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Abstrat

It was shown in [11℄ that there are no (non-trivial) 2- and 3-dimensional Z-ayli vertex-ho-

mogeneous simpliial omplexes. In this paper we onstrut a 5-dimensional example and further

examples in higher dimensions, one of whih is Oliver's example of dimension 11, the only pre-

viously known example of a non-ontratible Z-ayli vertex-homogeneous simpliial omplex.

We also present an in�nite series of ontratible vertex-homogeneous simpliial omplexes by

starting with one of the Z-ayli examples.

1 Introdution

Interest in vertex-homogeneous simpliial omplexes with ertain topologial proper-

ties an arise from di�erent perspetives. For example suh omplexes appear natu-

rally when one studies ertain �xed point theorems in algebrai topology but they also

show up in onnetion with the famous Evasiveness Conjeture in omplexity theory.

This astonishing onjuntion was established by Kahn, Saks, and Sturtevant in [10℄

where they made use of a �xed point theorem by Oliver [12℄ to settle the Evasiveness

Conjeture in the prime power ase (and for n = 6).

In some sense at the ore of the onnetion is the observation that if the vertex-

transitive ation of a (�nite) group G on a (�nite) simpliial omplex K (with m

verties) has a �xed point, then K is a simplex. To see this geometrially, we may

regard K as a subomplex of the standard (m � 1)-dimensional simplex �

m�1

with

verties e

1

; : : : ; e

m

. Any point x of K then has a unique representation x =

P

m

i=1

�

i

e

i

,

with �

i

� 0 and

P

m

i=1

�

i

= 1. The group G ats by permuting the oordinates,

gx =

P

m

i=1

�

i

e

g(i)

, g 2 G. If G is transitive, then for every i; j there is some g 2 G

suh that e

j

= e

g(i)

. If, in addition, the ation of G has a �xed point y, then gy = y

for every group element g, and therefore �

1

= : : : = �

m

=

1

m

. But y =

1

m

P

m

i=1

e

i

is a

point of K if and only if K is the simplex �

m�1

.

For ertain group ations the existene of suh �xed points an be guaranteed by

�xed point theorems. It was shown by Smith [15℄ that if a p-group P , i.e., a group

with prime power order jP j = p

t

, ats on a Z

p

-ayli omplex, then the �xed point

�
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set for this ation is Z

p

-ayli as well. In partiular, the �xed point set is not empty

{ hene, there are no vertex-transitive group ations of a p-group on a Z

p

-ayli

simpliial omplex (that is not a simplex).

The theorem by Smith has been generalized by Oliver.

Theorem 1 (Oliver [12℄) Let G be a �nite group with subsequent normal subgroups

P CQCG suh that

(i) P is a p-group,

(ii) G=Q is a q-group, and

(iii) Q=P is yli.

If G ats on a Z

p

-ayli omplex K, then the Euler harateristi �(K

G

) of the

�xed point set K

G

is equivalent to 1 (mod q).

In order to give a brief aount on the Evasiveness Conjeture, let P be any graph

property, that is, a property of graphs whih is invariant under graph-isomorphisms,

on a �xed set of nodes V of size n := jV j, and let E denote the set of all edges on V ,

with m := jEj =

�

n

2

�

. We identify P with the set system

F

P

:= fA � E : Graph (V;A) has property Pg � 2

E

;

and for an unknown graph G = (V;A) on V we onsider the deision problem whether

G has the property P or not. In order to �nd out if the edge set A of G belongs to

F

P

, we ask questions of the type \Is e 2 A?", and an orale answers (orretly) YES

or NO.

The number of elements of E that we will have to test in the worst ase, if we

proeed aording to some optimal strategy, is alled the argument omplexity (F

P

)

of P. Then 0 � (F

P

) � m, and P is trivial if (F

P

) = 0 and non-trivial if (F

P

) > 0.

P is alled evasive if (F

P

) = m and non-evasive otherwise. For general set systems

F � 2

E

, these terms are de�ned analogously. A graph property is monotone if it is

preserved under deletion of edges.

In the early seventies Rihard Karp proposed the following remarkable onjeture.

Evasiveness Conjeture for graph properties: Every non-trivial monotone graph

property P is evasive.

Extensive work has been done on determining the argument omplexity of parti-

ular graph properties (see e.g. [1℄, [2℄, [5, Ch. VIII℄, [19℄).

Kahn, Saks, and Sturtevant's approah to the Evasiveness Conjeture was by refor-

mulating Karp's onjeture in the language of simpliial omplexes: If P is a monotone

graph property, then the orresponding set system F

P

is a (�nite abstrat) simpliial

omplex with vertex set E. Let us denote by F

P

the graph omplex assoiated with

P. Invariane under permutation of the nodes of V (what one naturally requires for

P to be a graph property) gives rise to an indued ation of the symmetri group S

n

on the edge set E, and thus on the simpliial omplex F

P

. Clearly, the ation of S

n

is transitive on E.
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Theorem 2 (Kahn, Saks, and Sturtevant [10℄) Let F

P

n

be the graph omplex assoi-

ated with some (non-trivial) graph property P

n

on n = p

t

nodes, with p prime. Then

F

P

n

is not Z

p

-ayli.

Proof. Let G = A� (GF (p

t

)) < S

n

be the group of aÆne transformations of GF (p

t

)

and let Q :=G and P := fx 7! x+b : b 2 GF (p

t

)g. The group G is 2-transitive on

f1 : : : ng and therefore transitive on the edge set E. Hene, G is a vertex-transitive

subgroup of the symmetri group S

n

with indued ation on all graph omplexes F

P

n

.

But then either F

P

n

is a simplex, and thus P

n

is trivial, or F

P

n

is not Z

p

-ayli by

Theorem 1 and the partiular hoie of Q and P . �

If a graph omplex is not Z

p

-ayli, then it annot be non-evasive (see below).

Corollary 3 (Kahn, Saks, and Sturtevant [10℄) The Evasiveness Conjeture for graph

properties holds for every prime power number of nodes.

By onsidering arbitrary vertex-homogeneous simpliial omplexes one obtains the

following more general situation.

Evasiveness Conjeture for simpliial omplexes [10℄: If F is a non-evasive

vertex-homogeneous simpliial omplex on the vertex set E = f1; : : : ; mg with vertex-

transitive ation by some group G, then it is the standard (m�1)-simplex �

m�1

.

To be \non-evasive" is a strong topologial requirement. The following sequene of

impliations holds for �nite simpliial omplexes (f. [3℄, [10℄, and [18℄):

non-evasive ) ollapsible ) ontratible ) Z-ayli ) Q -ayli ) ~� = 0

and leads to further generalizations of the above onjeture if we replae \non-evasive"

with the respetive weaker requirements (~� denotes the redued Euler harateristi

of a simpliial omplex).

These generalized onjetures all hold one again for prime power numbers of ver-

ties by a theorem of Rivest and Vuillemin [13℄ (see also [11℄). Yet, for non-prime

power numbers there are ounterexamples known to all of the generalized onjetures

with the exeption of the Evasiveness Conjeture for simpliial omplexes whih still

remains open.

There is an abundane of (non-trivial) Q -ayli vertex-homogeneous simpliial

omplexes and even more with ~� = 0. The smallest Q -ayli example is the 6-vertex

triangulation of the real projetive plane (see below and f. [11℄).

In [11℄ it was shown that there are no 2- and 3-dimensional Z-ayli vertex-ho-

mogeneous simpliial omplexes other than a simplex. In Setion 4 we will present

a 5-dimensional example and further examples in higher dimensions, one of whih

is Oliver's example of dimension 11, the only previously known example of a non-

ontratible Z-ayli vertex-homogeneous simpliial omplex. In Setion 2 we will

disuss some topologial tools that will be used for our later onstrutions, and in

Setion 3 we will give an in�nite series of ontratible vertex-homogeneous simpliial

omplexes. It remains to mention that Oliver desribed tehniques to onstrut a
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ollapsible vertex-homogeneous simpliial omplex (f. [10℄). On the other hand,

evasiveness is preserved by various standard onstrutions as, for example, join or

baryentri subdivision [18℄. Thus, in onlusion, the present tehniques seem to

be insuÆient to settle the Evasiveness Conjeture for simpliial omplexes or to

onstrut better ounterexamples than the Z-ayli and ontratible ones disussed

in this paper, whih leaves Karp's original Evasiveness Conjeture for graph properties

wide open.

2 Topologial Tools

The main tools for our onstrutions will be the well known nerve operation and

duality observations.

2.1 The Nerve Operation

Let K be a (�nite abstrat) simpliial omplex, F = (F

j

)

j2J

its olletion of maximal

faes (faets), and J the orresponding index set. We all the overing of K by its

faets F the standard overing of K.

Theorem 4 (Nerve Theorem, Borsuk, f. [3℄) Let N (K) be the nerve omplex of

K (with respet to the standard overing F = (F

j

)

j2J

), that is, N (K) is the simpliial

omplex on the vertex set J suh that � � J is a simplex of N (K) if and only if

T

j2�

F

j

6= ;. Then K and N := N (K) are homotopy equivalent.

The nerve omplex of a simplex of any dimension is a point, and Gr�unbaum de-

sribes in [8℄ the lass of all simpliial omplexes having the same nerve. Moreover,

by a theorem of Mani (f. [8℄), there is for every simpliial omplex N some simpliial

omplex K suh that N = N (K).

De�nition 5 Let E be the vertex set of K, and for every vertex e of K let e

1

; : : : ; e

n

be n distint opies. The n-th multiple nK of K is the simpliial omplex on the

vertex set nE =

S

n

r=1

E

r

, where E

r

denotes the r-th opy of E, that has as its maximal

faes the sets nF = fe

1

1

; e

2

1

; : : : ; e

n

1

; : : : ; e

1

k

; e

2

k

; : : : ; e

n

k

g for the faets F = fe

1

; : : : ; e

k

g

of K.

By onstrution,

T

j2�

F

j

6= ; if and only if

T

j2�

nF

j

6= ;. Hene, N (nK) = N (K),

and nK is homotopy equivalent to K.

Although the above examples demonstrate that there are always ombinatorially

non-isomorphi simpliial omplexes whih have the same nerve omplex, the nerve

operation is injetive on a large lass of simpliial omplexes. Gr�unbaum [8℄ alls a

simpliial omplex taut if every vertex is the intersetion of the faets ontaining it.

Lemma 6 (Duality, [8℄) If K is taut, then N (K) is taut and K = N (N (K)).

Proof. Let K be taut with standard overing F = (F

j

)

j2J

. The nerve N = N (K)

has one vertex j for every faet F

j

of K, j 2 J . If �

e

� J is the olletion of all j's

4



so that the orresponding faets F

j

ontain the vertex e 2 E, then, by the tautness

of K,

T

j2�

e

F

j

= f e g and �

e

is a faet of N . Hene, to any vertex e of K there

uniquely orresponds a faet �

e

= f j : e 2 F

j

g of N .

On the other hand, let j 2 J . Suppose there exists some j

0

2 J , j

0

6= j, suh that

j

0

2

T

e2E;j2�

e

�

e

. But then F

j

� F

j

0

, whih is a ontradition to the maximality of

F

j

. Thus, the nerve N is taut, and N (N (K)) = K. �

The nerve omplex N (K) of a simpliial omplexK need not be taut. For example,

the nerve omplex of a path of length n is a path of length (n� 1). A point is taut,

and n-gons C

n

are taut for n � 3.

2.2 The Join and the Dual Join Produt

Reall that the join K �K

0

of two simpliial omplexes K and K

0

(with disjoint vertex

sets) is de�ned as K �K

0

:= f� [�

0

: � 2 K;�

0

2 K

0

g.

Lemma 7 If K and K

0

are taut simpliial omplexes, di�erent from a point, then

their join produt K �K

0

is taut as well.

Proof. The vertex set of K �K

0

is E [ E

0

. Let e be a vertex of K �K

0

with e 2 E.

If V = (F

j

[ F

0

j

0

)

(j2J;j

0

2J

0

)

denotes the olletion of maximal faes of K � K

0

for the

faets F = (F

j

)

j2J

of K and the faets F

0

= (F

0

j

0

)

j

0

2J

0

of K

0

, then

\

j 2 J; j

0

2 J

0

;

e 2 F

j

[ F

0

j

0

F

j

[ F

0

j

0

=

\

j 2 J;

e 2 F

j

F

j

= feg;

and the same is true for e 2 E

0

. Therefore, K �K

0

is taut. �

De�nition 8 Let K and K

0

be (�nite abstrat) simpliial omplexes. Then the dual

join produt of K and K

0

is the produt

K on K

0

:= N (N (K) � N (K

0

) ): (1)

The dual join produt of two (non-trivial) taut omplexes K and K

0

is taut by

Lemma 6 and Lemma 7. In partiular, the following equality holds for (non-trivial)

taut omplexes,

N (K on K

0

) = N (K) � N (K

0

): (2)

3 Vertex-Homogeneous Simpliial Complexes

3.1 The Nerve of a Vertex-Homogeneous Simpliial Complex

Let G be a permutation group of the vertex set E, and let K � 2

E

be a simpliial

omplex whih is invariant under the given G-ation.

Lemma 9 The ation of G on K indues an ation of G on the nerve N (K) of K.
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Proof. Let F = (F

j

)

j2J

be the standard overing of K. The ation of G on the set J

of faets of K gives rise to an ation of G on the nerve N (K), sine

T

j2�

gF

j

6= ;

if and only if

T

j2�

F

j

6= ; for any � 2 N (K). �

Let, from now on, K be a vertex-homogeneous simpliial omplex. Then the

indued ation of G on the nerve N of K is, in general, not vertex-homogeneous

anymore. More preisely, the ation of G on N is transitive on the set of verties of

N if and only if K has exatly one orbit of maximal faes.

Lemma 10 (Charaterization of vertex-homogeneous simpliial omplexes)

(i) If K is vertex-homogeneous, then its nerve N = N (K) is faet-homogeneous.

(ii) If N is faet-homogeneous, then its nerve K = N (N) is vertex-homogeneous.

Proof. (i) Let K be a vertex-homogeneous simpliial omplex on n verties.

We �rst show that N = N (K) is pure. Let Max(K) denote the olletion of

orbits of maximal faes of K. By transitivity, every vertex e 2 E is ontained the

same number of times, r

O

, in the k-element sets of any partiular orbit O of faets

of K, i.e., k � jOj = r

O

� n. Altogether, every vertex e is ontained in preisely

r =

P

O2Max(K)

r

O

distint faets of K, i.e., dim(�

e

) = r � 1 for every e. In

partiular, dim(N (K)) = r � 1.

Let � and �

0

be two di�erent faets of N . Then � and �

0

orrespond to two

distint sets of r maximal faes of K respetively. Let e be some element in the

intersetion of the r maximal faes of K orresponding to � (there an be more than

one suh element if K is not taut!), and let e

0

be an element of E representing �

0

.

Sine the ation of G is transitive on E, there exists a group element g 2 G suh that

e

0

= g � e. But then g maps the faets orresponding to e to the faets orresponding

to e

0

, and hene the ation of G on N is transitive on the faets of N .

(ii) Trivial, sine any faet-homogeneous simpliial omplex has only one orbit of

maximal faes. �

Example 1: The n-gon C

n

, n � 3, with rotations by elements of Z

n

is a taut

vertex-homogeneous and faet-homogeneous simpliial omplex with C

n

= N (C

n

).

If we replae every edge of the irle C

n

by an m-simplex, m � 2, then the

resulting (n;m)-neklae C

m

n

is a faet-homogeneous pure simpliial omplex with

C

n

= N (C

m

n

). Thus, (n;m)-neklaes form an in�nite lass of faet-homogeneous

simpliial omplexes, whih all have the same nerve.

Example 2: For n � 3, the 2-fold multiple 2C

n

is a hain of tetrahedra (Figure 1):

With respet to the ation of Z

n

� Z

2

, whih rotates the tetrahedra and ips the

upper and lower verties, the 2-fold multiple 2C

n

is vertex-homogeneous and faet-

homogeneous, with C

n

= N (2C

n

).

Example 3: The 6-vertex triangulation RP

2

6

(see Figure 2) of the real projetive

plane is vertex-homogeneous and taut.
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321 n-1 n 1

2n-1 2n n+1n+1 n+2 n+3

* * * *

Figure 1: The 2-fold multiple 2C

n

.

1

2 31

23 4

5
6

Figure 2: The 6-vertex triangulation of the real projetive plane.

The symmetry group of RP

2

6

is A

5

(6) = h (1; 2; 3; 4; 6); (1; 4)(5; 6) i, with A

5

(6)

ating transitively on the set of maximal faes:

1 f1; 2; 4g, 2 f1; 2; 5g, 3 f1; 3; 4g, 4 f1; 3; 6g, 5 f1; 5; 6g,

6 f2; 3; 5g, 7 f2; 3; 6g, 8 f2; 4; 6g, 9 f3; 4; 5g, 10 f4; 5; 6g.

The nerve of RP

2

6

is a taut 4-dimensional vertex-homogeneous and faet-homogeneous

simpliial omplex on 10 verties:

1 f1; 2; 3; 4; 5g, 2 f1; 2; 6; 7; 8g, 3 f3; 4; 6; 7; 9g,

4 f1; 3; 8; 9; 10g, 5 f2; 5; 6; 9; 10g, 6 f4; 5; 7; 8; 10g.

If we ompute the nerve of this omplex, then we get RP

2

6

again.

Remark: We see by this example that the nerve of a vertex-homogeneous omplex

an have more verties and an be of higher dimension than the original omplex, it

also an have less verties and an be of lower dimension.

Example 4: Q-Ayli Vertex-Homogeneous Simpliial Complexes

It turned out in [11℄ that the 6-vertex triangulation of the real projetive plane is the

smallest (non-trivial) example of a Q -ayli vertex-homogeneous simpliial omplex.

We will make use of Lemma 10 to derive further examples of vertex-homogeneous

as well as faet-homogeneous Q -ayli simpliial omplexes, whih are homotopy

equivalent to RP

2

.
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Besides that it is vertex-homogeneous, the 6-vertex triangulation of the projetive

plane Aa (f. Figure 3) is faet-homogeneous as was mentioned above. Hene, the

nerve omplex aA of Aa (in Figure 3, vertex-homogeneous and faet-homogeneous

simpliial omplexes are labeled by apital letters and small letters respetively) is

a faet-homogeneous and vertex-homogeneous simpliial omplex on 10 verties with

the shaded pentagons depiting the six 4-dimensional faets glued together along the

sides of the pentagons.

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

1

2 31

23

Aa b c

aA d D

Figure 3: Vertex-/faet-homogeneous simpliial omplexes homotopy equivalent to RP

2

.

The nerve omplex B (C) of the faet-homogeneous subdivision b (of the faet-

homogeneous baryentri subdivision ) of Aa is vertex-homogeneous on 30 (60) ver-

ties.

If we replae in b for any bold edge both neighboring triangles by a tetrahedron,

then the resulting simpliial omplex d is still faet-homogeneous. Its nerve omplex

D is on 15 verties with two orbits of maximal faes, one onsisting of six 4-simplies

(shaded pentagons) and the other of 10 triangles. The same onstrution an be

arried through for  leading to omplexes e and E (the latter on 30 verties).

A further example F of a vertex-homogeneous simpliial omplex on 15 verties,

homotopy equivalent to the projetive plane, an be obtained from D by gluing in 60

tetrahedra in the following way. For any white triangle of D we add six tetrahedra

with vertex-sets the triangle and in addition one vertex of a neighboring white triangle

respetively. The resulting spae F is still vertex-homogeneous, and it an be worked

out easily that it ollapses to D and thus is homotopy equivalent to D.
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3.2 Construtions with Vertex-Homogeneous Simpliial Complexes

After we now have seen some simple examples of vertex-homogeneous simpliial om-

plexes, we will next disuss three onstrutions that allow us to derive further vertex-

homogeneous simpliial omplexes if we start with a given one.

Proposition 11 Let (K;G) denote a pair of a simpliial omplex K with vertex set E

of ardinality m and a group G < S

m

that ats vertex-transitively on K. If F is a

�nite set with n = jF j elements and H < S

n

is a transitive permutation group of

degree n, whih ats on F , then the simpliial omplexes

(i) (K

�n

; G�H) (Oliver, f. [10℄)

(ii) (K on F;G�H)

(iii) (nK;G�H)

are vertex-homogeneous for the obvious ations of G�H.

Proof. (i) Let the diret produt G � H at on the n-fold join produt K

�n

, with

G ating transitively on every opy of K and with H permuting the n opies of K.

The vertex set of K

�n

is the union E

[

=

S

n

r=1

E

r

of n opies of E, and the ation of

G�H is learly transitive on E

[

.

(ii) Sine (K;G) and (F;H) are vertex-homogeneous omplexes, their nerve om-

plexes (N (K); G) and (N (F ); H) are faet-homogeneous, with N (F ) = F . The join

produt N (K) � F is faet-homogeneous for the diagonal ation of G�H, and thus

(KonF;G�H) is vertex-homogeneous.

(iii) As in (i), G�H ats transitively on E

[

=

S

n

r=1

E

r

. �

Corollary 12 If K is a Z-ayli vertex-homogeneous simpliial omplex, then the

n-fold multiples nK form an in�nite series of Z-ayli vertex-homogeneous simpliial

omplexes. Moreover, the series K

�n

and K on F provide examples of ontratible

vertex-homogeneous simpliial omplexes.

Proof. It remains to show that K

�n

and K on F are ontratible for n � 2. If K is

Z-ayli, then it is onneted. Now, the join produt of a k-onneted omplex with

an l-onneted omplex is (k+ l+2)-onneted. In partiular, K

�n

and K on F are at

least (0� 1+ 2)-onneted, that is, simply onneted. But sine a simpliial omplex

is ontratible if and only if it is simply onneted and Z-ayli (f. [3℄), the result

follows. �

4 The Identi�ed Dodeahedron and Seven Related Z-Ayli

Vertex-Homogeneous Simpliial Complexes

Let us onsider the boundary omplex of the dodeahedron with 12 pentagonal faets,

30 edges, and 20 verties. If we identify opposite pentagons by a oherent twist of

�=5 radians, then the resulting ell omplex Q is Z-ayli; see Figure 4 and f. [4℄, [6,

p. 57℄, and [7℄. The symmetry group of the identi�ed dodeahedron Q is the alternating

9



group A

5

. Let us remark that the identi�ed dodeahedron is simply the 2-skeleton

of the Poinar�e homology 3-sphere in its desription by Threlfall and Seifert [16℄ and

Weber and Seifert [17℄ as the spherial dodeahedron spae, whih is given by the full

dodeahedron with the same identi�ations on the boundary as above.

1
2

3
4

5

1
2

34

5

3

2

4

3

5

1

2

5

1

4

Figure 4: The Z-ayli identi�ed dodeahedron.

Lemma 13 There are preisely two A

5

-invariant faet-transitive triangulations of the

Z-ayli omplex Q.

Proof. Every edge of the ell omplex Q is the intersetion of three pentagonal ells,

whih implies that the 1-skeleton of Q is neessarily inluded in the 1-skeleton of any

A

5

-invariant triangulation of Q. This is also the ase for the �ve verties of Q. The

ation of A

5

on Q is transitive on the pentagons, and any of the pentagons has the

dihedral group D

5

< A

5

as its isotropy group. It is therefore suÆient to determine

D

5

-invariant faet-transitive triangulations of a pentagon. There are exatly two

suh triangulations, one with 5 and the other with 10 triangles. We denote the

orresponding triangulations of Q with 30 and 60 triangles by N

I

and N

O

respetively

(see Figures 6 and 5). �

Corollary 14 The nerve omplexes K

1

:=N (N

I

) and K

O

:=N (N

O

) are examples of

Z-ayli but not ontratible vertex-homogeneous simpliial omplexes on 30 and 60

verties respetively.

Oliver's Example K

O

The omplex K

O

was �rst found by Bob Oliver. His onstrution is purely algebrai

and was mentioned in [10℄ and in a paper by Segev [14℄. In fat, Segev presented

an expliit proof that the nerve omplex N

O

= N (K

O

), and hene K

O

, is Z-ayli.

Moreover, it was onjetured in [14℄ that N (K

O

) is homeomorphi to Q. Sine N

O

is

simply a triangulation of Q, this is indeed the ase.

10



Let A

5

be the alternating group of even permutations of the set f1; 2; 3; 4; 5g. De�ne

the subgroups

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

where N

A

5

(H) denotes the normalizer in A

5

of a subgroup H of A

5

. The stabilizer

U of the point 2 is isomorphi to the alternating group A

4

and has 12 elements. The

subgroups V and W are isomorphi to the dihedral groups D

5

and D

3

with 10 and 6

elements respetively.

Oliver takes as vertex set E for the simpliial omplex K

O

the 60 elements of A

5

and lets A

5

at transitively on E by left multipliation. He de�nes K

O

to be the

simpliial omplex that has the left osets of U , V , and W as its (orbits of) maximal

faes:

K

O

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�W

:

Theorem 15 (Oliver, f. [10℄) The 11-dimensional simpliial omplex K

O

is vertex-

homogeneous and Z-ayli.

Proof. By onstrution, K

O

is 11-dimensional and vertex-homogeneous. To see that

K

O

is Z-ayli, we ompute the nerve N (K

O

) of K

O

. As maximal faes of the nerve

we get 60 triangles. By a suitable labeling of the verties, N (K

O

) turns out to be the

triangulation N

O

of the Z-ayli identi�ed dodeahedron Q (see Figure 5). Thus K

O

is Z-ayli by the Nerve Theorem 4. �

Let us have a loser look at the onstrution of K

O

. By de�nition, K

O

is made up

of three orbits of maximal faes onsisting of �ve 12-element sets, six 10-element sets,

and ten 6-element sets orresponding to the left osets of the subgroups U , V , and

W , respetively. In partiular, K

O

is not pure! The omplex K

O

is taut, and so is

its nerve N

O

. Hene, if we want to reonstrut K

O

from N

O

, we see by Figure 5 that

N

O

has 60 triangles, so K

O

has 60 orresponding verties. Further, we observe that

there are �ve verties of N

O

whih have twelve neighboring triangles eah, namely

the original verties 1{5 of the identi�ed dodeahedron. Thus the nerve operation

applied to N

O

will produe a 12-tuple as maximal fae of K

O

= N (N

O

) for eah of

these verties. Similarly, the six verties 6{11 of N

O

have ten neighboring triangles

and thus yield six 10-tuples as faets of K

O

. The ten verties 12{21 �nally give ten

6-element sets as faets of K

O

. Thus, alternatively to Oliver's algebrai onstrution,

all information on K

O

an be obtained geometrially via the nerve operation from the

piture of N

O

in Figure 5.

New Z-Ayli Vertex-Homogeneous Simpliial Complexes

In [11℄, we enumerated all vertex-homogeneous simpliial omplexes with redued

Euler harateristi ~� = 0 orresponding to a given group ation on few verties.

For the A

5

-ation on 60 verties it is hopeless to generate all vertex-homogeneous

11



1

2
3

4

5

1

2

3 4

5

1

2

3

45

6
7

8

9

10
11

12

13

14

15
16

17

18
19

20

21

12

13

14

15

16

17

18

19

20

21

Figure 5: Triangulation N

O

of the identi�ed dodeahedron Q with 60 triangles.

simpliial omplexes with ~� = 0 and then ompute their homology in order to �nd

Z-ayli examples. But if we restrit our omputer searh to omplexes that have

only few orbits of maximal faes with orbit size less than 30, then, in partiular, we

obtain the above example K

O

. Reall [11℄ that an A

5

-orbit of k-sets on 60 verties

an have size less than 30 if and only if gd(k; 60) > 2. We formed ombinations of

at most six orbits with at most two orbits of maximal faes of the same dimension.

For every simpliial omplex K orresponding to one of these olletions of orbits of

faets, we omputed the redued Euler harateristi ~�(N (K)) of the nerve omplex

of K. Whenever ~� was zero, we omputed the homology of N (K) with the program

HOMOLOGY by Hekenbah [9℄. Inluding K

O

, we found �ve Z-ayli A

5

-invariant

omplexes on 60 verties that we denote by K

O

, K

2

, K

4

, K

5

, and K

6

. The examples

K

2

andK

4

are not taut, and it turns out thatK

1

:= N (N (K

2

)) and K

3

:= N (N (K

4

))

are taut A

5

-invariant Z-ayli simpliial omplexes on 30 verties. We believe that

if we extended our searh, then further omplexes would appear.

Theorem 16 There are at least seven non-ontratible Z-ayli simpliial omplexes

with a vertex-transitive A

5

-ation that are homotopy equivalent to the identi�ed dode-

ahedron Q.

Table 1 gives an overview of the examples. All seven omplexes an be haraterized

algebraily, and this we will do for K

1

to K

6

in the following. Moreover, we give

geometri desriptions of the orresponding faet-homogeneous nerve omplexes N

I

to N

IV

.

12



Complex # verties dim

K

O

= N (N

O

) 60 11

K

1

= N (N

I

) 30 11

K

2

= 2K

1

60 23

K

3

= N (N

II

) 30 5

K

4

= 2K

3

60 11

K

5

= N (N

III

) 60 11

K

6

= N (N

IV

) 60 11

Table 1: Z-ayli vertex-homogeneous simpliial omplexes with A

5

-ation.

Remark: Although the examples K

O

and K

1

to K

6

are not ontratible, by

Proposition 11 there exist in�nite series of ontratible vertex-homogeneous simpliial

omplexes assoiated with K

O

and K

1

to K

6

.

The Z-Ayli Complexes K

1

and K

2

Consider the subgroups of A

5

,

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

.

Then the 24-element set

A := U [ U � (2; 5; 3)

determines an A

5

-orbit of size 5. De�ne

K

2

:=

[

g2A

5

2

g�A

[

[

g2A

5

2

g�V

;

and

K

1

:= N (N (K

2

)):

Theorem 17 The examples K

1

and K

2

are Z-ayli vertex-homogeneous simpliial

omplexes on 30 and 60 verties respetively, with K

2

= 2K

1

.

Proof. The nerve omplex N

I

= N (K

1

) = N (K

2

) of K

1

and K

2

is the faet-

homogeneous triangulation of the identi�ed dodeahedron Q with 30 triangles (see

Figure 6). �

As before in the ase of K

O

, we an easily reonstrut K

1

from the taut triangu-

lation N

I

of Q as follows. N

I

has 30 triangles and �ve verties 1{5 with twelve and

six verties 6{11 with �ve neighboring triangles. Thus, K

1

has 30 verties and �ve

12-tuples and six 5-element sets as faets.

Sine the group A

5

with 60 elements ats transitively on the 30 verties of K

1

, we

an simply replae every vertex in eah faet of K

1

by a pair of verties to obtain a

omplex K

2

= 2K

1

. This omplex with 60 verties then has an obvious ation by A

5

.
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Figure 6: Triangulation N

I

of the identi�ed dodeahedron Q with 30 triangles.

The Z-Ayli Complexes K

3

and K

4

Take the subgroups of A

5

,

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

and onsider the 12-element set

B := W [ W � (3; 4; 5).

De�ne

K

4

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�B

[

[

g2A

5

2

g�V

;

and set

K

3

:= N (N (K

4

)):

The nerve N

II

=N (K

3

) =N (K

4

) of K

3

and K

4

is a taut 3-dimensional faet-homo-

geneous simpliial omplex with 30 tetrahedra (see Figure 7). For every pentagon of

N

O

, 5 tetrahedra are glued in as indiated by the dashed lines. Sine N

II

ollapses to

N

O

, the omplex N

II

is homotopy equivalent to Q.

Theorem 18 The example K

3

provides a 5-dimensional non-ontratible Z-ayli

vertex-homogeneous simpliial omplex on 30 verties.
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Figure 7: Triangulation N

II

with 30 tetrahedra replaing the 60 triangles.

We saw in [11℄ that there are no (non-trivial) 2- and 3-dimensional Z-ayli vertex-

homogeneous simpliial omplexes, and that if there were a 4-dimensional exam-

ple, then it would have 15, 20, 30, or 60 verties. Our attempts failed to �nd a

4-dimensional example.

Conjeture 19 The omplex K

3

with f -vetor f = (1; 30; 195; 340; 255; 96; 15) is the

smallest example of a non-ontratible Z-ayli vertex-homogeneous simpliial om-

plex, with respet to dimension, the number of verties, and the total number of faes.

The join K

3

� K

3

of dimension 11 with 60 verties is, apart from a simplex, the

smallest example of a ontratible vertex-homogeneous simpliial omplex.

The Z-Ayli Complexes K

5

and K

6

Let U , V , W , and R be subgroups of A

5

with

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

R := h (1; 2)(3; 5); (1; 3)(2; 5) i

�

=

Z

2

� Z

2

,

and onsider the 8-element set

C := R [ R� (2; 3; 4).

De�ne

K

5

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�C

[

[

g2A

5

2

g�W

:
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Figure 8: Triangulation N

III

with 60 4-simplies.

The nerve N

III

= N (K

5

), omposed of 60 4-simplies on 36 verties, is a taut faet-

homogeneous simpliial omplex homotopy equivalent to Q. Figure 8 gives an illustra-

tion of N

III

via a projetion onto N

O

. To every of the 60 triangles of the triangulation

N

O

of Q there uniquely orresponds a 4-simplex of N

III

whih has as its verties

the three verties of the respetive triangle and in addition the two verties that are

plaed within the triangle. For example, at the top of Figure 8 we �nd the 4-simplies

1 8 16 27 33 and 1 8 20 24 27. It an easily be veri�ed thatN

III

ollapses to N

O

, and thus

N

III

is homotopy equivalent to Q. Eah of the 15 verties 22{36 is ontained in eight

4-simplies, hene these verties ontribute 15 8-tuples as faets to K

5

= N (N

III

).

Let one more U , V , W , and S be subgroups of A

5

with

U := f g 2 A

5

: g � 2 = 2 g

�

=

A

4

,

V := N

A

5

( h (1; 2; 3; 4; 5) i )

�

=

D

5

,

W := N

A

5

( h (1; 3; 5) i )

�

=

D

3

,

S := h (1; 3)(4; 5); (1; 4)(3; 5) i

�

=

Z

2

� Z

2

,

and onsider the 8-element set

D := S [ S � (2; 3; 5).

De�ne

K

6

:=

[

g2A

5

2

g�U

[

[

g2A

5

2

g�V

[

[

g2A

5

2

g�D

[

[

g2A

5

2

g�W

:
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The nerve omplex N

IV

= N (K

6

) is again 4-dimensional but ombinatorially dis-

tint from N

III

, and provides another example of a taut faet-homogeneous simpliial

omplex homotopy equivalent to Q. The 60 4-simplies of N

IV

are drawn in Figure 9.
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Figure 9: Triangulation N

IV

with 60 4-simplies.
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