if ¢(Fp) = 0 and non-trivial if ¢(Fp) > 0.
P is called evasive if ¢(Fp) = m and non-evasive otherwise. For general set systems
F C 2F these terms are defined analogously. A graph property is monotone if it is
preserved under deletion of edges.

In the early seventies Richard Karp proposed the following remarkable conjecture.

Evasiveness Conjecture for graph properties: FEvery non-trivial monotone graph
property P is evasive.

Extensive work has been done on determining the argument complexity of partic-
ular graph properties (see e.g. [1], [2], [5, Ch. VIII], [19]).

Kahn, Saks, and Sturtevant’s approach to the Evasiveness Conjecture was by refor-
mulating Karp’s conjecture in the language of simplicial complexes: If P is a monotone
graph property, then the corresponding set system Fp is a (finite abstract) simplicial
complex with vertex set E. Let us denote by Fp the graph complexr associated with
P. Invariance under permutation of the nodes of V' (what one naturally requires for
P to be a graph property) gives rise to an induced action of the symmetric group S,
on the edge set E, and thus on the simplicial complex Fp. Clearly, the action of S,
is transitive on F.



Theorem 2 (Kahn, Saks, and Sturtevant [10]) Let Fp, be the graph complex associ-
ated with some (non-trivial) graph property P, on n = p' nodes, with p prime. Then
Fp, is not Zy-acyclic.

Proof. Let G = Aff(GF(p')) < S, be the group of affine transformations of GF'(p*)
and let Q:=G and P:={z — x+b: b € GF(p')}. The group G is 2-transitive on
{1...n} and therefore transitive on the edge set E. Hence, G is a vertex-transitive
subgroup of the symmetric group .S,, with induced action on all graph complexes Fp, .
But then either Fp, is a simplex, and thus P, is trivial, or Fp, is not Z,-acyclic by
Theorem 1 and the particular choice of ) and P. 0

If a graph complex is not Z,-acyclic, then it cannot be non-evasive (see below).

Corollary 3 (Kahn, Saks, and Sturtevant [10]) The Evasiveness Conjecture for graph
properties holds for every prime power number of nodes.

By considering arbitrary vertex-homogeneous simplicial complexes one obtains the
following more general situation.

Evasiveness Conjecture for simplicial complexes [10]: If F is a non-evasive
vertex-homogeneous simplicial complex on the verter set E = {1,... ,m} with vertex-
transitive action by some group G, then it is the standard (m—1)-simplex A, ;.

To be “non-evasive” is a strong topological requirement. The following sequence of
implications holds for finite simplicial complexes (cf. [3], [10], and [18]):

non-evasive = collapsible = contractible = Z-acyclic = Q-acyclic = x =0

and leads to further generalizations of the above conjecture if we replace “non-evasive”
with the respective weaker requirements (x denotes the reduced Euler characteristic
of a simplicial complex).

These generalized conjectures all hold once again for prime power numbers of ver-
tices by a theorem of Rivest and Vuillemin [13] (see also [11]). Yet, for non-prime
power numbers there are counterexamples known to all of the generalized conjectures
with the exception of the Evasiveness Conjecture for simplicial complexes which still
remains open.

There is an abundance of (non-trivial) Q-acyclic vertex-homogeneous simplicial
complexes and even more with y = 0. The smallest Q-acyclic example is the 6-vertex
triangulation of the real projective plane (see below and cf. [11]).

In [11] it was shown that there are no 2- and 3-dimensional Z-acyclic vertex-ho-
mogeneous simplicial complexes other than a simplex. In Section 4 we will present
a 5-dimensional example and further examples in higher dimensions, one of which
is Oliver’s example of dimension 11, the only previously known example of a non-
contractible Z-acyclic vertex-homogeneous simplicial complex. In Section 2 we will
discuss some topological tools that will be used for our later constructions, and in
Section 3 we will give an infinite series of contractible vertex-homogeneous simplicial
complexes. It remains to mention that Oliver described techniques to construct a



collapsible vertex-homogeneous simplicial complex (cf. [10]). On the other hand,
evasiveness is preserved by various standard constructions as, for example, join or
barycentric subdivision [18]. Thus, in conclusion, the present techniques seem to
be insufficient to settle the Evasiveness Conjecture for simplicial complexes or to
construct better counterexamples than the Z-acyclic and contractible ones discussed
in this paper, which leaves Karp’s original Evasiveness Conjecture for graph properties
wide open.

2 Topological Tools

The main tools for our constructions will be the well known nerve operation and
duality observations.

2.1 The Nerve Operation

Let K be a (finite abstract) simplicial complex, F = (F});e its collection of maximal
faces (facets), and J the corresponding index set. We call the covering of K by its
facets F the standard covering of K.

Theorem 4 (Nerve Theorem, Borsuk, cf. [3]) Let N(K) be the nerve complex of
K (with respect to the standard covering F = (Fj)jes), that is, N (K) is the simplicial
complex on the verter set J such that A C J is a simplex of N(K) if and only if
Njea Fj #0. Then K and N := N (K) are homotopy equivalent.

The nerve complex of a simplex of any dimension is a point, and Griinbaum de-
scribes in [8] the class of all simplicial complexes having the same nerve. Moreover,
by a theorem of Mani (cf. [8]), there is for every simplicial complex N some simplicial
complex K such that N = N (K).

Definition 5 Let E be the vertex set of K, and for every vertez e of K let e*,... ,e"
be n distinct copies. The n-th multiple nK of K is the simplicial complex on the
vertex set nE = J._, E”, where E” denotes the r-th copy of E, that has as its mazimal
faces the sets nF = {ef,e%,... et ... et €2 ... et} forthe facets F = {ey,... e}

of K.

By construction, ;. £y # 0 ifand only if ()., nF; # 0. Hence, N (nK) = N (K),
and nK is homotopy equivalent to K.

Although the above examples demonstrate that there are always combinatorially
non-isomorphic simplicial complexes which have the same nerve complex, the nerve
operation is injective on a large class of simplicial complexes. Griinbaum [8] calls a
simplicial complex taut if every vertex is the intersection of the facets containing it.

Lemma 6 (Duality, [8]) If K is taut, then N (K) is taut and K = N (N (K)).

Proof. Let K be taut with standard covering F = (F});ecs. The nerve N = N (K)
has one vertex j for every facet F; of K, j € J. If A, C J is the collection of all j’s



so that the corresponding facets Fj contain the vertex e € E, then, by the tautness
of K, Njea, 5 = {e} and A, is a facet of N. Hence, to any vertex e of K there
uniquely corresponds a facet A, = {j:e € Fj} of N.

On the other hand, let j € J. Suppose there exists some j' € J, j' # j, such that
7" € Neer jen, Ae- But then F; C Fj, which is a contradiction to the maximality of
Fj. Thus, the nerve N is taut, and N (NV(K)) = K. O

The nerve complex N (K) of a simplicial complex K need not be taut. For example,
the nerve complex of a path of length n is a path of length (n —1). A point is taut,
and n-gons C), are taut for n > 3.

2.2 The Join and the Dual Join Product

Recall that the join K * K’ of two simplicial complexes K and K’ (with disjoint vertex
sets) is defined as K« K':={AUA" : Ae K,A" € K'}.

Lemma 7 If K and K' are taut simplicial complexes, different from a point, then
their join product K x K' is taut as well.

Proof. The vertex set of K « K'is E U E’. Let e be a vertex of K x K’ with e € E.
If V = (F;UF))esjer) denotes the collection of maximal faces of K + K’ for the
facets F = (Fjijej of K and the facets F' = (Fj,)je; of K', then

r_ o
N FUE= () F={e}
jeJd, j et j€EJ,
GGFJ'UF]{/ 8€Fj

and the same is true for e € E’. Therefore, K * K' is taut. OJ

Definition 8 Let K and K' be (finite abstract) simplicial complexes. Then the dual
join product of K and K' is the product

K x K' = N(N(K) « N(K")). (1)

The dual join product of two (non-trivial) taut complexes K and K' is taut by
Lemma 6 and Lemma 7. In particular, the following equality holds for (non-trivial)
taut complexes,

N(K x K') = N(K) + N (K"). 2)

3 Vertex-Homogeneous Simplicial Complexes

3.1 The Nerve of a Vertex-Homogeneous Simplicial Complex

Let G be a permutation group of the vertex set £, and let K C 2% be a simplicial
complex which is invariant under the given G-action.

Lemma 9 The action of G on K induces an action of G on the nerve N (K) of K.
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Proof. Let F = (F});jc;s be the standard covering of K. The action of G on the set .J
of facets of K gives rise to an action of G' on the nerve N(K), since (), g # 0
if and only if ;o0 Fj # 0 for any A € N(K). O

Let, from now on, K be a vertex-homogeneous simplicial complex. Then the
induced action of G’ on the nerve N of K is, in general, not vertex-homogeneous
anymore. More precisely, the action of G on N is transitive on the set of vertices of
N if and only if K has exactly one orbit of maximal faces.

Lemma 10 (Characterization of vertex-homogeneous simplicial complexes)
(i) If K is vertez-homogeneous, then its nerve N = N (K) is facet-homogeneous.
(i) If N is facet-homogeneous, then its nerve K = N (N) is vertez-homogeneous.

Proof. (i) Let K be a vertex-homogeneous simplicial complex on n vertices.

We first show that N = AN(K) is pure. Let Max(K) denote the collection of
orbits of maximal faces of K. By transitivity, every vertex e € E is contained the
same number of times, 7o, in the k-element sets of any particular orbit O of facets
of K, ie., k-]0| = ro-n. Altogether, every vertex e is contained in precisely
T = X oemaxx) "o distinct facets of K, ie., dim(A,) = r —1 for every e. In
particular, dim( N (K)) =r — 1.

Let A and A’ be two different facets of N. Then A and A’ correspond to two
distinct sets of r maximal faces of K respectively. Let e be some element in the
intersection of the r maximal faces of K corresponding to A (there can be more than
one such element if K is not taut!), and let e’ be an element of E representing A’
Since the action of (G is transitive on E, there exists a group element g € GG such that
e’ = gxe. But then g maps the facets corresponding to e to the facets corresponding
to e’, and hence the action of G on N is transitive on the facets of V.

(ii) Trivial, since any facet-homogeneous simplicial complex has only one orbit of
maximal faces. U

ExamMpLE 1: The n-gon C),, n > 3, with rotations by elements of Z, is a taut
vertex-homogeneous and facet-homogeneous simplicial complex with C,, = N (C,,).

If we replace every edge of the circle C,, by an m-simplex, m > 2, then the
resulting (n, m)-necklace C'™ is a facet-homogeneous pure simplicial complex with
C, = N(C™). Thus, (n,m)-necklaces form an infinite class of facet-homogeneous
simplicial complexes, which all have the same nerve.

ExAMPLE 2: For n > 3, the 2-fold multiple 2 C), is a chain of tetrahedra (Figure 1):
With respect to the action of Z, X Zs, which rotates the tetrahedra and flips the
upper and lower vertices, the 2-fold multiple 2 C), is vertex-homogeneous and facet-
homogeneous, with C,, = N(2C,).

EXAMPLE 3: The 6-vertex triangulation RP¢ (see Figure 2) of the real projective
plane is vertex-homogeneous and taut.
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Figure 1: The 2-fold multiple 2 C,,.
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Figure 2: The 6-vertex triangulation of the real projective plane.

The symmetry group of RPZ is A5(6) = ((1,2,3,4,6),(1,4)(5,6)), with A5(6)
acting transitively on the set of maximal faces:

1 {1,2,4}, 2 {1,2,5}, 3 {1,3,4}, 4 {1,3,6}, 5 {1,5,6},
6 {2,3,5}, 7 {2,3,6}, 8 {2,4,6}, 9 {3,4,5}, 10 {4,5,6}.

The nerve of RP? is a taut 4-dimensional vertex-homogeneous and facet-homogeneous
simplicial complex on 10 vertices:

2 2 {1,2,6,7,8}, 3 {3,4,6,7,9},
737 797]‘0}7 5 {2757 ) 7]‘0}7 6 {47577787]‘0}'

If we compute the nerve of this complex, then we get RP? again.

REMARK: We see by this example that the nerve of a vertex-homogeneous complex
can have more vertices and can be of higher dimension than the original complex, it
also can have less vertices and can be of lower dimension.

ExaMPLE 4: Q-AcycrLic VERTEX-HOMOGENEOUS SIMPLICIAL COMPLEXES

It turned out in [11] that the 6-vertex triangulation of the real projective plane is the
smallest (non-trivial) example of a Q-acyclic vertex-homogeneous simplicial complex.
We will make use of Lemma 10 to derive further examples of vertex-homogeneous
as well as facet-homogeneous Q-acyclic simplicial complexes, which are homotopy
equivalent to RP 2.



Besides that it is vertex-homogeneous, the 6-vertex triangulation of the projective
plane Aa (cf. Figure 3) is facet-homogeneous as was mentioned above. Hence, the
nerve complex aA of Aa (in Figure 3, vertex-homogeneous and facet-homogeneous
simplicial complexes are labeled by capital letters and small letters respectively) is
a facet-homogeneous and vertex-homogeneous simplicial complex on 10 vertices with
the shaded pentagons depicting the six 4-dimensional facets glued together along the
sides of the pentagons.

1 1 1
Aa b /I\\ c
VAN LN, LN,
ANVASTAN
N
2 1 3 2 1 3 2 3
1 1
aA D
3 2 3 2
\VAVA V4
2 1 3 2 1 3

Figure 3: Vertex-/facet-homogeneous simplicial complexes homotopy equivalent to RP 2.

The nerve complex B (C) of the facet-homogeneous subdivision b (of the facet-
homogeneous barycentric subdivision c¢) of Aa is vertex-homogeneous on 30 (60) ver-
tices.

If we replace in b for any bold edge both neighboring triangles by a tetrahedron,
then the resulting simplicial complex d is still facet-homogeneous. Its nerve complex
D is on 15 vertices with two orbits of maximal faces, one consisting of six 4-simplices
(shaded pentagons) and the other of 10 triangles. The same construction can be
carried through for ¢ leading to complexes e and E (the latter on 30 vertices).

A further example F of a vertex-homogeneous simplicial complex on 15 vertices,
homotopy equivalent to the projective plane, can be obtained from D by gluing in 60
tetrahedra in the following way. For any white triangle of D we add six tetrahedra
with vertex-sets the triangle and in addition one vertex of a neighboring white triangle
respectively. The resulting space F is still vertex-homogeneous, and it can be worked
out easily that it collapses to D and thus is homotopy equivalent to D.



3.2 Constructions with Vertex-Homogeneous Simplicial Complexes

After we now have seen some simple examples of vertex-homogeneous simplicial com-
plexes, we will next discuss three constructions that allow us to derive further vertex-
homogeneous simplicial complexes if we start with a given one.

Proposition 11 Let (K, G) denote a pair of a simplicial complexr K with vertex set E
of cardinality m and a group G < S,, that acts vertez-transitively on K. If F is a
finite set with n = |F| elements and H < S, is a transitive permutation group of
degree n, which acts on F', then the simplicial complezes

(i) (K*",G x H) (Oliver, cf. [10])
(ii) (K x F,G x H)
(iii) (nK,G x H)
are vertex-homogeneous for the obvious actions of G x H.

Proof. (i) Let the direct product G x H act on the n-fold join product K*"  with
G acting transitively on every copy of K and with H permuting the n copies of K.
The vertex set of K*" is the union E, = |J'_, E" of n copies of E, and the action of
G x H is clearly transitive on F.

(ii) Since (K,G) and (F, H) are vertex-homogeneous complexes, their nerve com-
plexes (NV(K),G) and (N (F), H) are facet-homogeneous, with N'(F) = F. The join
product N (K) * F' is facet-homogeneous for the diagonal action of G x H, and thus
(K x F,G x H) is vertex-homogeneous.

(iii) As in (i), G x H acts transitively on E, =J._, E". O

Corollary 12 If K is a Z-acyclic vertex-homogeneous simplicial complex, then the
n-fold multiples nK form an infinite series of Z-acyclic vertez-homogeneous simplicial
complexes. Moreover, the series K™ and K x F provide examples of contractible
vertex-homogeneous simplicial complexes.

Proof. It remains to show that K*" and K x F' are contractible for n > 2. If K is
Z-acyclic, then it is connected. Now, the join product of a k-connected complex with
an [-connected complex is (k + [+ 2)-connected. In particular, K*™ and K x F are at
least (0 — 1+ 2)-connected, that is, simply connected. But since a simplicial complex

is contractible if and only if it is simply connected and Z-acyclic (cf. [3]), the result
follows. O

4 The Identified Dodecahedron and Seven Related Z-Acyclic
Vertex-Homogeneous Simplicial Complexes

Let us consider the boundary complex of the dodecahedron with 12 pentagonal facets,
30 edges, and 20 vertices. If we identify opposite pentagons by a coherent twist of
7/5 radians, then the resulting cell complex @ is Z-acyclic; see Figure 4 and cf. [4], [6,
p. 57], and [7]. The symmetry group of the identified dodecahedron @ is the alternating



group As. Let us remark that the identified dodecahedron is simply the 2-skeleton
of the Poincaré homology 3-sphere in its description by Threlfall and Seifert [16] and
Weber and Seifert [17] as the spherical dodecahedron space, which is given by the full
dodecahedron with the same identifications on the boundary as above.

Figure 4: The Z-acyclic identified dodecahedron.

Lemma 13 There are precisely two As-invariant facet-transitive triangulations of the
Z-acyclic complex Q).

Proof. Every edge of the cell complex () is the intersection of three pentagonal cells,
which implies that the 1-skeleton of () is necessarily included in the 1-skeleton of any
As-invariant triangulation of ). This is also the case for the five vertices of ). The
action of A5 on () is transitive on the pentagons, and any of the pentagons has the
dihedral group D5 < Aj as its isotropy group. It is therefore sufficient to determine
Ds-invariant facet-transitive triangulations of a pentagon. There are exactly two
such triangulations, one with 5 and the other with 10 triangles. We denote the
corresponding triangulations of ) with 30 and 60 triangles by N; and Ng respectively
(see Figures 6 and 5). O

Corollary 14 The nerve complexes K:=N(Ny) and Ko:=N(No) are examples of
Zi-acyclic but not contractible vertex-homogeneous simplicial complexes on 30 and 60
vertices respectively.

OLIVER'S EXAMPLE Ky

The complex Ko was first found by Bob Oliver. His construction is purely algebraic
and was mentioned in [10] and in a paper by Segev [14]. In fact, Segev presented
an explicit proof that the nerve complex No = N (Ky), and hence Ky, is Z-acyclic.
Moreover, it was conjectured in [14] that N (K() is homeomorphic to (). Since N is
simply a triangulation of ), this is indeed the case.

10



Let As be the alternating group of even permutations of the set {1,2,3,4,5}. Define
the subgroups

U = {ged5:9-2=2} = A,
V. o= Na (((1,2,3,4,5))) = Ds,
W= Ny, (((1,3,5))) = Ds,

where N4, (H) denotes the normalizer in Aj of a subgroup H of As. The stabilizer
U of the point 2 is isomorphic to the alternating group A, and has 12 elements. The
subgroups V' and W are isomorphic to the dihedral groups D5 and D3 with 10 and 6
elements respectively.

Oliver takes as vertex set E for the simplicial complex Ko the 60 elements of Aj
and lets Aj act transitively on E by left multiplication. He defines Ky to be the
simplicial complex that has the left cosets of U, V', and W as its (orbits of ) maximal

faces:
Ko = U 29U U 29V U U 29W.

gEAs gEAs gEAs

Theorem 15 (Oliver, cf. [10]) The 11-dimensional simplicial complex Ko is vertez-
homogeneous and Z-acyclic.

Proof. By construction, Ky is 11-dimensional and vertex-homogeneous. To see that
Ko is Z-acyclic, we compute the nerve N (Kp) of Kp. As maximal faces of the nerve
we get 60 triangles. By a suitable labeling of the vertices, N'(Ko) turns out to be the
triangulation No of the Z-acyclic identified dodecahedron @ (see Figure 5). Thus Ko
is Z-acyclic by the Nerve Theorem 4. O

Let us have a closer look at the construction of K. By definition, K¢ is made up
of three orbits of maximal faces consisting of five 12-element sets, six 10-element sets,
and ten 6-element sets corresponding to the left cosets of the subgroups U, V', and
W, respectively. In particular, Ko is not pure! The complex Ky is taut, and so is
its nerve Ny. Hence, if we want to reconstruct Ko from Ng, we see by Figure 5 that
No has 60 triangles, so K has 60 corresponding vertices. Further, we observe that
there are five vertices of No which have twelve neighboring triangles each, namely
the original vertices 1-5 of the identified dodecahedron. Thus the nerve operation
applied to Np will produce a 12-tuple as maximal face of Ko = N (Np) for each of
these vertices. Similarly, the six vertices 6-11 of Ny have ten neighboring triangles
and thus yield six 10-tuples as facets of Kp. The ten vertices 12-21 finally give ten
6-element sets as facets of K. Thus, alternatively to Oliver’s algebraic construction,
all information on K can be obtained geometrically via the nerve operation from the
picture of Ny in Figure 5.

NEW Z-AcycLiC VERTEX-HOMOGENEOUS SIMPLICIAL COMPLEXES

In [11], we enumerated all vertex-homogeneous simplicial complexes with reduced
Euler characteristic y = 0 corresponding to a given group action on few vertices.
For the As-action on 60 vertices it is hopeless to generate all vertex-homogeneous

11
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Figure 5: Triangulation No of the identified dodecahedron ) with 60 triangles.

simplicial complexes with y = 0 and then compute their homology in order to find
Z-acyclic examples. But if we restrict our computer search to complexes that have
only few orbits of maximal faces with orbit size less than 30, then, in particular, we
obtain the above example K. Recall [11] that an As-orbit of k-sets on 60 vertices
can have size less than 30 if and only if ged(k,60) > 2. We formed combinations of
at most six orbits with at most two orbits of maximal faces of the same dimension.
For every simplicial complex K corresponding to one of these collections of orbits of
facets, we computed the reduced Euler characteristic x(N (K)) of the nerve complex
of K. Whenever y was zero, we computed the homology of N'(K) with the program
HOMOLOGY by Heckenbach [9]. Including Ko, we found five Z-acyclic As-invariant
complexes on 60 vertices that we denote by Ko, Ky, K4, K5, and Kg. The examples
K5 and K are not taut, and it turns out that K; := N (N (K3)) and K3 := N (N (K}))
are taut As-invariant Z-acyclic simplicial complexes on 30 vertices. We believe that
if we extended our search, then further complexes would appear.

Theorem 16 There are at least seven non-contractible Z-acyclic simplicial complezes
with a vertex-transitive As-action that are homotopy equivalent to the identified dode-
cahedron Q).

Table 1 gives an overview of the examples. All seven complexes can be characterized
algebraicly, and this we will do for K; to K4 in the following. Moreover, we give
geometric descriptions of the corresponding facet-homogeneous nerve complexes N;
to NIV

12



‘ Complex H # vertices ‘ dim ‘

| Ko=NWNo) || 60 | 11 ]
K1 =N(Np) 30 11
K, =2K, 60 23
K3 = N(Ny) 30 5
Ky =2K; 60 11

| Ks=NWm) | 60 | 11 |

| Ks=N(Np) || 60 | 11 ]

Table 1: Z-acyclic vertex-homogeneous simplicial complexes with As-action.

REMARK: Although the examples Ko and K; to K are not contractible, by
Proposition 11 there exist infinite series of contractible vertex-homogeneous simplicial
complexes associated with Ko and K to K.

THE Z-AcycrLic COMPLEXES K; AND K>
Consider the subgroups of As,

U = {ged5:9-2=2}
V NA5(<(172737475)>)

Then the 24-element set

111

A = UUU-(25,3)

determines an As-orbit of size 5. Define

K= [J2o%0 | 27,

geAs gEAs

and
K1 = N(N(Kg))

Theorem 17 The examples K, and Ky are Z-acyclic vertex-homogeneous simplicial
complexes on 30 and 60 vertices respectively, with Ko = 2K, .

Proof. The nerve complex N; = N(K;) = N(K,) of K; and K, is the facet-
homogeneous triangulation of the identified dodecahedron () with 30 triangles (see
Figure 6). O

As before in the case of Ky, we can easily reconstruct K; from the taut triangu-
lation N; of @) as follows. N; has 30 triangles and five vertices 1-5 with twelve and
six vertices 6-11 with five neighboring triangles. Thus, K; has 30 vertices and five
12-tuples and six 5-element sets as facets.

Since the group As with 60 elements acts transitively on the 30 vertices of K, we
can simply replace every vertex in each facet of K; by a pair of vertices to obtain a
complex Ky = 2K;. This complex with 60 vertices then has an obvious action by As.

13
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11

Figure 6: Triangulation Ny of the identified dodecahedron @ with 30 triangles.

THE Z-AcycrLic COMPLEXES K3 AND K

Take the subgroups of As,

U = {geid5:9-2=2} = A,
Vo= Na (((1,2,3,4,5))) = Ds,
W = NA5(<(17375)>) = Ds,
and consider the 12-element set
B = WUW-(3,4,5).
Define
K, = U 29U U 298 U 29V
gEAs gEAs gEAs
and set

K3 = N(N(K4))

The nerve Ny =N (K3)=N(K,) of K3 and K, is a taut 3-dimensional facet-homo-
geneous simplicial complex with 30 tetrahedra (see Figure 7). For every pentagon of
No, 5 tetrahedra are glued in as indicated by the dashed lines. Since Ny collapses to
No, the complex Ny is homotopy equivalent to Q).

Theorem 18 The example K3 provides a 5-dimensional non-contractible Z-acyclic
vertex-homogeneous simplicial complex on 30 vertices.

14
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Figure 7: Triangulation Ny with 30 tetrahedra replacing the 60 triangles.

We saw in [11] that there are no (non-trivial) 2- and 3-dimensional Z-acyclic vertex-
homogeneous simplicial complexes, and that if there were a 4-dimensional exam-
ple, then it would have 15, 20, 30, or 60 vertices. Our attempts failed to find a
4-dimensional example.

Conjecture 19 The compler K3 with f-vector f = (1,30,195,340, 255,96, 15) is the
smallest example of a non-contractible Z-acyclic vertez-homogeneous simplicial com-
plex, with respect to dimension, the number of vertices, and the total number of faces.
The join K3 x K3 of dimension 11 with 60 vertices is, apart from a simplex, the
smallest example of a contractible vertez-homogeneous simplicial complex.

THE Z-AcycrLic COMPLEXES K5 AND K
Let U, V, W, and R be subgroups of A5 with

U = {g€A5g2:2} = A4,
V = NA5(<(172737475)>) = D57
W= NA5(<(17375)>) = D,
R = ((1,2)(3,5),(1,3)(2,5)) & Zy X Zo,
and consider the 8-element set
C = RUR-(2,3,4).

Define

Ky = U 29U U 29V U U 29C U 29,

gEAs gEA;5 gEA;5 gEAs

15



Figure 8: Triangulation Ny with 60 4-simplices.

The nerve Ny = N (K5), composed of 60 4-simplices on 36 vertices, is a taut facet-
homogeneous simplicial complex homotopy equivalent to ). Figure 8 gives an illustra-
tion of Ny via a projection onto Np. To every of the 60 triangles of the triangulation
No of @ there uniquely corresponds a 4-simplex of N;; which has as its vertices
the three vertices of the respective triangle and in addition the two vertices that are
placed within the triangle. For example, at the top of Figure 8 we find the 4-simplices
18162733 and 182024 27. It can easily be verified that Ny collapses to Np, and thus
Ny is homotopy equivalent to (). Each of the 15 vertices 22-36 is contained in eight
4-simplices, hence these vertices contribute 15 8-tuples as facets to K5 = N (Npy).

Let once more U, V, W, and S be subgroups of A5 with

U = {geAl5:9-2=2} >~ Ay,
‘f = pf45(<(172737475)>) = 135
W = NA5(<(17375)>) = D37
S = ((1,3)(4,5),(1,4)(3,5)) = Zs X Zs,
and consider the 8-element set
D = SuUS-(235).

Define

Kg = U 29U U 29V U 29Dy U 29W.

gEA;5 gEAs gEA;5 gEA;s

16



The nerve complex Ny = N(Kj) is again 4-dimensional but combinatorially dis-
tinct from Ny, and provides another example of a taut facet-homogeneous simplicial
complex homotopy equivalent to (). The 60 4-simplices of N, are drawn in Figure 9.

Figure 9: Triangulation Np with 60 4-simplices.
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